groderg commited on
Commit
06e48e5
1 Parent(s): 26a14f3

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +206 -132
README.md CHANGED
@@ -1,156 +1,230 @@
 
1
  ---
2
- library_name: transformers
3
- license: apache-2.0
4
- base_model: facebook/dinov2-large
5
  tags:
 
 
6
  - generated_from_trainer
7
- metrics:
8
- - accuracy
9
  model-index:
10
  - name: Joseph-large-2024_09_16-batch-size32_epochs150_freeze
11
  results: []
12
  ---
13
 
14
- <!-- This model card has been generated automatically according to the information the Trainer had access to. You
15
- should probably proofread and complete it, then remove this comment. -->
16
 
17
- # Joseph-large-2024_09_16-batch-size32_epochs150_freeze
18
-
19
- This model is a fine-tuned version of [facebook/dinov2-large](https://huggingface.co/facebook/dinov2-large) on the None dataset.
20
- It achieves the following results on the evaluation set:
21
  - Loss: 0.1207
22
  - F1 Micro: 0.8214
23
  - F1 Macro: 0.7191
24
  - Roc Auc: 0.8814
25
  - Accuracy: 0.3118
26
- - Learning Rate: 0.0000
27
 
28
- ## Model description
 
 
 
29
 
30
- More information needed
31
 
32
- ## Intended uses & limitations
33
 
34
- More information needed
 
 
 
 
 
35
 
36
- ## Training and evaluation data
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37
 
