gregtozzi commited on
Commit
fc1e98c
·
1 Parent(s): 7c0bd56

Upload PPO LunarLander-v2 trained agent

Browse files
README.md CHANGED
@@ -10,7 +10,7 @@ model-index:
10
  results:
11
  - metrics:
12
  - type: mean_reward
13
- value: 288.05 +/- 18.89
14
  name: mean_reward
15
  task:
16
  type: reinforcement-learning
 
10
  results:
11
  - metrics:
12
  - type: mean_reward
13
+ value: 288.33 +/- 19.00
14
  name: mean_reward
15
  task:
16
  type: reinforcement-learning
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fd4c316d9e0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fd4c316da70>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fd4c316db00>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fd4c316db90>", "_build": "<function ActorCriticPolicy._build at 0x7fd4c316dc20>", "forward": "<function ActorCriticPolicy.forward at 0x7fd4c316dcb0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fd4c316dd40>", "_predict": "<function ActorCriticPolicy._predict at 0x7fd4c316ddd0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fd4c316de60>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fd4c316def0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fd4c316df80>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fd4c3139ba0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 8544000, "_total_timesteps": 10000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652469944.8819366, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAABo6iz33GGQ/3up6Pp9whL9ic6I9d5XEPQAAAAAAAAAAAIX0PEinrLprIOu4j3XSsw03HLpOwgY4AACAPwAAgD9mwuc7j5s7vNQIpj2fsVk8sTFvvPYJKD0AAIA/AACAP0NVYr775EE/rQNJPlAwJr/RLc++Opl8PgAAAAAAAAAAmi+7PI+efboBIDO2rdJescuQLDoKpF81AACAPwAAgD8Arls89gB4uvpeZbvGWk24qPg2O4OtUzkAAIA/AACAP6b32D0b36k9Ll6Fvn/Jzr7d7dU80J+avQAAAAAAAAAAsyZwvR26eT7r9Ks+eyX0viA/vT3SqVw+AAAAAAAAAAAmR9m9DYmYP5/xur5WkjW/D9l6vuH5gr4AAAAAAAAAAJr4Cj12vCS8dXbfO4FaXjzlgry8WKQDvgAAgD8AAIA/TcIRPcUn9jwHPTS+UdmevjNapD0y3Mi9AAAAAAAAAACghiW+qEqCPlZD8z45PAW/HJMgvtBixz4AAAAAAAAAAGYSJD3wNZc/0i11PvVmVr+bg2w8c75tPQAAAAAAAAAATbo3Pb/7sT+zxzk/YxlfvvzMu7z7uOA8AAAAAAAAAACGmki+MLC7Pmt8wT7k6BW/7Bk/vnDMwD4AAAAAAAAAAABKKTwp6GS6M0kzOGtAdzOXbII5oNlQtwAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.1463936, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVwxMAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkME58CgQ5SGlFKUjAFslGgJaAyMAmk0lImIh5RSlChLA2gQTk5OSv////9K/////0sAdJRiQwSwAAAAlIaUUpSMAXSUR0C4tq+UdJardX2UKGgGaAloD0MElmCPQ5SGlFKUaBVoCWgYQwTMAAAAlIaUUpRoHUdAuLbP7Gecx3V9lChoBmgJaA9DBJJoh0OUhpRSlGgVaAloGEMEjgAAAJSGlFKUaB1HQLi2z/HHWBl1fZQoaAZoCWgPQwTSs4ZDlIaUUpRoFWgJaBhDBK0AAACUhpRSlGgdR0C4tvn9itq6dX2UKGgGaAloD0MEQO+OQ5SGlFKUaBVoCWgYQwSrAAAAlIaUUpRoHUdAuLb7Wvr4WXV9lChoBmgJaA9DBHYDj0OUhpRSlGgVaAloGEMEqAAAAJSGlFKUaB1HQLi3EsoUi6h1fZQoaAZoCWgPQwQEMI9DlIaUUpRoFWgJaBhDBLcAAACUhpRSlGgdR0C4tx3mNipedX2UKGgGaAloD0ME4buKQ5SGlFKUaBVoCWgYQwSgAAAAlIaUUpRoHUdAuLcqLvTgEXV9lChoBmgJaA9DBBLJkkOUhpRSlGgVaAloGEMEtQAAAJSGlFKUaB1HQLi3NdI5HVh1fZQoaAZoCWgPQwQOP6VDlIaUUpRoFWgJaBhDBNQAAACUhpRSlGgdR0C4tziIYWLxdX2UKGgGaAloD0MEQuGLQ5SGlFKUaBVoCWgYQwSQAAAAlIaUUpRoHUdAuLc4jTrmhnV9lChoBmgJaA9DBJr6jkOUhpRSlGgVaAloGEMEuQAAAJSGlFKUaB1HQLi3RUrkKeF1fZQoaAZoCWgPQwSszo5DlIaUUpRoFWgJaBhDBLMAAACUhpRSlGgdR0C4t04oJAt4dX2UKGgGaAloD0MERv2dQ5SGlFKUaBVoCWgYQwTSAAAAlIaUUpRoHUdAuLdQhOgxrXV9lChoBmgJaA9DBMqEgEOUhpRSlGgVaAloGEMEmAAAAJSGlFKUaB1HQLi3WoFFDv51fZQoaAZoCWgPQwTbuJ1DlIaUUpRoFWgJaBhDBJ0AAACUhpRSlGgdR0C4t2uZkTYedX2UKGgGaAloD0METpuhQ5SGlFKUaBVoCWgYQwS6AAAAlIaUUpRoHUdAuLfBMRHww3V9lChoBmgJaA9DBELYkUOUhpRSlGgVaAloGEMEsgAAAJSGlFKUaB1HQLi32Mc6vJR1fZQoaAZoCWgPQwSRk4lDlIaUUpRoFWgJaBhDBJIAAACUhpRSlGgdR0C4t9o55qubdX2UKGgGaAloD0MExEaUQ5SGlFKUaBVoCWgYQwS4AAAAlIaUUpRoHUdAuLfh6OYIB3V9lChoBmgJaA9DBCgMj0OUhpRSlGgVaAloGEMErgAAAJSGlFKUaB1HQLi3/cI7eVN1fZQoaAZoCWgPQwRWPpZDlIaUUpRoFWgJaBhDBJMAAACUhpRSlGgdR0C4uBcrZrYXdX2UKGgGaAloD0MEUiOQQ5SGlFKUaBVoCWgYQwSdAAAAlIaUUpRoHUdAuLgYduHerXV9lChoBmgJaA9DBPkfnEOUhpRSlGgVaAloGEMEvAAAAJSGlFKUaB1HQLi4Ju+h4+t1fZQoaAZoCWgPQwQ4BIJDlIaUUpRoFWgJaBhDBJsAAACUhpRSlGgdR0C4uDnbypaSdX2UKGgGaAloD0ME0OaVQ5SGlFKUaBVoCWgYQwTHAAAAlIaUUpRoHUdAuLg/3Hq/unV9lChoBmgJaA9DBBE9iUOUhpRSlGgVaAloGEMEqQAAAJSGlFKUaB1HQLi4QnFYMfB1fZQoaAZoCWgPQwTfWqBDlIaUUpRoFWgJaBhDBLUAAACUhpRSlGgdR0C4uEO0kWykdX2UKGgGaAloD0MEFumSQ5SGlFKUaBVoCWgYQwS5AAAAlIaUUpRoHUdAuLhIK+i8F3V9lChoBmgJaA9DBG4om0OUhpRSlGgVaAloGEMEsgAAAJSGlFKUaB1HQLi4VwvQF9t1fZQoaAZoCWgPQwRY2JtDlIaUUpRoFWgJaBhDBL0AAACUhpRSlGgdR0C4uG1PnB+GdX2UKGgGaAloD0MEC+mMQ5SGlFKUaBVoCWgYQwTFAAAAlIaUUpRoHUdAuLiCqPwNLHV9lChoBmgJaA9DBNbHi0OUhpRSlGgVaAloGEMEmgAAAJSGlFKUaB1HQLi4k/zasZJ1fZQoaAZoCWgPQwTCSZRDlIaUUpRoFWgJaBhDBL0AAACUhpRSlGgdR0C4uKZMlC1JdX2UKGgGaAloD0MEGTKTQ5SGlFKUaBVoCWgYQwS9AAAAlIaUUpRoHUdAuLi/gJkXlHV9lChoBmgJaA9DBGA7iUOUhpRSlGgVaAloGEMEuwAAAJSGlFKUaB1HQLi4xFnIyTJ1fZQoaAZoCWgPQwRVfpNDlIaUUpRoFWgJaBhDBKYAAACUhpRSlGgdR0C4uN7HMlkZdX2UKGgGaAloD0MEGCGKQ5SGlFKUaBVoCWgYQwS+AAAAlIaUUpRoHUdAuLjjICEHuHV9lChoBmgJaA9DBN0Hg0OUhpRSlGgVaAloGEMEswAAAJSGlFKUaB1HQLi48kDZDiR1fZQoaAZoCWgPQwSA4Y1DlIaUUpRoFWgJaBhDBKMAAACUhpRSlGgdR0C4uQdLUTcqdX2UKGgGaAloD0MEkOWOQ5SGlFKUaBVoCWgYQwSkAAAAlIaUUpRoHUdAuLkOYnfEXXV9lChoBmgJaA9DBJ5Eg0OUhpRSlGgVaAloGEMEqQAAAJSGlFKUaB1HQLi5D60Y0l91fZQoaAZoCWgPQwT0BpxDlIaUUpRoFWgJaBhDBNcAAACUhpRSlGgdR0C4uSlYlpoLdX2UKGgGaAloD0MEoR2TQ5SGlFKUaBVoCWgYQwTFAAAAlIaUUpRoHUdAuLksAp8WsXV9lChoBmgJaA9DBK24oEOUhpRSlGgVaAloGEMEswAAAJSGlFKUaB1HQLi5L4Ajps51fZQoaAZoCWgPQwQq5ppDlIaUUpRoFWgJaBhDBNEAAACUhpRSlGgdR0C4uTU9IPK/dX2UKGgGaAloD0ME/MeUQ5SGlFKUaBVoCWgYQwSmAAAAlIaUUpRoHUdAuLk3ilzltHV9lChoBmgJaA9DBHSplUOUhpRSlGgVaAloGEMEqwAAAJSGlFKUaB1HQLi5T2VmjCZ1fZQoaAZoCWgPQwSoDZRDlIaUUpRoFWgJaBhDBL4AAACUhpRSlGgdR0C4uXXuJDVpdX2UKGgGaAloD0MEpHiLQ5SGlFKUaBVoCWgYQwS2AAAAlIaUUpRoHUdAuLl+gCfYjHV9lChoBmgJaA9DBIHzlkOUhpRSlGgVaAloGEMEpgAAAJSGlFKUaB1HQLi5hwFC9h91fZQoaAZoCWgPQwRqfo5DlIaUUpRoFWgJaBhDBM4AAACUhpRSlGgdR0C4ubHogV45dX2UKGgGaAloD0MEDD+KQ5SGlFKUaBVoCWgYQwS7AAAAlIaUUpRoHUdAuLm+fZmI03V9lChoBmgJaA9DBFpOlUOUhpRSlGgVaAloGEMExgAAAJSGlFKUaB1HQLi5yCZnctZ1fZQoaAZoCWgPQwSYg5JDlIaUUpRoFWgJaBhDBLUAAACUhpRSlGgdR0C4udnE/B3zdX2UKGgGaAloD0MECc94Q5SGlFKUaBVoCWgYQwSVAAAAlIaUUpRoHUdAuLndVwPy1HV9lChoBmgJaA9DBCDdl0OUhpRSlGgVaAloGEMEzQAAAJSGlFKUaB1HQLi54Pq9oOB1fZQoaAZoCWgPQwSuu4lDlIaUUpRoFWgJaBhDBLoAAACUhpRSlGgdR0C4ued9c8kldX2UKGgGaAloD0MEujWeQ5SGlFKUaBVoCWgYQwTBAAAAlIaUUpRoHUdAuL6hwaR6nnV9lChoBmgJaA9DBG8teEOUhpRSlGgVaAloGEMEqwAAAJSGlFKUaB1HQLi+pOo5xR51fZQoaAZoCWgPQwRCW5