Jlonge4 commited on
Commit
0dfde9c
1 Parent(s): d3f2440

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +124 -191
README.md CHANGED
@@ -1,199 +1,132 @@
1
  ---
2
  library_name: transformers
3
  tags: []
 
4
  ---
5
 
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
-
11
-
12
- ## Model Details
13
-
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
77
 
78
  ### Training Data
79
 
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
 
1
  ---
2
  library_name: transformers
3
  tags: []
4
+ license: mit
5
  ---
6
 
7
+ ## Merged Model Performance
8
+
9
+ This repository contains our hallucination evaluation PEFT adapter model.
10
+
11
+ ### Hallucination Detection Metrics
12
+
13
+ Our merged model achieves the following performance on a binary classification task for detecting hallucinations in language model outputs:
14
+
15
+ ```
16
+ precision recall f1-score support
17
+
18
+ 0 0.85 0.71 0.77 100
19
+ 1 0.75 0.87 0.81 100
20
+
21
+ accuracy 0.79 200
22
+ macro avg 0.80 0.79 0.79 200
23
+ weighted avg 0.80 0.79 0.79 200
24
+ ```
25
+
26
+ ### Model Usage
27
+ For best results, we recommend starting with the following prompting strategy (and encourage tweaks as you see fit):
28
+
29
+ ```python
30
+ def format_input(reference, query, response):
31
+ prompt = f"""Your job is to evaluate whether a machine learning model has hallucinated or not.
32
+ A hallucination occurs when the response is coherent but factually incorrect or nonsensical
33
+ outputs that are not grounded in the provided context.
34
+ You are given the following information:
35
+ ####INFO####
36
+ [Knowledge]: {reference}
37
+ [User Input]: {query}
38
+ [Model Response]: {response}
39
+ ####END INFO####
40
+ Based on the information provided is the model output a hallucination? Respond with only "yes" or "no"
41
+ """
42
+ return input
43
+
44
+ text = format_input(query='Based on the follwoing
45
+ <context>Walrus are the largest mammal</context>
46
+ answer the question
47
+ <query> What is the best PC?</query>',
48
+ response='The best PC is the mac')
49
+
50
+ messages = [
51
+ {"role": "user", "content": text}
52
+ ]
53
+
54
+ pipe = pipeline(
55
+ "text-generation",
56
+ model=base_model,
57
+ model_kwargs={"attn_implementation": attn_implementation, "torch_dtype": torch.float16},
58
+ tokenizer=tokenizer,
59
+ )
60
+ generation_args = {
61
+ "max_new_tokens": 2,
62
+ "return_full_text": False,
63
+ "temperature": 0.01,
64
+ "do_sample": True,
65
+ }
66
+
67
+ output = pipe(messages, **generation_args)
68
+ print(f'Hallucination: {output[0]['generated_text'].strip().lower()}')
69
+ # Hallucination: yes
70
+ ```
71
+
72
+ ### Comparison with Other Models
73
+
74
+ We compared our merged model's performance on the hallucination detection benchmark against several other state-of-the-art language models:
75
+
76
+ | Model | Precision | Recall | F1 |
77
+ |---------------------- |----------:|-------:|-------:|
78
+ | Our Merged Model | 0.75 | 0.87 | 0.81 |
79
+ | GPT-4 | 0.93 | 0.72 | 0.82 |
80
+ | GPT-4 Turbo | 0.97 | 0.70 | 0.81 |
81
+ | Gemini Pro | 0.89 | 0.53 | 0.67 |
82
+ | GPT-3.5 | 0.89 | 0.65 | 0.75 |
83
+ | GPT-3.5-turbo-instruct| 0.89 | 0.80 | 0.84 |
84
+ | Palm 2 (Text Bison) | 1.00 | 0.44 | 0.61 |
85
+ | Claude V2 | 0.80 | 0.95 | 0.87 |
86
+
87
+ As shown in the table, our merged model achieves one of the highest F1 scores of 0.81, outperforming several other state-of-the-art language models on this hallucination detection task.
88
+
89
+ We will continue to improve and fine-tune our merged model to achieve even better performance across various benchmarks and tasks.
90
+
91
+ Citations:
92
+ Scores from arize/phoenix
93
 
94
  ### Training Data
95
 
96
+ @misc{HaluEval,
97
+ author = {Junyi Li and Xiaoxue Cheng and Wayne Xin Zhao and Jian-Yun Nie and Ji-Rong Wen },
98
+ title = {HaluEval: A Large-Scale Hallucination Evaluation Benchmark for Large Language Models},
99
+ year = {2023},
100
+ journal={arXiv preprint arXiv:2305.11747},
101
+ url={https://arxiv.org/abs/2305.11747}
102
+ }
103
+
104
+ ### Framework versions
105
+
106
+ - PEFT 0.11.1
107
+ - Transformers 4.41.2
108
+ - Pytorch 2.3.0+cu121
109
+ - Datasets 2.19.2
110
+ - Tokenizers 0.19.1
111
+
112
+ ### Training hyperparameters
113
+
114
+ The following hyperparameters were used during training:
115
+ - learning_rate: 0.0001
116
+ - train_batch_size: 2
117
+ - eval_batch_size: 8
118
+ - seed: 42
119
+ - gradient_accumulation_steps: 4
120
+ - total_train_batch_size: 8
121
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
122
+ - lr_scheduler_type: linear
123
+ - lr_scheduler_warmup_steps: 10
124
+ - training_steps: 150
125
+
126
+ ### Framework versions
127
+
128
+ - PEFT 0.11.1
129
+ - Transformers 4.41.2
130
+ - Pytorch 2.3.0+cu121
131
+ - Datasets 2.19.2
132
+ - Tokenizers 0.19.1