38
- More information needed
39
 
40
- ## Training procedure
41
 
42
- ### Training hyperparameters
43
 
44
  The following hyperparameters were used during training:
45
- - learning_rate: 0.001
46
- - train_batch_size: 32
47
- - eval_batch_size: 32
48
- - seed: 42
49
- - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
50
- - lr_scheduler_type: linear
51
- - num_epochs: 150
52
- - mixed_precision_training: Native AMP
53
-
54
- ### Training results
55
-
56
- | Training Loss | Epoch | Step | Validation Loss | F1 Micro | F1 Macro | Roc Auc | Accuracy | Rate |
57
- |:-------------:|:-----:|:-----:|:---------------:|:--------:|:--------:|:-------:|:--------:|:------:|
58
- | No log | 1.0 | 273 | 0.1776 | 0.7478 | 0.5385 | 0.8364 | 0.2166 | 0.001 |
59
- | 0.2726 | 2.0 | 546 | 0.1539 | 0.7697 | 0.5761 | 0.8448 | 0.2453 | 0.001 |
60
- | 0.2726 | 3.0 | 819 | 0.1474 | 0.7745 | 0.6098 | 0.8447 | 0.2516 | 0.001 |
61
- | 0.1701 | 4.0 | 1092 | 0.1465 | 0.7739 | 0.6214 | 0.8440 | 0.2536 | 0.001 |
62
- | 0.1701 | 5.0 | 1365 | 0.1452 | 0.7815 | 0.6353 | 0.8503 | 0.2502 | 0.001 |
63
- | 0.1622 | 6.0 | 1638 | 0.1446 | 0.7813 | 0.6142 | 0.8479 | 0.2578 | 0.001 |
64
- | 0.1622 | 7.0 | 1911 | 0.1445 | 0.7801 | 0.6233 | 0.8500 | 0.2620 | 0.001 |
65
- | 0.159 | 8.0 | 2184 | 0.1437 | 0.7879 | 0.6339 | 0.8585 | 0.2585 | 0.001 |
66
- | 0.159 | 9.0 | 2457 | 0.1447 | 0.7855 | 0.6443 | 0.8548 | 0.2578 | 0.001 |
67
- | 0.1563 | 10.0 | 2730 | 0.1539 | 0.7683 | 0.6149 | 0.8341 | 0.2443 | 0.001 |
68
- | 0.1558 | 11.0 | 3003 | 0.1389 | 0.7897 | 0.6335 | 0.8561 | 0.2633 | 0.001 |
69
- | 0.1558 | 12.0 | 3276 | 0.1395 | 0.7908 | 0.6406 | 0.8586 | 0.2640 | 0.001 |
70
- | 0.155 | 13.0 | 3549 | 0.1390 | 0.7894 | 0.6557 | 0.8535 | 0.2651 | 0.001 |
71
- | 0.155 | 14.0 | 3822 | 0.1391 | 0.7878 | 0.6405 | 0.8540 | 0.2623 | 0.001 |
72
- | 0.154 | 15.0 | 4095 | 0.1399 | 0.7885 | 0.6406 | 0.8550 | 0.2540 | 0.001 |
73
- | 0.154 | 16.0 | 4368 | 0.1394 | 0.7848 | 0.6375 | 0.8490 | 0.2668 | 0.001 |
74
- | 0.1527 | 17.0 | 4641 | 0.1594 | 0.7857 | 0.6425 | 0.8640 | 0.2419 | 0.001 |
75
- | 0.1527 | 18.0 | 4914 | 0.1319 | 0.8037 | 0.6768 | 0.8679 | 0.2755 | 0.0001 |
76
- | 0.149 | 19.0 | 5187 | 0.1324 | 0.8038 | 0.6715 | 0.8680 | 0.2789 | 0.0001 |
77
- | 0.149 | 20.0 | 5460 | 0.1306 | 0.8066 | 0.6734 | 0.8722 | 0.2789 | 0.0001 |
78
- | 0.1412 | 21.0 | 5733 | 0.1303 | 0.8037 | 0.6728 | 0.8651 | 0.2817 | 0.0001 |
79
- | 0.1385 | 22.0 | 6006 | 0.1287 | 0.8074 | 0.6735 | 0.8697 | 0.2841 | 0.0001 |
80
- | 0.1385 | 23.0 | 6279 | 0.1287 | 0.8058 | 0.6785 | 0.8654 | 0.2841 | 0.0001 |
81
- | 0.1377 | 24.0 | 6552 | 0.1280 | 0.8058 | 0.6841 | 0.8663 | 0.2869 | 0.0001 |
82
- | 0.1377 | 25.0 | 6825 | 0.1274 | 0.8074 | 0.6787 | 0.8696 | 0.2859 | 0.0001 |
83
- | 0.1361 | 26.0 | 7098 | 0.1283 | 0.8064 | 0.6740 | 0.8673 | 0.2859 | 0.0001 |
84
- | 0.1361 | 27.0 | 7371 | 0.1268 | 0.8110 | 0.6890 | 0.8744 | 0.2883 | 0.0001 |
85