RDlIaUUpRoFWgJaBhDBK4AAACUhpRSlGgdR0C4vrJ2pyZKdX2UKGgGaAloD0MEtPqaQ5SGlFKUaBVoCWgYQwS3AAAAlIaUUpRoHUdAuL66M5wOv3V9lChoBmgJaA9DBBYMl0OUhpRSlGgVaAloGEMEoAAAAJSGlFKUaB1HQLi+vIS13MZ1fZQoaAZoCWgPQwQc0pdDlIaUUpRoFWgJaBhDBM4AAACUhpRSlGgdR0C4vsf7BO58dX2UKGgGaAloD0MEpWyKQ5SGlFKUaBVoCWgYQwS1AAAAlIaUUpRoHUdAuL8DRsuWbHV9lChoBmgJaA9DBKQJm0OUhpRSlGgVaAloGEMExQAAAJSGlFKUaB1HQLi/D9ugpSd1fZQoaAZoCWgPQwScwpVDlIaUUpRoFWgJaBhDBM0AAACUhpRSlGgdR0C4vyunqFAWdX2UKGgGaAloD0MEMGyNQ5SGlFKUaBVoCWgYQwSsAAAAlIaUUpRoHUdAuL8vcclw+HV9lChoBmgJaA9DBG+xiUOUhpRSlGgVaAloGEMEnwAAAJSGlFKUaB1HQLi/NfNA1Nx1fZQoaAZoCWgPQwRJ7ZZDlIaUUpRoFWgJaBhDBLoAAACUhpRSlGgdR0C4v0tZeRgadX2UKGgGaAloD0MEiAqCQ5SGlFKUaBVoCWgYQwSxAAAAlIaUUpRoHUdAuL9gqur6tXV9lChoBmgJaA9DBOBclEOUhpRSlGgVaAloGEMEtQAAAJSGlFKUaB1HQLi/aQZXMhZ1fZQoaAZoCWgPQwS4+YVDlIaUUpRoFWgJaBhDBK4AAACUhpRSlGgdR0C4v3Pbj94vdX2UKGgGaAloD0MEZsmUQ5SGlFKUaBVoCWgYQwSsAAAAlIaUUpRoHUdAuL+BxdY4hnV9lChoBmgJaA9DBLw8nEOUhpRSlGgVaAloGEMEzwAAAJSGlFKUaB1HQLi/gcslLOB1fZQoaAZoCWgPQwQGB5JDlIaUUpRoFWgJaBhDBMcAAACUhpRSlGgdR0C4v4VVghKUdX2UKGgGaAloD0ME8L+SQ5SGlFKUaBVoCWgYQwTBAAAAlIaUUpRoHUdAuL+HyLAHmnV9lChoBmgJaA9DBCwklkOUhpRSlGgVaAloGEMErwAAAJSGlFKUaB1HQLi/jzqbBoF1fZQoaAZoCWgPQwSwU4VDlIaUUpRoFWgJaBhDBLsAAACUhpRSlGgdR0C4v5ni704BdX2UKGgGaAloD0MExQqdQ5SGlFKUaBVoCWgYQwS2AAAAlIaUUpRoHUdAuL+ipS75EnV9lChoBmgJaA9DBBaWiEOUhpRSlGgVaAloGEMEtQAAAJSGlFKUaB1HQLi/44Ajps51fZQoaAZoCWgPQwQwGZFDlIaUUpRoFWgJaBhDBMIAAACUhpRSlGgdR0C4v+jRplBhdX2UKGgGaAloD0MERCGMQ5SGlFKUaBVoCWgYQwSvAAAAlIaUUpRoHUdAuL/4gEEDAHV9lChoBmgJaA9DBKjLjEOUhpRSlGgVaAloGEMErAAAAJSGlFKUaB1HQLi//zeoDPp1fZQoaAZoCWgPQwQaOpJDlIaUUpRoFWgJaBhDBMAAAACUhpRSlGgdR0C4wBNjslcAdX2UKGgGaAloD0MEa8yJQ5SGlFKUaBVoCWgYQwSfAAAAlIaUUpRoHUdAuMAdQtSQ5nV9lChoBmgJaA9DBFqam0OUhpRSlGgVaAloGEMEqQAAAJSGlFKUaB1HQLjAMNM495h1fZQoaAZoCWgPQwRmKpZDlIaUUpRoFWgJaBhDBMsAAACUhpRSlGgdR0C4wDxmwqy4dX2UKGgGaAloD0MEBJyRQ5SGlFKUaBVoCWgYQwSSAAAAlIaUUpRoHUdAuMBQDq4YrXV9lChoBmgJaA9DBGT1k0OUhpRSlGgVaAloGEMEuwAAAJSGlFKUaB1HQLjAXc5sCT51fZQoaAZoCWgPQwRUmotDlIaUUpRoFWgJaBhDBLgAAACUhpRSlGgdR0C4wF3UMG5ddX2UKGgGaAloD0MEqECVQ5SGlFKUaBVoCWgYQwS+AAAAlIaUUpRoHUdAuMBhbW3BpHV9lChoBmgJaA9DBJq4lkOUhpRSlGgVaAloGEMEywAAAJSGlFKUaB1HQLjAY79hqj91fZQoaAZoCWgPQwTAP45DlIaUUpRoFWgJaBhDBL0AAACUhpRSlGgdR0C4wHgMhHLBdX2UKGgGaAloD0MEwtKXQ5SGlFKUaBVoCWgYQwTUAAAAlIaUUpRoHUdAuMB/A44p+nV9lChoBmgJaA9DBOJmnEOUhpRSlGgVaAloGEME3AAAAJSGlFKUaB1HQLjAj/nW8RN1fZQoaAZoCWgPQwS4rqFDlIaUUpRoFWgJaBhDBLoAAACUhpRSlGgdR0C4wMKAJ9iMdX2UKGgGaAloD0MECuCHQ5SGlFKUaBVoCWgYQwS3AAAAlIaUUpRoHUdAuMDD8R+SbHV9lChoBmgJaA9DBG4/jUOUhpRSlGgVaAloGEMEmgAAAJSGlFKUaB1HQLjA0Pomoit1fZQoaAZoCWgPQwRKvZxDlIaUUpRoFWgJaBhDBMAAAACUhpRSlGgdR0C4wNz+JgstdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 2084, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fe99e715a70>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fe99e715b00>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fe99e715b90>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fe99e715c20>", "_build": "<function ActorCriticPolicy._build at 0x7fe99e715cb0>", "forward": "<function ActorCriticPolicy.forward at 