File size: 19,422 Bytes
88b237c
 
 
 
 
 
 
 
e246c89
88b237c
25b27e5
 
 
88b237c
25b27e5
 
 
 
 
 
 
 
 
 
 
 
88b237c
25b27e5
 
 
 
 
 
 
 
 
 
 
 
 
 
88b237c
25b27e5
 
 
 
 
 
 
88b237c
25b27e5
 
 
 
 
 
 
 
88b237c
25b27e5
 
 
88b237c
 
 
 
 
e246c89
88b237c
 
 
 
 
 
 
 
 
25b27e5
88b237c
 
 
 
 
 
 
 
 
25b27e5
88b237c
 
 
e246c89
88b237c
e246c89
88b237c
 
 
 
 
e246c89
88b237c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e246c89
88b237c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4243295
88b237c
 
25b27e5
 
 
88b237c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
25b27e5
88b237c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
25b27e5
 
 
 
88b237c
25b27e5
 
 
 
 
88b237c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
25b27e5
 
 
 
 
 
 
 
 
 
 
 
 
88b237c
 
 
 
 
e246c89
88b237c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
---
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:4893
- loss:TripletLoss
base_model: distilbert/distilroberta-base
widget:
- source_sentence: Leave me alone! Have you gone daft? Mister Spock needs me! Let
    go! That will be quite enough. Thank you, doctor.; Please, release her.[SEP]What's
    this all about?
  sentences:
  - ' You know, the lab here, they have a paid intern position. It''s usually given
    to one of the kids from the universities but, if you want, I could pRobably get
    you an interview. There''s some entry lEvel stuff, some gofer work. But you''d
    also have access to a lot of cool things.'
  - She was doing as I requested, Mister Scott. A Vulcan form of self-healing.
  - Thasians have been referred to in our records as having the power to transmute
    objects or render substances invisible. It has generally been regarded as legend,
    but Charlie does seems to possess this same power.
- source_sentence: Why would you do this? Because the needs of the one ...outweigh
    the needs of the many. I have been ...and ever shall be ...your friend. Yes! Yes,
    Spock. The ship. ...Out of danger?[SEP]You saved the ship, ...You saved us all.
    Don't you remember?
  sentences:
  - ' My wife had taken a sleeping pill and gone to bed. It was Christmas Eve. Kyle
    popped corn in the fireplace. He Managed to knock loose some tinder. Wrapping
    paper caught on fire. Spread so fast. I got Kyle outta there. When I went back
    in for... [Chokes, takes a beat, then.]'
  - In two days, you'll have your own hands, Thalassa. Mechanically efficient and
    quite human-looking. Android robot hands, of course. Hands without feeling. Enjoy
    the taste of life while you can.
  - Jim, ...your name is Jim.
- source_sentence: Captain, if something hasn't worked out and therefore has no scientific
    fact Shall we leave it up to the doctor? Since you brought me down here for advice,
    Captain One of the advantages of being a Captain, Doctor, is being able to ask
    for advice without necessarily having to take it. I think I'll have to award that
    round to the Captain, Helen. You're fighting over your weight. All right, let's
    take a look.[SEP]I'm not a criminal! I do not require neural neutraliser.
  sentences:
  - Neural neutraliser. Can you explain that, Doctor Van Gelder?
  - ' And the disorientation?'
  - I'm aware of these facts. Please get on with the job. Computer.
- source_sentence: We're picking up an object, sir. Much larger, coming toward us.
    Coming. Exceptionally strong contact. Not visual yet. Distant spectrograph. Metallic,
    similar to cube. Much greater energy reading. There, sir. Half speed. Prepare
    for evasive action.[SEP]Reducing to warp two, sir.
  sentences:
  - Tractor beam, Captain. Something's grabbed us, hard.
  - Exactly.
  - ' There''s a blockage in the urinary tract. Simple terms, your baby can''t pee.
    His bladder is swollen and it''s crushing his lungs.'
- source_sentence: My father says you have been my friend. ...You came back for me.
    You would have done the same for me. Why would you do this? Because the needs
    of the one ...outweigh the needs of the many. I have been ...and ever shall be
    ...your friend.[SEP]Yes! Yes, Spock.
  sentences:
  - But a defensible entrance, Captain.
  - ' No, blood tests were all normal. And he clotted in six minutes.'
  - The ship. ...Out of danger?
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy
model-index:
- name: SentenceTransformer based on distilbert/distilroberta-base
  results:
  - task:
      type: triplet
      name: Triplet
    dataset:
      name: evaluator enc
      type: evaluator_enc
    metrics:
    - type: cosine_accuracy
      value: 0.9989781379699707
      name: Cosine Accuracy
  - task:
      type: triplet
      name: Triplet
    dataset:
      name: evaluator val
      type: evaluator_val
    metrics:
    - type: cosine_accuracy
      value: 0.9872685074806213
      name: Cosine Accuracy
---