- | 0.1354 | 28.0 | 7644 | 0.1267 | 0.8100 | 0.6813 | 0.8708 | 0.2893 | 0.0001 |
86
- | 0.1354 | 29.0 | 7917 | 0.1268 | 0.8081 | 0.6881 | 0.8667 | 0.2918 | 0.0001 |
87
- | 0.1339 | 30.0 | 8190 | 0.1264 | 0.8109 | 0.6873 | 0.8701 | 0.2928 | 0.0001 |
88
- | 0.1339 | 31.0 | 8463 | 0.1258 | 0.8089 | 0.6824 | 0.8674 | 0.2914 | 0.0001 |
89
- | 0.1332 | 32.0 | 8736 | 0.1260 | 0.8113 | 0.6924 | 0.8731 | 0.2931 | 0.0001 |
90
- | 0.1321 | 33.0 | 9009 | 0.1250 | 0.8133 | 0.6960 | 0.8736 | 0.2911 | 0.0001 |
91
- | 0.1321 | 34.0 | 9282 | 0.1251 | 0.8116 | 0.6891 | 0.8708 | 0.2942 | 0.0001 |
92
- | 0.1309 | 35.0 | 9555 | 0.1249 | 0.8124 | 0.6945 | 0.8724 | 0.2956 | 0.0001 |
93
- | 0.1309 | 36.0 | 9828 | 0.1253 | 0.8115 | 0.6971 | 0.8688 | 0.2942 | 0.0001 |
94
- | 0.1305 | 37.0 | 10101 | 0.1248 | 0.8116 | 0.6961 | 0.8702 | 0.2952 | 0.0001 |
95
- | 0.1305 | 38.0 | 10374 | 0.1250 | 0.8130 | 0.6991 | 0.8726 | 0.3004 | 0.0001 |
96
- | 0.1285 | 39.0 | 10647 | 0.1252 | 0.8142 | 0.6971 | 0.8768 | 0.2952 | 0.0001 |
97
- | 0.1285 | 40.0 | 10920 | 0.1249 | 0.8167 | 0.7070 | 0.8790 | 0.2956 | 0.0001 |
98
- | 0.129 | 41.0 | 11193 | 0.1250 | 0.8104 | 0.6962 | 0.8684 | 0.2897 | 0.0001 |
99
- | 0.129 | 42.0 | 11466 | 0.1235 | 0.8165 | 0.7064 | 0.8763 | 0.3039 | 0.0001 |
100
- | 0.1277 | 43.0 | 11739 | 0.1237 | 0.8150 | 0.7047 | 0.8771 | 0.2956 | 0.0001 |
101
- | 0.1279 | 44.0 | 12012 | 0.1237 | 0.8170 | 0.7054 | 0.8789 | 0.3008 | 0.0001 |
102
- | 0.1279 | 45.0 | 12285 | 0.1233 | 0.8163 | 0.7058 | 0.8758 | 0.3015 | 0.0001 |
103
- | 0.1264 | 46.0 | 12558 | 0.1230 | 0.8159 | 0.6993 | 0.8746 | 0.3008 | 0.0001 |
104
- | 0.1264 | 47.0 | 12831 | 0.1237 | 0.8135 | 0.7026 | 0.8720 | 0.2990 | 0.0001 |
105
- | 0.1267 | 48.0 | 13104 | 0.1233 | 0.8169 | 0.7044 | 0.8757 | 0.3018 | 0.0001 |
106
- | 0.1267 | 49.0 | 13377 | 0.1232 | 0.8161 | 0.7050 | 0.8762 | 0.3021 | 0.0001 |
107
- | 0.1249 | 50.0 | 13650 | 0.1227 | 0.8180 | 0.7086 | 0.8775 | 0.3015 | 0.0001 |
108
- | 0.1249 | 51.0 | 13923 | 0.1231 | 0.8190 | 0.7108 | 0.8794 | 0.3021 | 0.0001 |
109
- | 0.1243 | 52.0 | 14196 | 0.1228 | 0.8164 | 0.7041 | 0.8743 | 0.3021 | 0.0001 |
110
- | 0.1243 | 53.0 | 14469 | 0.1225 | 0.8189 | 0.7080 | 0.8794 | 0.3039 | 0.0001 |
111
- | 0.1248 | 54.0 | 14742 | 0.1238 | 0.8163 | 0.7054 | 0.8755 | 0.3018 | 0.0001 |
112
- | 0.1233 | 55.0 | 15015 | 0.1221 | 0.8181 | 0.7093 | 0.8772 | 0.3028 | 0.0001 |
113
- | 0.1233 | 56.0 | 15288 | 0.1226 | 0.8188 | 0.7092 | 0.8809 | 0.3049 | 0.0001 |
114
- | 0.1237 | 57.0 | 15561 | 0.1223 | 0.8184 | 0.7056 | 0.8785 | 0.3053 | 0.0001 |
115
- | 0.1237 | 58.0 | 15834 | 0.1223 | 0.8180 | 0.7094 | 0.8765 | 0.3028 | 0.0001 |
116
- | 0.1234 | 59.0 | 16107 | 0.1223 | 0.8198 | 0.7102 | 0.8789 | 0.3073 | 0.0001 |
117
- | 0.1234 | 60.0 | 16380 | 0.1237 | 0.8173 | 0.7068 | 0.8762 | 0.2980 | 0.0001 |
118
- | 0.1232 | 61.0 | 16653 | 0.1224 | 0.8201 | 0.7139 | 0.8791 | 0.3060 | 0.0001 |
119