0x7fe99e715d40>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fe99e715dd0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fe99e715e60>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fe99e715ef0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fe99e715f80>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fe99e71a050>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fe99e75e9f0>"}, "verbose": 0, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 3014656, "_total_timesteps": 3000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651866477.0616665, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAFMuEL6T5so+ugf1PTOzOb+8Bwy+p5QcPgAAAAAAAAAAMzdWvcUzxjwaVuo9oybNvihHuTz+Hao8AAAAAAAAAACaFUg8BR3quxoIYrubzmk8poxLvRLkRj0AAIA/AACAPw0SFT79zbQ+ApY7vjkMPr9JNyI+9u4CvgAAAAAAAAAANp2TPhRMFj+5DTe+sGE7v5qvwD4dz4m+AAAAAAAAAABNV1890h2mPw3bFT5BbhS/phQ3PXohxz0AAAAAAAAAAM3J+ryoypo/vMe0vQpRSL/UZyy+S27LPAAAAAAAAAAA030cPtYNhj8T5sQ+4545v0MLlj5oDIw+AAAAAAAAAAAAC5S9ayNmP34CEb5EmWe/1dRSvrs837oAAAAAAAAAAGZHx7wgcLA/6h+kvkwIkr4U4hC8Tn8DvgAAAAAAAAAAABgVvCl4a7raYqU7Ot3BuLSgULnNtMO3AACAPwAAgD+AbDO9bPm1u3OdIj68aBc8468DveV+BT0AAIA/AACAP2a6tLut6bQ/1wQPv1r/3z1mpNE7apUBPgAAAAAAAAAAsw6TvRuntD9CPvq+AccjvmTnl70W/rC+AAAAAAAAAACmxbO9qdcTvKoHiD628qy87An9vJm1SD4AAIA/AACAP3Mojz0PyLE/AOFRPjJG5L6YGhY+2agCPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAEAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.004885333333333408, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI74y2KolMcUCUhpRSlIwBbJRLsIwBdJRHQKxajYGt6ol1fZQoaAZoCWgPQwhdo+VAj0hyQJSGlFKUaBVLsmgWR0CsWp8aGYa6dX2UKGgGaAloD0MIc7nBUIfLcECUhpRSlGgVS59oFkdArFq7PjXFtXV9lChoBmgJaA9DCNBCAkbXeHFAlIaUUpRoFUuTaBZHQKxa0MwUQCl1fZQoaAZoCWgPQwhbtABtq05zQJSGlFKUaBVL+2gWR0CsWupYLb5/dX2UKGgGaAloD0MIRx0dV+OHcUCUhpRSlGgVS6loFkdArFsErbxmTXV9lChoBmgJaA9DCFIoC1+fgHNAlIaUUpRoFUvBaBZHQKxvmbZOBUd1fZQoaAZoCWgPQwh3EDtT6E1xQJSGlFKUaBVLr2gWR0Csb+b5VOsUdX2UKGgGaAloD0MINGjon6BMckCUhpRSlGgVS7doFkdArG/7ZFocrHV9lChoBmgJaA9DCAtFup9TbnJAlIaUUpRoFUukaBZHQKxwBsZYPoV1fZQoaAZoCWgPQwh4QURqGvpwQJSGlFKUaBVLnmgWR0CscAnied08dX2UKGgGaAloD0MIhSUeUHbAckCUhpRSlGgVS+RoFkdArHAwcPvrnnV9lChoBmgJaA9DCD2dK0qJ7nJAlIaUUpRoFUuwaBZHQKxwQYfGMn91fZQoaAZoCWgPQwjn3y779YlzQJSGlFKUaBVLt2gWR0CscEV/lQuVdX2UKGgGaAloD0MIaAQb17/tcECUhpRSlGgVS5loFkdArHC8chkiEHV9lChoBmgJaA9DCD/9Z80PN3FAlIaUUpRoFUusaBZHQKxw55u63Ap1fZQoaAZoCWgPQwhtVKcD2QpxQJSGlFKUaBVLqGgWR0CscQVKf4ATdX2UKGgGaAloD0MIXwmkxO6Vc0CUhpRSlGgVS8VoFkdArHEvr6ciGHV9lChoBmgJaA9DCJbqAl5mMHNAlIaUUpRoFUvWaBZHQKxxr8eCCjF1fZQoaAZoCWgPQwhTPZl/dNhwQJSGlFKUaBVLqWgWR0CscbTzundgdX2UKGgGaAloD0MIhjyCG6mHckCUhpRSlGgVS9NoFkdArHHA93bEgnV9lChoBmgJaA9DCGmrksj+LHNAlIaUUpRoFUufaBZHQKxx+aESM991fZQoaAZoCWgPQwhDxTh/U4ZxQJSGlFKUaBVLqGgWR0CschIwM6RydX2UKGgGaAloD0MIem8MAYBbckCUhpRSlGgVS7loFkdArHI+IInjQ3V9lChoBmgJaA9DCH/1uG+1hnJAlIaUUpRoFUv0aBZHQKxyQyyD7Il1fZQoaAZoCWgPQwiV0jO9hPVxQJSGlFKUaBVLt2gWR0Cscn2WY4Q0dX2UKGgGaAloD0MIJ/kRvyLfc0CUhpRSlGgVS9RoFkdArHKBtm+TNnV9lChoBmgJaA9DCElJD0OrB3JAlIaUUpRoFUuQaBZHQKxyheN1hb51fZQoaAZoCWgPQwhC6Qsh5z1yQJSGlFKUaBVLv2gWR0CscpN/nW8RdX2UKGgGaAloD0MIc4Bgjl6LckCUhpRSlGgVS8ZoFkdArHKZwMpgC3V9lChoBmgJaA9DCAqFCDjELHJAlIaUUpRoFUuVaBZHQKxy1hn8Koh1fZQoaAZoCWgPQwiJ1LSL6VlxQJSGlFKUaBVLp2gWR0CsczoQFs55dX2UKGgGaAloD0MI/YhfsQYbZ0CUhpRSlGgVTegDaBZHQKxzaISlFc91fZQoaAZoCWgPQwib/1cduZ1zQJSGlFKUaBVL0mgWR0Csc3sOf/WEdX2UKGgGaAloD0MIPWU1XY8zcUCUhpRSlGgVS6poFkdArHO3qJMxoXV9lChoBmgJaA9DCMUbmUe+lHJAlIaUUpRoFUuxaBZHQKxzz1Iy0rt1fZQoaAZoCWgPQwg0go3rH1FxQJSGlFKUaBVLrmgWR0Csc9ENFz+4dX2UKGgGaAloD0MIWaX0TO/9cECUhpRSlGgVS49oFkdArHPorFwT/XV9lChoBmgJaA9DCHqlLEOcsHFAlIaUUpRoFUupaBZHQKx0DDgqEvl1fZQoaAZoCWgPQwiOdXEbDRNwQJSGlFKUaBVLoGgWR0CsdBwaBI4EdX2UKGgGaAloD0MIED//Pbi0c0CUhpRSlGgVS6poFkdArHSFbor4FnV9lChoBmgJaA9DCNLI5xUPZ3NAlIaUUpRoFUvZaBZHQKx0jYbKifx1fZQoaAZoCWgPQwhM/bypiGlyQJSGlFKUaBVLsmgWR0CsdJm7rcCYdX2UKGgGaAloD0MIPbmmQKYMcUCUhpRSlGgVS8NoFkdArHTERBeHBXV9lChoBmgJaA9DCJOP3QWK8XBAlIaUUpRoFUuwaBZHQKx05S2H+Id1fZQoaAZoCWgPQwiiQnVzseNzQJSGlFKUaBVL12gWR0CsdRUQkHD8dX2UKGgGaAloD0MI7N6KxETmckCUhpRSlGgVS6JoFkdArHUZWT5ft3V9lChoBmgJaA9DCI7NjlRfRXNAlIaUUpRoFUvfaBZHQKx1Jeu3c591fZQoaAZoCWgPQwgEyqZcIa5xQJSGlFKUaBVLm2gWR0CsdSofSx7idX2UKGgGaAloD0MIZAPpYtOERkCUhpRSlGgVS1ZoFkdArHVwEfT1CnV9lChoBmgJaA9DCMd/gSBA4G9AlIaUUpRoFUuUaBZHQKx1chIvrW11fZQoaAZoCWgPQwgR4PQu3iRyQJSGlFKUaBVLnmgWR0CsdXSHEdeZdX2UKGgGaAloD0MI0CnIz8aAckCUhpRSlGgVS5BoFkdArHWtAu7HyXV9lChoBmgJaA9DCMJoVrbPyXFAlIaUUpRoFUuuaBZHQKx1s+V1Oj91fZQoaAZoCWgPQwgmxFxSNZh0QJSGlFKUaBVL1WgWR0CsdchX8wYcdX2UKGgGaAloD0MIRu1+FaD/c0CUhpRSlGgVS7BoFkdArHXSPluFYnV9lChoBmgJaA9DCEEQIEMHTXNAlIaUUpRoFUvAaBZHQKx2HQ3PzFx1fZQoaAZoCWgPQwhcH9YbdfFyQJSGlFKUaBVLuGgWR0CsdnUm+j/NdX2UKGgGaAloD0MI0At3LowRcECUhpRSlGgVS7ZoFkdArHaCe05U+HV9lChoBmgJaA9DCMwJ2uSw2XJAlIaUUpRoFUuyaBZHQKx2pLA57w91fZQoaAZoCWgPQwi5UzpY/3RxQJSGlFKUaBVLmWgWR0CsdrPUaybAdX2UKGgGaAloD0MIkfKTat84ckCUhpRSlGgVS7loFkdArHbeL9/BnHV9lChoBmgJaA9DCMMQOX09cHJAlIaUUpRoFUulaBZHQKx25ua4MF51fZQoaAZoCWgPQwi0WmCPSWFxQJSGlFKUaBVLjGgWR0CsdvscZLqVdX2UKGgGaAloD0MIfVwbKoZJdECUhpRSlGgVS7toFkdArHcP3FkxynV9lChoBmgJaA9DCNS5opQQV3NAlIaUUpRoFUu/aBZHQKx3Km1pj+d1fZQoaAZoCWgPQwhVMgBUsZ1xQJSGlFKUaBVLsWgWR0Csd1AmZ3LWdX2UKGgGaAloD0MI+FJ40OxuckCUhpRSlGgVS7ZoFkdArHdc0cfeUXV9lChoBmgJaA9DCNYdi22Si3NAlIaUUpRoFUugaBZHQKx3YPSUkfN1fZQoaAZoCWgPQwhU/UrnA41yQJSGlFKUaBVLmmgWR0Csd2pobn5jdX2UKGgGaAloD0MItoR80HNvc0CUhpRSlGgVS59oFkdArHd/IbOu73V9lChoBmgJaA9DCIwTX+1odXNAlIaUUpRoFUvFaBZHQKx3wtg8bJh1fZQoaAZoCWgPQwjvWGyTylVyQJSGlFKUaBVLj2gWR0Csd/Xm3fALdX2UKGgGaAloD0MIs874vrg9c0CUhpRSlGgVS7hoFkdArHgK6jFhonV9lChoBmgJaA9DCPBt+rNf0HBAlIaUUpRoFUucaBZHQKx4Dk1/DtR1fZQoaAZoCWgPQwgOhjqssDBxQJSGlFKUaBVLnmgWR0CseFSCe2/jdX2UKGgGaAloD0MIGlOwxllxckCUhpRSlGgVS8xoFkdArHjWHBUJfXV9lChoBmgJaA9DCNgtAmP94XJAlIaUUpRoFUu5aBZHQKx41lxOtXB1fZQoaAZoCWgPQwiY3CiyVvtxQJSGlFKUaBVLvGgWR0CseOei8FpxdX2UKGgGaAloD0MITnrf+Bo5cUCUhpRSlGgVS45oFkdArHjuiUPhAHV9lChoBmgJaA9DCKqaIOp+vnJAlIaUUpRoFUulaBZHQKx49K5kK/p1fZQoaAZoCWgPQwh3nnjO1ldyQJSGlFKUaBVLtGgWR0CseQBl18sudX2UKGgGaAloD0MI1LmilJDqcUCUhpRSlGgVS5toFkdArHkIEIPbwnV9lChoBmgJaA9DCOXTY1tGCXNAlIaUUpRoFUvEaBZHQKx5E9oN/fB1fZQoaAZoCWgPQwj0iTxJugFxQJSGlFKUaBVLsWgWR0CseYFDWsijdX2UKGgGaAloD0MIttYXCW0qdECUhpRSlGgVS8loFkdArHmpw2l2vHV9lChoBmgJaA9DCAsOL4hIgXRAlIaUUpRoFUvSaBZHQKx5tpudf9h1fZQoaAZoCWgPQwimKQKc3gRyQJSGlFKUaBVLuGgWR0CsedrP+n63dX2UKGgGaAloD0MIenHiqx1bcUCUhpRSlGgVS7doFkdArHoRbhWHUXV9lChoBmgJaA9DCO+MtioJIXJAlIaUUpRoFUu0aBZHQKx6HapxWDJ1fZQoaAZoCWgPQwhlGHeDqEBxQJSGlFKUaBVLuWgWR0CsejBH9WIXdX2UKGgGaAloD0MIiNnLttPKc0CUhpRSlGgVS6RoFkdArHo2+GoJiXV9lChoBmgJaA9DCDtVvmekR3BAlIaUUpRoFUuTaBZHQKx6i8YAKfF1fZQoaAZoCWgPQwgVcqWexY1wQJSGlFKUaBVLnGgWR0Cseo420iQldX2UKGgGaAloD0MIHxMpzaYocECUhpRSlGgVS51oFkdArHqqRISUT3V9lChoBmgJaA9DCGtkV1qGF3JAlIaUUpRoFUuSaBZHQKx6q9ovi991fZQoaAZoCWgPQwjc9dIUQWNwQJSGlFKUaBVLqWgWR0Cseq+tr9EUdX2UKGgGaAloD0MIthFPdvO3ckCUhpRSlGgVS7VoFkdArHrYptrKvHV9lChoBmgJaA9DCF1txf4ySHJAlIaUUpRoFUuzaBZHQKx656N2ki51fZQoaAZoCWgPQwjbF9ALtw1zQJSGlFKUaBVLtmgWR0CsevYywfQsdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 