Added model card
Browse files
README.md
CHANGED
@@ -1,3 +1,113 @@
|
|
1 |
-
---
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: ministral/Ministral-3b-instruct
|
3 |
+
library_name: peft
|
4 |
+
---
|
5 |
+
|
6 |
+
# Ministral-3b-instruct-PromptEnhancing
|
7 |
+
|
8 |
+
Ministral-3b-instruct-PromptEnhancing is a LoRA-finetuned instruction-tuned text-generation model.
|
9 |
+
|
10 |
+
This model was releaszed alongside three other models in the 2-3b parameters range, all trained on the same dataset with the same training arguments.
|
11 |
+
|
12 |
+
|
13 |
+
## Model Details
|
14 |
+
|
15 |
+
### Model Description
|
16 |
+
|
17 |
+
This model is a LoRA fine-tune of [ministral/Ministral-3b-instruct](https://huggingface.co/ministral/Ministral-3b-instruct).
|
18 |
+
The goal of this finetune is to provide a light-weight prompt enhancing model for stable diffusion (or other diffusers sharing the same prompting conventions) to make image generation more accessible to everyone.
|
19 |
+
|
20 |
+
|
21 |
+
|
22 |
+
- **Developed by:** [groloch](https://huggingface.co/groloch)
|
23 |
+
- **Model type:** LoRA
|
24 |
+
- **Language(s) (NLP):** English
|
25 |
+
- **License:** [apache 2.0](https://huggingface.co/datasets/choosealicense/licenses/blob/main/markdown/apache-2.0.md)
|
26 |
+
- **Finetuned from model:** [ministral/Ministral-3b-instruct](https://huggingface.co/ministral/Ministral-3b-instruct).
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
- **Paper:** _Coming soon_
|
31 |
+
- **Demo:** _Coming soon_
|
32 |
+
|
33 |
+
## Uses
|
34 |
+
|
35 |
+
This model should be used as a prompt-enhancing model for diffusers. To use it, the simplest is to try out at the official [demo](#) (_coming soon_).
|
36 |
+
|
37 |
+
|
38 |
+
### Direct Use
|
39 |
+
|
40 |
+
If you want to use it locally, refer to the following code snippet:
|
41 |
+
```python
|
42 |
+
import torch
|
43 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
44 |
+
|
45 |
+
|
46 |
+
base_repo_id = 'ministral/Ministral-3b-instruct'
|
47 |
+
adapter_repo_id = 'groloch/Ministral-3b-instruct-PromptEnhancing'
|
48 |
+
|
49 |
+
tokenizer = AutoTokenizer.from_pretrained(base_repo_id)
|
50 |
+
model = AutoModelForCausalLM.from_pretrained(base_repo_id, torch_dtype=torch.bfloat16).to('cuda')
|
51 |
+
model.load_adapter(adapter_repo_id)
|
52 |
+
|
53 |
+
prompt_to_enhance = 'Sinister crocodile eating a jolly rabbit'
|
54 |
+
|
55 |
+
chat = [
|
56 |
+
{'role' : 'user', 'content': prompt_to_enhance}
|
57 |
+
]
|
58 |
+
|
59 |
+
prompt = tokenizer.apply_chat_template(chat,
|
60 |
+
tokenize=False,
|
61 |
+
add_generation_prompt=True,
|
62 |
+
return_tensors='pt')
|
63 |
+
|
64 |
+
encoding = tokenizer(prompt, return_tensors="pt").to('cuda')
|
65 |
+
|
66 |
+
generation_config = model.generation_config
|
67 |
+
generation_config.do_sample = True
|
68 |
+
generation_config.max_new_tokens = 96
|
69 |
+
generation_config.temperature = 0.3
|
70 |
+
generation_config.top_p = 0.7
|
71 |
+
generation_config.num_return_sequences = 1
|
72 |
+
generation_config.pad_token_id = tokenizer.eos_token_id
|
73 |
+
generation_config.eos_token_id = tokenizer.eos_token_id
|
74 |
+
generation_config.repetition_penalty = 2.0
|
75 |
+
|
76 |
+
with torch.inference_mode():
|
77 |
+
outputs = model.generate(
|
78 |
+
input_ids=encoding.input_ids,
|
79 |
+
attention_mask=encoding.attention_mask,
|
80 |
+
generation_config=generation_config
|
81 |
+
)
|
82 |
+
|
83 |
+
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
|
84 |
+
|
85 |
+
```
|
86 |
+
|
87 |
+
### Out-of-Scope Use
|
88 |
+
|
89 |
+
This model is meant to be used as a prompt enhancer. Inputs should be concise and not too detailed (no full prompts).
|
90 |
+
|
91 |
+
Using this model for other purposes may yield unexpected behavior.
|
92 |
+
|
93 |
+
## Bias, Risks, and Limitations
|
94 |
+
|
95 |
+
This model was trained on a dataset partially generated by AI, which may contain bias.
|
96 |
+
|
97 |
+
This is a pretty lightweight model, so it may have significant limitations.
|
98 |
+
|
99 |
+
### Recommendations
|
100 |
+
|
101 |
+
Use high repetition penalty (> 2.0) and low temperature (< 0.4) for generation. Do not generate more than 128 tokens.
|
102 |
+
|
103 |
+
## Training Details
|
104 |
+
|
105 |
+
### Training Data
|
106 |
+
|
107 |
+
This model was trained for one epoch on [groloch/stable_diffusion_prompts_instruct](https://huggingface.co/datasets/groloch/stable_diffusion_prompts_instruct).
|
108 |
+
|
109 |
+
### Training Hyperparameters
|
110 |
+
|
111 |
+
_coming soon_
|
112 |
+
|
113 |
+
- PEFT 0.13.2
|