- | 0.1232 | 62.0 | 16926 | 0.1222 | 0.8209 | 0.7189 | 0.8808 | 0.3028 | 1e-05 |
120
- | 0.1204 | 63.0 | 17199 | 0.1208 | 0.8208 | 0.7191 | 0.8797 | 0.3098 | 1e-05 |
121
- | 0.1204 | 64.0 | 17472 | 0.1209 | 0.8218 | 0.7188 | 0.8813 | 0.3108 | 1e-05 |
122
- | 0.12 | 65.0 | 17745 | 0.1209 | 0.8210 | 0.7187 | 0.8787 | 0.3080 | 1e-05 |
123
- | 0.1187 | 66.0 | 18018 | 0.1208 | 0.8216 | 0.7186 | 0.8805 | 0.3136 | 1e-05 |
124
- | 0.1187 | 67.0 | 18291 | 0.1210 | 0.8232 | 0.7239 | 0.8848 | 0.3112 | 1e-05 |
125
- | 0.1179 | 68.0 | 18564 | 0.1208 | 0.8212 | 0.7201 | 0.8815 | 0.3125 | 1e-05 |
126
- | 0.1179 | 69.0 | 18837 | 0.1211 | 0.8210 | 0.7198 | 0.8795 | 0.3101 | 1e-05 |
127
- | 0.1177 | 70.0 | 19110 | 0.1211 | 0.8213 | 0.7197 | 0.8802 | 0.3112 | 1e-05 |
128
- | 0.1177 | 71.0 | 19383 | 0.1206 | 0.8206 | 0.7164 | 0.8780 | 0.3112 | 1e-05 |
129
- | 0.1179 | 72.0 | 19656 | 0.1208 | 0.8206 | 0.7172 | 0.8783 | 0.3129 | 1e-05 |
130
- | 0.1179 | 73.0 | 19929 | 0.1208 | 0.8217 | 0.7214 | 0.8804 | 0.3132 | 1e-05 |
131
- | 0.1177 | 74.0 | 20202 | 0.1209 | 0.8201 | 0.7155 | 0.8760 | 0.3108 | 1e-05 |
132
- | 0.1177 | 75.0 | 20475 | 0.1205 | 0.8207 | 0.7151 | 0.8790 | 0.3153 | 1e-05 |
133
- | 0.1171 | 76.0 | 20748 | 0.1203 | 0.8221 | 0.7224 | 0.8820 | 0.3157 | 1e-05 |
134
- | 0.1171 | 77.0 | 21021 | 0.1208 | 0.8232 | 0.7234 | 0.8851 | 0.3136 | 1e-05 |
135
- | 0.1171 | 78.0 | 21294 | 0.1210 | 0.8230 | 0.7233 | 0.8837 | 0.3115 | 1e-05 |
136
- | 0.1168 | 79.0 | 21567 | 0.1205 | 0.8202 | 0.7173 | 0.8777 | 0.3101 | 1e-05 |
137
- | 0.1168 | 80.0 | 21840 | 0.1207 | 0.8232 | 0.7249 | 0.8843 | 0.3119 | 1e-05 |
138
- | 0.1171 | 81.0 | 22113 | 0.1203 | 0.8221 | 0.7213 | 0.8806 | 0.3129 | 1e-05 |
139
- | 0.1171 | 82.0 | 22386 | 0.1205 | 0.8215 | 0.7178 | 0.8796 | 0.3143 | 1e-05 |
140
- | 0.1157 | 83.0 | 22659 | 0.1214 | 0.8180 | 0.7113 | 0.8743 | 0.3112 | 0.0000 |
141
- | 0.1157 | 84.0 | 22932 | 0.1204 | 0.8234 | 0.7251 | 0.8827 | 0.3115 | 0.0000 |
142
- | 0.1169 | 85.0 | 23205 | 0.1204 | 0.8230 | 0.7213 | 0.8832 | 0.3132 | 0.0000 |
143
- | 0.1169 | 86.0 | 23478 | 0.1225 | 0.8196 | 0.7218 | 0.8800 | 0.3077 | 0.0000 |
144
- | 0.1157 | 87.0 | 23751 | 0.1208 | 0.8204 | 0.7152 | 0.8789 | 0.3091 | 0.0000 |
145
- | 0.1156 | 88.0 | 24024 | 0.1209 | 0.8215 | 0.7168 | 0.8824 | 0.3084 | 0.0000 |
146
- | 0.1156 | 89.0 | 24297 | 0.1211 | 0.8245 | 0.7340 | 0.8875 | 0.3164 | 0.0000 |
147
- | 0.1157 | 90.0 | 24570 | 0.1209 | 0.8232 | 0.7246 | 0.8861 | 0.3119 | 0.0000 |
148
- | 0.1157 | 91.0 | 24843 | 0.1204 | 0.8201 | 0.7163 | 0.8785 | 0.3115 | 0.0000 |
149
-
150
-
151
- ### Framework versions
152
-
153
- - Transformers 4.44.2
154
- - Pytorch 2.4.1+cu121
155
- - Datasets 3.0.0
156
- - Tokenizers 0.19.1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
  ---
3
+ language:
4
+ - eng
5
+ license: wtfpl
6
  tags:
7
+ - multilabel-image-classification
8
+ - multilabel
9
  - generated_from_trainer
10
+ base_model: facebook/dinov2-large
 