5888, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 256, "n_epochs": 32, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:c8b56918435139ff973fea677d20b551758eed5cfb0da8dec0b19ce5edb32cf1
3
- size 196541
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1f02bfa78e933a4a0bc09ded3c5d222a9e56f2bc28c0ed171c7d33a50cf3a266
3
+ size 205147
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": 288.0514106673353, "std_reward": 18.88608562206466, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-13T21:31:27.007384"}
 
1
+ {"mean_reward": 288.3256666227574, "std_reward": 19.001404778181527, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-14T02:56:20.236785"}
titanic.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:829c76a0188b18de5f403b3a095ab34c1140c0e2e45c14ddd64d4b7ee0bb9720
3
+ size 143985
titanic/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.5.0
titanic/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fe99e715a70>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fe99e715b00>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fe99e715b90>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fe99e715c20>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fe99e715cb0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fe99e715d40>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fe99e715dd0>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fe99e715e60>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fe99e715ef0>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fe99e715f80>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fe99e71a050>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7fe99e75e9f0>"
20
+ },
21
+ "verbose": 0,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 3014656,
46
+ "_total_timesteps": 3000000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1651866477.0616665,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAFMuEL6T5so+ugf1PTOzOb+8Bwy+p5QcPgAAAAAAAAAAMzdWvcUzxjwaVuo9oybNvihHuTz+Hao8AAAAAAAAAACaFUg8BR3quxoIYrubzmk8poxLvRLkRj0AAIA/AACAPw0SFT79zbQ+ApY7vjkMPr9JNyI+9u4CvgAAAAAAAAAANp2TPhRMFj+5DTe+sGE7v5qvwD4dz4m+AAAAAAAAAABNV1890h2mPw3bFT5BbhS/phQ3PXohxz0AAAAAAAAAAM3J+ryoypo/vMe0vQpRSL/UZyy+S27LPAAAAAAAAAAA030cPtYNhj8T5sQ+4545v0MLlj5oDIw+AAAAAAAAAAAAC5S9ayNmP34CEb5EmWe/1dRSvrs837oAAAAAAAAAAGZHx7wgcLA/6h+kvkwIkr4U4hC8Tn8DvgAAAAAAAAAAABgVvCl4a7raYqU7Ot3BuLSgULnNtMO3AACAPwAAgD+AbDO9bPm1u3OdIj68aBc8468DveV+BT0AAIA/AACAP2a6tLut6bQ/1wQPv1r/3z1mpNE7apUBPgAAAAAAAAAAsw6TvRuntD9CPvq+AccjvmTnl70W/rC+AAAAAAAAAACmxbO9qdcTvKoHiD628qy87An9vJm1SD4AAIA/AACAP3Mojz0PyLE/AOFRPjJG5L6YGhY+2agCPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAEAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