# SentenceTransformer based on distilbert/distilroberta-base

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [distilbert/distilroberta-base](https://huggingface.co/distilbert/distilroberta-base). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [distilbert/distilroberta-base](https://huggingface.co/distilbert/distilroberta-base) <!-- at revision fb53ab8802853c8e4fbdbcd0529f21fc6f459b2b -->
- **Maximum Sequence Length:** 128 tokens
- **Output Dimensionality:** 768 dimensions
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: RobertaModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("greatakela/gnlp_hw1_encoder")
# Run inference
sentences = [
    'My father says you have been my friend. ...You came back for me. You would have done the same for me. Why would you do this? Because the needs of the one ...outweigh the needs of the many. I have been ...and ever shall be ...your friend.[SEP]Yes! Yes, Spock.',
    'The ship. ...Out of danger?',
    ' No, blood tests were all normal. And he clotted in six minutes.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Triplet

* Datasets: `evaluator_enc` and `evaluator_val`
* Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator)

| Metric              | evaluator_enc | evaluator_val |
|:--------------------|:--------------|:--------------|
| **cosine_accuracy** | **0.999**     | **0.9873**    |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### Unnamed Dataset

* Size: 4,893 training samples
* Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>sentence_2</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence_0                                                                         | sentence_1                                                                        | sentence_2                                                                         |
  |:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
  | type    | string                                                                             | string                                                                            | string                                                                             |
  | details | <ul><li>min: 2 tokens</li><li>mean: 83.38 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 18.38 tokens</li><li>max: 91 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 18.48 tokens</li><li>max: 102 tokens</li></ul> |
* Samples:
  | sentence_0                                                                                                                                                                                                                                                                                                         | sentence_1                                                                                                                              | sentence_2                                                                                                                                                                                                                  |
  |:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>The usage is correct. The creator was simply testing your memory banks. There was much damage in the accident. Mister Singh. Come here a moment. This unit will see to your needs. Sir? I'll be back in a moment. Gentlemen, come with me.[SEP]You're on to something, Spock. What is it?</code>             | <code>I've correlated all the available information on the Nomad probe, and I'm convinced that this object is indeed that probe.</code> | <code> DIC would explain both the!</code>                                                                                                                                                                                   |
  | <code>Mister Spock, how many people are on Memory Alpha? It varies with the number of scholars, researchers, and scientists from the various Federation planets who are using the computer complex. Captain, we are within orbit range. Lock into orbit. Aye, sir.[SEP]It is leaving Memory Alpha, Captain.</code> | <code>Sensors give no readings of generated energy from Memory Alpha, Captain.</code>                                                   | <code> Weird huh?</code>                                                                                                                                                                                                    |
  | <code>We're guiding around most of the time ripples now. Mister Spock? All plotted but one, Captain. Coming up on it now. Seems to be fairly heavy displacement. Bones! Get back to your positions. The hypo, Captain.[SEP]It was set for cordrazine.</code>                                                       | <code>Empty.</code>                                                                                                                     | <code> Actually he's only in the Navy when they sang, In The Navy. The rest of the time he's just in generic fatigues. [House stares at him.] What? You brought it up! [House starts to walk out.] You didn't flush.</code> |
* Loss: [<code>TripletLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#tripletloss) with these parameters:
  ```json
  {
      "distance_metric": "TripletDistanceMetric.EUCLIDEAN",
      "triplet_margin": 5
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: steps
- `multi_dataset_batch_sampler`: round_robin

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 8
- `per_device_eval_batch_size`: 8
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1
- `num_train_epochs`: 3
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.0
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: round_robin

</details>

### Training Logs
| Epoch  | Step | Training Loss | evaluator_enc_cosine_accuracy | evaluator_val_cosine_accuracy |
|:------:|:----:|:-------------:|:-----------------------------:|:-----------------------------:|
| -1     | -1   | -             | 0.5866                        | -                             |
| 0.4902 | 300  | -             | 0.9875                        | -                             |
| 0.8170 | 500  | 1.085         | -                             | -                             |
| 0.9804 | 600  | -             | 0.9935                        | -                             |
| 1.0    | 612  | -             | 0.9937                        | -                             |
| 1.4706 | 900  | -             | 0.9967                        | -                             |
| 1.6340 | 1000 | 0.1573        | -                             | -                             |
| 1.9608 | 1200 | -             | 0.9980                        | -                             |
| 2.0    | 1224 | -             | 0.9980                        | -                             |
| 2.4510 | 1500 | 0.0733        | 0.9990                        | -                             |
| 2.9412 | 1800 | -             | 0.9990                        | -                             |
| 3.0    | 1836 | -             | 0.9990                        | -                             |
| -1     | -1   | -             | -                             | 0.9873                        |


### Framework Versions
- Python: 3.11.11
- Sentence Transformers: 3.4.1
- Transformers: 4.49.0
- PyTorch: 2.5.1+cu124
- Accelerate: 1.3.0
- Datasets: 3.3.2
- Tokenizers: 0.21.0

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### TripletLoss
```bibtex
@misc{hermans2017defense,
    title={In Defense of the Triplet Loss for Person Re-Identification},
    author={Alexander Hermans and Lucas Beyer and Bastian Leibe},
    year={2017},
    eprint={1703.07737},
    archivePrefix={arXiv},
    primaryClass={cs.CV}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->