11
  model-index:
12
  - name: Joseph-large-2024_09_16-batch-size32_epochs150_freeze
13
  results: []
14
  ---
15
 
16
+ DinoVd'eau is a fine-tuned version of [facebook/dinov2-large](https://huggingface.co/facebook/dinov2-large). It achieves the following results on the test set:
 
17
 
 
 
 
 
18
  - Loss: 0.1207
19
  - F1 Micro: 0.8214
20
  - F1 Macro: 0.7191
21
  - Roc Auc: 0.8814
22
  - Accuracy: 0.3118
 
23
 
24
+ ---
25
+
26
+ # Model description
27
+ DinoVd'eau is a model built on top of dinov2 model for underwater multilabel image classification.The classification head is a combination of linear, ReLU, batch normalization, and dropout layers.
28
 
29
+ The source code for training the model can be found in this [Git repository](https://github.com/SeatizenDOI/DinoVdeau).
30
 
31
+ - **Developed by:** [lombardata](https://huggingface.co/lombardata), credits to [César Leblanc](https://huggingface.co/CesarLeblanc) and [Victor Illien](https://huggingface.co/groderg)
32
 
33
+ ---
34
+
35
+ # Intended uses & limitations
36
+ You can use the raw model for classify diverse marine species, encompassing coral morphotypes classes taken from the Global Coral Reef Monitoring Network (GCRMN), habitats classes and seagrass species.
37
+
38
+ ---
39
 
40
+ # Training and evaluation data
41
+ Details on the number of images for each class are given in the following table:
42
+ | Class | train | val | test | Total |
43
+ |:-------------------------|--------:|------:|-------:|--------:|
44
+ | Acropore_branched | 1469 | 464 | 475 | 2408 |
45
+ | Acropore_digitised | 568 | 160 | 160 | 888 |
46
+ | Acropore_sub_massive | 150 | 50 | 43 | 243 |
47
+ | Acropore_tabular | 999 | 297 | 293 | 1589 |
48
+ | Algae_assembly | 2546 | 847 | 845 | 4238 |
49
+ | Algae_drawn_up | 367 | 126 | 127 | 620 |
50
+ | Algae_limestone | 1652 | 557 | 563 | 2772 |
51
+ | Algae_sodding | 3148 | 984 | 985 | 5117 |
52
+ | Atra/Leucospilota | 1084 | 348 | 360 | 1792 |
53
+ | Bleached_coral | 219 | 71 | 70 | 360 |
54
+ | Blurred | 191 | 67 | 62 | 320 |
55
+ | Dead_coral | 1979 | 642 | 643 | 3264 |
56
+ | Fish | 2018 | 656 | 647 | 3321 |
57
+ | Homo_sapiens | 161 | 62 | 59 | 282 |
58
+ | Human_object | 157 | 58 | 55 | 270 |
59
+ | Living_coral | 406 | 154 | 141 | 701 |
60
+ | Millepore | 385 | 127 | 125 | 637 |
61
+ | No_acropore_encrusting | 441 | 130 | 154 | 725 |
62
+ | No_acropore_foliaceous | 204 | 36 | 46 | 286 |
63
+ | No_acropore_massive | 1031 | 336 | 338 | 1705 |
64
+ | No_acropore_solitary | 202 | 53 | 48 | 303 |
65
+ | No_acropore_sub_massive | 1401 | 433 | 422 | 2256 |
66
+ | Rock | 4489 | 1495 | 1473 | 7457 |
67
+ | Rubble | 3092 | 1030 | 1001 | 5123 |
68
+ | Sand | 5842 | 1939 | 1938 | 9719 |
69
+ | Sea_cucumber | 1408 | 439 | 447 | 2294 |
70
+ | Sea_urchins | 327 | 107 | 111 | 545 |
71
+ | Sponge | 269 | 96 | 105 | 470 |
72
+ | Syringodium_isoetifolium | 1212 | 392 | 391 | 1995 |
73
+ | Thalassodendron_ciliatum | 782 | 261 | 260 | 1303 |
74
+ | Useless | 579 | 193 | 193 | 965 |
75
 