.004885333333333408,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVHhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI74y2KolMcUCUhpRSlIwBbJRLsIwBdJRHQKxajYGt6ol1fZQoaAZoCWgPQwhdo+VAj0hyQJSGlFKUaBVLsmgWR0CsWp8aGYa6dX2UKGgGaAloD0MIc7nBUIfLcECUhpRSlGgVS59oFkdArFq7PjXFtXV9lChoBmgJaA9DCNBCAkbXeHFAlIaUUpRoFUuTaBZHQKxa0MwUQCl1fZQoaAZoCWgPQwhbtABtq05zQJSGlFKUaBVL+2gWR0CsWupYLb5/dX2UKGgGaAloD0MIRx0dV+OHcUCUhpRSlGgVS6loFkdArFsErbxmTXV9lChoBmgJaA9DCFIoC1+fgHNAlIaUUpRoFUvBaBZHQKxvmbZOBUd1fZQoaAZoCWgPQwh3EDtT6E1xQJSGlFKUaBVLr2gWR0Csb+b5VOsUdX2UKGgGaAloD0MINGjon6BMckCUhpRSlGgVS7doFkdArG/7ZFocrHV9lChoBmgJaA9DCAtFup9TbnJAlIaUUpRoFUukaBZHQKxwBsZYPoV1fZQoaAZoCWgPQwh4QURqGvpwQJSGlFKUaBVLnmgWR0CscAnied08dX2UKGgGaAloD0MIhSUeUHbAckCUhpRSlGgVS+RoFkdArHAwcPvrnnV9lChoBmgJaA9DCD2dK0qJ7nJAlIaUUpRoFUuwaBZHQKxwQYfGMn91fZQoaAZoCWgPQwjn3y779YlzQJSGlFKUaBVLt2gWR0CscEV/lQuVdX2UKGgGaAloD0MIaAQb17/tcECUhpRSlGgVS5loFkdArHC8chkiEHV9lChoBmgJaA9DCD/9Z80PN3FAlIaUUpRoFUusaBZHQKxw55u63Ap1fZQoaAZoCWgPQwhtVKcD2QpxQJSGlFKUaBVLqGgWR0CscQVKf4ATdX2UKGgGaAloD0MIXwmkxO6Vc0CUhpRSlGgVS8VoFkdArHEvr6ciGHV9lChoBmgJaA9DCJbqAl5mMHNAlIaUUpRoFUvWaBZHQKxxr8eCCjF1fZQoaAZoCWgPQwhTPZl/dNhwQJSGlFKUaBVLqWgWR0CscbTzundgdX2UKGgGaAloD0MIhjyCG6mHckCUhpRSlGgVS9NoFkdArHHA93bEgnV9lChoBmgJaA9DCGmrksj+LHNAlIaUUpRoFUufaBZHQKxx+aESM991fZQoaAZoCWgPQwhDxTh/U4ZxQJSGlFKUaBVLqGgWR0CschIwM6RydX2UKGgGaAloD0MIem8MAYBbckCUhpRSlGgVS7loFkdArHI+IInjQ3V9lChoBmgJaA9DCH/1uG+1hnJAlIaUUpRoFUv0aBZHQKxyQyyD7Il1fZQoaAZoCWgPQwiV0jO9hPVxQJSGlFKUaBVLt2gWR0Cscn2WY4Q0dX2UKGgGaAloD0MIJ/kRvyLfc0CUhpRSlGgVS9RoFkdArHKBtm+TNnV9lChoBmgJaA9DCElJD0OrB3JAlIaUUpRoFUuQaBZHQKxyheN1hb51fZQoaAZoCWgPQwhC6Qsh5z1yQJSGlFKUaBVLv2gWR0CscpN/nW8RdX2UKGgGaAloD0MIc4Bgjl6LckCUhpRSlGgVS8ZoFkdArHKZwMpgC3V9lChoBmgJaA9DCAqFCDjELHJAlIaUUpRoFUuVaBZHQKxy1hn8Koh1fZQoaAZoCWgPQwiJ1LSL6VlxQJSGlFKUaBVLp2gWR0CsczoQFs55dX2UKGgGaAloD0MI/YhfsQYbZ0CUhpRSlGgVTegDaBZHQKxzaISlFc91fZQoaAZoCWgPQwib/1cduZ1zQJSGlFKUaBVL0mgWR0Csc3sOf/WEdX2UKGgGaAloD0MIPWU1XY8zcUCUhpRSlGgVS6poFkdArHO3qJMxoXV9lChoBmgJaA9DCMUbmUe+lHJAlIaUUpRoFUuxaBZHQKxzz1Iy0rt1fZQoaAZoCWgPQwg0go3rH1FxQJSGlFKUaBVLrmgWR0Csc9ENFz+4dX2UKGgGaAloD0MIWaX0TO/9cECUhpRSlGgVS49oFkdArHPorFwT/XV9lChoBmgJaA9DCHqlLEOcsHFAlIaUUpRoFUupaBZHQKx0DDgqEvl1fZQoaAZoCWgPQwiOdXEbDRNwQJSGlFKUaBVLoGgWR0CsdBwaBI4EdX2UKGgGaAloD0MIED//Pbi0c0CUhpRSlGgVS6poFkdArHSFbor4FnV9lChoBmgJaA9DCNLI5xUPZ3NAlIaUUpRoFUvZaBZHQKx0jYbKifx1fZQoaAZoCWgPQwhM/bypiGlyQJSGlFKUaBVLsmgWR0CsdJm7rcCYdX2UKGgGaAloD0MIPbmmQKYMcUCUhpRSlGgVS8NoFkdArHTERBeHBXV9lChoBmgJaA9DCJOP3QWK8XBAlIaUUpRoFUuwaBZHQKx05S2H+Id1fZQoaAZoCWgPQwiiQnVzseNzQJSGlFKUaBVL12gWR0CsdRUQkHD8dX2UKGgGaAloD0MI7N6KxETmckCUhpRSlGgVS6JoFkdArHUZWT5ft3V9lChoBmgJaA9DCI7NjlRfRXNAlIaUUpRoFUvfaBZHQKx1Jeu3c591fZQoaAZoCWgPQwgEyqZcIa5xQJSGlFKUaBVLm2gWR0CsdSofSx7idX2UKGgGaAloD0MIZAPpYtOERkCUhpRSlGgVS1ZoFkdArHVwEfT1CnV9lChoBmgJaA9DCMd/gSBA4G9AlIaUUpRoFUuUaBZHQKx1chIvrW11fZQoaAZoCWgPQwgR4PQu3iRyQJSGlFKUaBVLnmgWR0CsdXSHEdeZdX2UKGgGaAloD0MI0CnIz8aAckCUhpRSlGgVS5BoFkdArHWtAu7HyXV9lChoBmgJaA9DCMJoVrbPyXFAlIaUUpRoFUuuaBZHQKx1s+V1Oj91fZQoaAZoCWgPQwgmxFxSNZh0QJSGlFKUaBVL1WgWR0CsdchX8wYcdX2UKGgGaAloD0MIRu1+FaD/c0CUhpRSlGgVS7BoFkdArHXSPluFYnV9lChoBmgJaA9DCEEQIEMHTXNAlIaUUpRoFUvAaBZHQKx2HQ3PzFx1fZQoaAZoCWgPQwhcH9YbdfFyQJSGlFKUaBVLuGgWR0CsdnUm+j/NdX2UKGgGaAloD0MI0At3LowRcECUhpRSlGgVS7ZoFkdArHaCe05U+HV9lChoBmgJaA9DCMwJ2uSw2XJAlIaUUpRoFUuyaBZHQKx2pLA57w91fZQoaAZoCWgPQwi5UzpY/3RxQJSGlFKUaBVLmWgWR0CsdrPUaybAdX2UKGgGaAloD0MIkfKTat84ckCUhpRSlGgVS7loFkdArHbeL9/BnHV9lChoBmgJaA9DCMMQOX09cHJAlIaUUpRoFUulaBZHQKx25ua4MF51fZQoaAZoCWgPQwi0WmCPSWFxQJSGlFKUaBVLjGgWR0CsdvscZLqVdX2UKGgGaAloD0MIfVwbKoZJdECUhpRSlGgVS7toFkdArHcP3FkxynV9lChoBmgJaA9DCNS5opQQV3NAlIaUUpRoFUu/aBZHQKx3Km1pj+d1fZQoaAZoCWgPQwhVMgBUsZ1xQJSGlFKUaBVLsWgWR0Csd1AmZ3LWdX2UKGgGaAloD0MI+FJ40OxuckCUhpRSlGgVS7ZoFkdArHdc0cfeUXV9lChoBmgJaA9DCNYdi22Si3NAlIaUUpRoFUugaBZHQKx3YPSUkfN1fZQoaAZoCWgPQwhU/UrnA41yQJSGlFKUaBVLmmgWR0Csd2pobn5jdX2UKGgGaAloD0MItoR80HNvc0CUhpRSlGgVS59oFkdArHd/IbOu73V9lChoBmgJaA9DCIwTX+1odXNAlIaUUpRoFUvFaBZHQKx3wtg8bJh1fZQoaAZoCWgPQwjvWGyTylVyQJSGlFKUaBVLj2gWR0Csd/Xm3fALdX2UKGgGaAloD0MIs874vrg9c0CUhpRSlGgVS7hoFkdArHgK6jFhonV9lChoBmgJaA9DCPBt+rNf0HBAlIaUUpRoFUucaBZHQKx4Dk1/DtR1fZQoaAZoCWgPQwgOhjqssDBxQJSGlFKUaBVLnmgWR0CseFSCe2/jdX2UKGgGaAloD0MIGlOwxllxckCUhpRSlGgVS8xoFkdArHjWHBUJfXV9lChoBmgJaA9DCNgtAmP94XJAlIaUUpRoFUu5aBZHQKx41lxOtXB1fZQoaAZoCWgPQwiY3CiyVvtxQJSGlFKUaBVLvGgWR0CseOei8FpxdX2UKGgGaAloD0MITnrf+Bo5cUCUhpRSlGgVS45oFkdArHjuiUPhAHV9lChoBmgJaA9DCKqaIOp+vnJAlIaUUpRoFUulaBZHQKx49K5kK/p1fZQoaAZoCWgPQwh3nnjO1ldyQJSGlFKUaBVLtGgWR0CseQBl18sudX2UKGgGaAloD0MI1LmilJDqcUCUhpRSlGgVS5toFkdArHkIEIPbwnV9lChoBmgJaA9DCOXTY1tGCXNAlIaUUpRoFUvEaBZHQKx5E9oN/fB1fZQoaAZoCWgPQwj0iTxJugFxQJSGlFKUaBVLsWgWR0CseYFDWsijdX2UKGgGaAloD0MIttYXCW0qdECUhpRSlGgVS8loFkdArHmpw2l2vHV9lChoBmgJaA9DCAsOL4hIgXRAlIaUUpRoFUvSaBZHQKx5tpudf9h1fZQoaAZoCWgPQwimKQKc3gRyQJSGlFKUaBVLuGgWR0CsedrP+n63dX2UKGgGaAloD0MIenHiqx1bcUCUhpRSlGgVS7doFkdArHoRbhWHUXV9lChoBmgJaA9DCO+MtioJIXJAlIaUUpRoFUu0aBZHQKx6HapxWDJ1fZQoaAZoCWgPQwhlGHeDqEBxQJSGlFKUaBVLuWgWR0CsejBH9WIXdX2UKGgGaAloD0MIiNnLttPKc0CUhpRSlGgVS6RoFkdArHo2+GoJiXV9lChoBmgJaA9DCDtVvmekR3BAlIaUUpRoFUuTaBZHQKx6i8YAKfF1fZQoaAZoCWgPQwgVcqWexY1wQJSGlFKUaBVLnGgWR0Cseo420iQldX2UKGgGaAloD0MIHxMpzaYocECUhpRSlGgVS51oFkdArHqqRISUT3V9lChoBmgJaA9DCGtkV1qGF3JAlIaUUpRoFUuSaBZHQKx6q9ovi991fZQoaAZoCWgPQwjc9dIUQWNwQJSGlFKUaBVLqWgWR0Cseq+tr9EUdX2UKGgGaAloD0MIthFPdvO3ckCUhpRSlGgVS7VoFkdArHrYptrKvHV9lChoBmgJaA9DCF1txf4ySHJAlIaUUpRoFUuzaBZHQKx656N2ki51fZQoaAZoCWgPQwjbF9ALtw1zQJSGlFKUaBVLtmgWR0CsevYywfQsdWUu"
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 5888,
79
+ "n_steps": 1024,
80
+ "gamma": 0.999,
81
+ "gae_lambda": 0.98,
82
+ "ent_coef": 0.01,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 256,
86
+ "n_epochs": 32,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
titanic/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9e7d923a327693ee3b9f41ed1479ef35c12b640800f9c6ebc168ac932c86aabb
3
+ size 84893
titanic/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:16021665b1d6ee82b216bbfb6c1ad8adb1aeb8071e8d1ec655c8bbcf5fa22ce7
3
+ size 43201
titanic/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
titanic/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
2
+ Python: 3.7.13
3
+ Stable-Baselines3: 1.5.0
4
+ PyTorch: 1.11.0+cu113
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0