76
+ ---
77
 
78
+ # Training procedure
79
 
80
+ ## Training hyperparameters
81
 
82
  The following hyperparameters were used during training:
83
+
84
+ - **Number of Epochs**: 150
85
+ - **Learning Rate**: 0.001
86
+ - **Train Batch Size**: 32
87
+ - **Eval Batch Size**: 32
88
+ - **Optimizer**: Adam
89
+ - **LR Scheduler Type**: ReduceLROnPlateau with a patience of 5 epochs and a factor of 0.1
90
+ - **Freeze Encoder**: Yes
91
+ - **Data Augmentation**: Yes
92
+
93
+
94
+ ## Data Augmentation
95
+ Data were augmented using the following transformations :
96
+
97
+ Train Transforms
98
+ - **PreProcess**: No additional parameters
99
+ - **Resize**: probability=1.00
100
+ - **RandomHorizontalFlip**: probability=0.25
101
+ - **RandomVerticalFlip**: probability=0.25
102
+ - **ColorJiggle**: probability=0.25
103
+ - **RandomPerspective**: probability=0.25
104
+ - **Normalize**: probability=1.00
105
+
106
+ Val Transforms
107
+ - **PreProcess**: No additional parameters
108
+ - **Resize**: probability=1.00
109
+ - **Normalize**: probability=1.00
110
+
111
+
112
+
113
+ ## Training results
114
+ Epoch | Validation Loss | Accuracy | F1 Macro | F1 Micro | Learning Rate
115
+ --- | --- | --- | --- | --- | ---
116
+ 1 | 0.17758780717849731 | 0.21656271656271656 | 0.7477812526413659 | 0.5384503258991854 | 0.001
117
+ 2 | 0.153945192694664 | 0.24532224532224534 | 0.7697450182129848 | 0.5760774961516321 | 0.001
118
+ 3 | 0.14735348522663116 | 0.2515592515592516 | 0.7744839226208509 | 0.6098114408992151 | 0.001
119
+ 4 | 0.14645476639270782 | 0.25363825363825365 | 0.7738915615654661 | 0.6213514572326843 | 0.001
120
+ 5 | 0.14515458047389984 | 0.25017325017325015 | 0.78146492434663 | 0.6353051230272125 | 0.001
121
+ 6 | 0.1445809006690979 | 0.2577962577962578 | 0.781259480778399 | 0.6141782571643486 | 0.001
122
+ 7 | 0.14445114135742188 | 0.26195426195426197 | 0.7800943800943801 | 0.6232727577909734 | 0.001
123
+ 8 | 0.14366209506988525 | 0.25848925848925847 | 0.7879197465681098 | 0.6339480584029394 | 0.001
124
+ 9 | 0.1447097659111023 | 0.2577962577962578 | 0.785476860138072 | 0.6442804243684905 | 0.001
125
+ 10 | 0.1538563072681427 | 0.2442827442827443 | 0.7683399403144626 | 0.6149084687726756 | 0.001
126
+ 11 | 0.1389196366071701 | 0.26334026334026334 | 0.7896514859952961 | 0.6334773464226039 | 0.001
127
+ 12 | 0.1395249217748642 | 0.26403326403326405 | 0.7908438442264407 | 0.6406158966836866 | 0.001
128
+ 13 | 0.1390257179737091 | 0.26507276507276506 | 0.7893533497260687 | 0.6557265830014797 | 0.001
129
+ 14 | 0.13910652697086334 | 0.2623007623007623 | 0.787792943600309 | 0.640540413256037 | 0.001
130
+ 15 | 0.13990363478660583 | 0.253984753984754 | 0.7885381419454319 | 0.6406412255611948 | 0.001
131
+ 16 | 0.13938209414482117 | 0.2668052668052668 | 0.7847859161051945 | 0.6374513053376879 | 0.001
132
+ 17 | 0.15936270356178284 | 0.24185724185724186 | 0.7857319587628866 | 0.6424904129432089 | 0.001
133
+ 18 | 0.13188092410564423 | 0.27546777546777546 | 0.8036556603773585 | 0.6768028620378452 | 0.0001
134
+ 19 | 0.13244545459747314 | 0.27893277893277896 | 0.8038422649140546 | 0.6715138701269487 | 0.0001
135
+ 20 | 0.1306440383195877 | 0.27893277893277896 | 0.8066104665720725 | 0.6733647561041333 | 0.0001
136
+ 21 | 0.1302667111158371 | 0.2817047817047817 | 0.8037271837637748 | 0.6728395801753237 | 0.0001
137
+ 22 | 0.12870918214321136 | 0.2841302841302841 | 0.8074214632089395 | 0.6735047356746011 | 0.0001
138
+ 23 | 0.1287251114845276 | 0.2841302841302841 | 0.8058198574902932 | 0.678520497542563 | 0.0001
139
+ 24 | 0.1279863715171814 | 0.2869022869022869 | 0.8057504997660669 | 0.6840871439155845 | 0.0001
140
+ 25 | 0.127402663230896 | 0.28586278586278585 | 0.8074392712550608 | 0.6787317976982782 | 0.0001
141
+ 26 | 0.12828372418880463 | 0.28586278586278585 | 0.8063818050664064 | 0.6740298841901063 | 0.0001
142
+ 27 | 0.12681305408477783 | 0.2882882882882883 | 0.8110456615281781 | 0.68897744745899 | 0.0001
143
+ 28 | 0.12666279077529907 | 0.28932778932778935 | 0.8099940913311386 | 0.6812786729949134 | 0.0001
144
+ 29 | 0.12675043940544128 | 0.29175329175329173 | 0.8081058020477816 | 0.6881122302734826 | 0.0001
145
+ 30 | 0.12635387480258942 | 0.2927927927927928 | 0.8108657880239013 | 0.6872571297964245 | 0.0001
146
+ 31 | 0.1258317530155182 | 0.29140679140679143 | 0.8089332139965051 | 0.6823767206574823 | 0.0001
147
+ 32 | 0.1260402798652649 | 0.29313929313929316 | 0.8112645318336341 | 0.6924178674344362 | 0.0001
148
+ 33 | 0.1250443458557129 | 0.2910602910602911 | 0.8133097762073027 | 0.6959916792345996 | 0.0001
149
+ 34 | 0.12511762976646423 | 0.29417879417879417 | 0.8116187492060803 | 0.6891130310994343 | 0.0001
150
+ 35 | 0.12488266825675964 | 0.2955647955647956 | 0.8124288545048274 | 0.6945448365895581 | 0.0001
151
+ 36 | 0.1252983808517456 | 0.29417879417879417 | 0.8115410842141152 | 0.6971439978031583 | 0.0001
152
+ 37 | 0.12479764968156815 | 0.29521829521829523 | 0.8116249469664828 | 0.6961006786941204 | 0.0001
153
+ 38 | 0.12497606873512268 | 0.3004158004158004 | 0.8129930394431555 | 0.6991177533793484 | 0.0001
154
+ 39 | 0.1252022236585617 | 0.29521829521829523 | 0.8141541282874172 | 0.6970545191351545 | 0.0001
155
+ 40 | 0.12485132366418839 | 0.2955647955647956 | 0.816655585106383 | 0.7070171403235663 | 0.0001
156
+ 41 | 0.12500154972076416 | 0.28967428967428965 | 0.8103573101656658 | 0.6961881266838973 | 0.0001
157
+ 42 | 0.12350151687860489 | 0.3038808038808039 | 0.816535301022975 | 0.7064304960359926 | 0.0001
158
+ 43 | 0.12367021292448044 | 0.2955647955647956 | 0.8150093808630394 | 0.7047254887418923 | 0.0001
159
+ 44 | 0.12371324002742767 | 0.30076230076230076 | 0.8170209225905745 | 0.705396366545505 | 0.0001
160
+ 45 | 0.12333343178033829 | 0.30145530145530147 | 0.8163231034048448 | 0.7058009223379548 | 0.0001
161
+ 46 | 0.12297776341438293 | 0.30076230076230076 | 0.8158692722371967 | 0.6992655670184796 | 0.0001
162
+ 47 | 0.12366960942745209 | 0.29902979902979904 | 0.8135392426486143 | 0.7026416067016249 | 0.0001
163
+ 48 | 0.12326876819133759 | 0.30180180180180183 | 0.8169049621530698 | 0.7044430417074125 | 0.0001
164
+ 49 | 0.12315386533737183 | 0.30214830214830213 | 0.8161126713333613 | 0.705026725915288 | 0.0001
165
+ 50 | 0.12265044450759888 | 0.30145530145530147 | 0.8179686845851126 | 0.7085649491291086 | 0.0001
166
+ 51 | 0.12310674786567688 | 0.30214830214830213 | 0.8190420609445996 | 0.710831288086539 | 0.0001
167
+ 52 | 0.12280686944723129 | 0.30214830214830213 | 0.816390260370511 | 0.704117146056294 | 0.0001
168
+ 53 | 0.1225290596485138 | 0.3038808038808039 | 0.8189015751312609 | 0.7080185810697228 | 0.0001
169
+ 54 | 0.12376156449317932 | 0.30180180180180183 | 0.8162527837304089 | 0.7053875588266636 | 0.0001
170
+ 55 | 0.12211860716342926 | 0.30284130284130284 | 0.818075117370892 | 0.7092508494713976 | 0.0001
171
+ 56 | 0.12255053967237473 | 0.3049203049203049 | 0.818769689935334 | 0.7091508009521661 | 0.0001
172
+ 57 | 0.12233822792768478 | 0.3052668052668053 | 0.8183564389510606 | 0.7056269081565454 | 0.0001
173
+ 58 | 0.12230789661407471 | 0.30284130284130284 | 0.8179678964618875 | 0.7093876090831799 | 0.0001
174
+ 59 | 0.12226579338312149 | 0.30734580734580735 | 0.8198051269184126 | 0.7102428483836337 | 0.0001
175
+ 60 | 0.1236739531159401 | 0.29799029799029797 | 0.8173416232565955 | 0.7068409531794828 | 0.0001
176
+ 61 | 0.12236195057630539 | 0.305959805959806 | 0.8201011747982775 | 0.7139384635953806 | 0.0001
177
+ 62 | 0.12215279042720795 | 0.30284130284130284 | 0.8209334277030684 | 0.7188990083298508 | 1e-05
178
+ 63 | 0.12084941565990448 | 0.3097713097713098 | 0.820752746564184 | 0.7190866276619315 | 1e-05
179
+ 64 | 0.12093428522348404 | 0.3108108108108108 | 0.8218151540383014 | 0.7187730185556146 | 1e-05
180
+ 65 | 0.12085793167352676 | 0.30803880803880807 | 0.8209837715435904 | 0.7186584702198188 | 1e-05
181
+ 66 | 0.12076118588447571 | 0.3135828135828136 | 0.8215507887488523 | 0.7185770967712465 | 1e-05
182
+ 67 | 0.1210499182343483 | 0.31115731115731116 | 0.8232429532417151 | 0.7239469969506999 | 1e-05
183
+ 68 | 0.1208076998591423 | 0.3125433125433125 | 0.8211584808443447 | 0.720063006101889 | 1e-05
184
+ 69 | 0.12105683237314224 | 0.31011781011781014 | 0.821014765549839 | 0.7197984794848579 | 1e-05
185
+ 70 | 0.12111356854438782 | 0.31115731115731116 | 0.821309285237141 | 0.719699492247552 | 1e-05
186
+ 71 | 0.12063230574131012 | 0.31115731115731116 | 0.8206033106461642 | 0.7163966165871272 | 1e-05
187
+ 72 | 0.12075439840555191 | 0.3128898128898129 | 0.8206118081490495 | 0.7171818163524962 | 1e-05
188
+ 73 | 0.12078637629747391 | 0.31323631323631324 | 0.8217462106977327 | 0.7214307826544399 | 1e-05
189
+ 74 | 0.12086880952119827 | 0.3108108108108108 | 0.8200794388574326 | 0.715483654869702 | 1e-05
190
+ 75 | 0.12054955214262009 | 0.3153153153153153 | 0.8207404925448148 | 0.7151281975948514 | 1e-05
191
+ 76 | 0.12033110857009888 | 0.31566181566181567 | 0.8221261740503699 | 0.722403613960237 | 1e-05
192
+ 77 | 0.12079885601997375 | 0.3135828135828136 | 0.8231996372480317 | 0.7234417953998725 | 1e-05
193
+ 78 | 0.12099317461252213 | 0.3115038115038115 | 0.8230326613403982 | 0.7233107692667189 | 1e-05
194
+ 79 | 0.12051720172166824 | 0.31011781011781014 | 0.8202369947054374 | 0.7172980311198172 | 1e-05
195
+ 80 | 0.12073608487844467 | 0.31185031185031187 | 0.8231793006530544 | 0.7248558336823359 | 1e-05
196
+ 81 | 0.12031927704811096 | 0.3128898128898129 | 0.822080253872813 | 0.7212996450160633 | 1e-05
197
+ 82 | 0.1204884946346283 | 0.3142758142758143 | 0.8215302193202746 | 0.7178066335813648 | 1e-05
198
+ 83 | 0.12136666476726532 | 0.31115731115731116 | 0.8179971218149497 | 0.7113142483409282 | 1.0000000000000002e-06
199
+ 84 | 0.12041348963975906 | 0.3115038115038115 | 0.8234267187629895 | 0.7250649377579587 | 1.0000000000000002e-06
200
+ 85 | 0.12035409361124039 | 0.31323631323631324 | 0.8229879338226147 | 0.7213085414821642 | 1.0000000000000002e-06
201
+ 86 | 0.12250283360481262 | 0.3076923076923077 | 0.8196243388446962 | 0.7218120076279698 | 1.0000000000000002e-06
202
+ 87 | 0.12075748294591904 | 0.3090783090783091 | 0.8203968852047224 | 0.7151954083158903 | 1.0000000000000002e-06
203
+ 88 | 0.12086642533540726 | 0.30838530838530837 | 0.8215440749647566 | 0.7168335672232342 | 1.0000000000000002e-06
204
+ 89 | 0.12105640023946762 | 0.3163548163548164 | 0.8244650323850127 | 0.733984551040518 | 1.0000000000000002e-07
205
+ 90 | 0.12090421468019485 | 0.31185031185031187 | 0.8232248520710059 | 0.7245620055819162 | 1.0000000000000002e-07
206
+ 91 | 0.12043782323598862 | 0.3115038115038115 | 0.8200938495056143 | 0.7163143946337084 | 1.0000000000000002e-07
207
+
208
+
209
+ ---
210
+
211
+ # CO2 Emissions
212
+
213
+ The estimated CO2 emissions for training this model are documented below:
214
+
215
+ - **Emissions**: 1.029303722975925 grams of CO2
216
+ - **Source**: Code Carbon
217
+ - **Training Type**: fine-tuning
218
+ - **Geographical Location**: Brest, France
219
+ - **Hardware Used**: NVIDIA Tesla V100 PCIe 32 Go
220
+
221
+
222
+ ---
223
+
224
+ # Framework Versions
225
+
226
+ - **Transformers**: 4.44.2
227
+ - **Pytorch**: 2.4.1+cu121
228
+ - **Datasets**: 3.0.0
229
+ - **Tokenizers**: 0.19.1
230
+