File size: 19,422 Bytes
88b237c e246c89 88b237c 25b27e5 88b237c 25b27e5 88b237c 25b27e5 88b237c 25b27e5 88b237c 25b27e5 88b237c 25b27e5 88b237c e246c89 88b237c 25b27e5 88b237c 25b27e5 88b237c e246c89 88b237c e246c89 88b237c e246c89 88b237c e246c89 88b237c 4243295 88b237c 25b27e5 88b237c 25b27e5 88b237c 25b27e5 88b237c 25b27e5 88b237c 25b27e5 88b237c e246c89 88b237c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 |
---
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:4893
- loss:TripletLoss
base_model: distilbert/distilroberta-base
widget:
- source_sentence: Leave me alone! Have you gone daft? Mister Spock needs me! Let
go! That will be quite enough. Thank you, doctor.; Please, release her.[SEP]What's
this all about?
sentences:
- ' You know, the lab here, they have a paid intern position. It''s usually given
to one of the kids from the universities but, if you want, I could pRobably get
you an interview. There''s some entry lEvel stuff, some gofer work. But you''d
also have access to a lot of cool things.'
- She was doing as I requested, Mister Scott. A Vulcan form of self-healing.
- Thasians have been referred to in our records as having the power to transmute
objects or render substances invisible. It has generally been regarded as legend,
but Charlie does seems to possess this same power.
- source_sentence: Why would you do this? Because the needs of the one ...outweigh
the needs of the many. I have been ...and ever shall be ...your friend. Yes! Yes,
Spock. The ship. ...Out of danger?[SEP]You saved the ship, ...You saved us all.
Don't you remember?
sentences:
- ' My wife had taken a sleeping pill and gone to bed. It was Christmas Eve. Kyle
popped corn in the fireplace. He Managed to knock loose some tinder. Wrapping
paper caught on fire. Spread so fast. I got Kyle outta there. When I went back
in for... [Chokes, takes a beat, then.]'
- In two days, you'll have your own hands, Thalassa. Mechanically efficient and
quite human-looking. Android robot hands, of course. Hands without feeling. Enjoy
the taste of life while you can.
- Jim, ...your name is Jim.
- source_sentence: Captain, if something hasn't worked out and therefore has no scientific
fact Shall we leave it up to the doctor? Since you brought me down here for advice,
Captain One of the advantages of being a Captain, Doctor, is being able to ask
for advice without necessarily having to take it. I think I'll have to award that
round to the Captain, Helen. You're fighting over your weight. All right, let's
take a look.[SEP]I'm not a criminal! I do not require neural neutraliser.
sentences:
- Neural neutraliser. Can you explain that, Doctor Van Gelder?
- ' And the disorientation?'
- I'm aware of these facts. Please get on with the job. Computer.
- source_sentence: We're picking up an object, sir. Much larger, coming toward us.
Coming. Exceptionally strong contact. Not visual yet. Distant spectrograph. Metallic,
similar to cube. Much greater energy reading. There, sir. Half speed. Prepare
for evasive action.[SEP]Reducing to warp two, sir.
sentences:
- Tractor beam, Captain. Something's grabbed us, hard.
- Exactly.
- ' There''s a blockage in the urinary tract. Simple terms, your baby can''t pee.
His bladder is swollen and it''s crushing his lungs.'
- source_sentence: My father says you have been my friend. ...You came back for me.
You would have done the same for me. Why would you do this? Because the needs
of the one ...outweigh the needs of the many. I have been ...and ever shall be
...your friend.[SEP]Yes! Yes, Spock.
sentences:
- But a defensible entrance, Captain.
- ' No, blood tests were all normal. And he clotted in six minutes.'
- The ship. ...Out of danger?
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy
model-index:
- name: SentenceTransformer based on distilbert/distilroberta-base
results:
- task:
type: triplet
name: Triplet
dataset:
name: evaluator enc
type: evaluator_enc
metrics:
- type: cosine_accuracy
value: 0.9989781379699707
name: Cosine Accuracy
- task:
type: triplet
name: Triplet
dataset:
name: evaluator val
type: evaluator_val
metrics:
- type: cosine_accuracy
value: 0.9872685074806213
name: Cosine Accuracy
---
# SentenceTransformer based on distilbert/distilroberta-base
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [distilbert/distilroberta-base](https://huggingface.co/distilbert/distilroberta-base). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [distilbert/distilroberta-base](https://huggingface.co/distilbert/distilroberta-base) <!-- at revision fb53ab8802853c8e4fbdbcd0529f21fc6f459b2b -->
- **Maximum Sequence Length:** 128 tokens
- **Output Dimensionality:** 768 dimensions
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: RobertaModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("greatakela/gnlp_hw1_encoder")
# Run inference
sentences = [
'My father says you have been my friend. ...You came back for me. You would have done the same for me. Why would you do this? Because the needs of the one ...outweigh the needs of the many. I have been ...and ever shall be ...your friend.[SEP]Yes! Yes, Spock.',
'The ship. ...Out of danger?',
' No, blood tests were all normal. And he clotted in six minutes.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Triplet
* Datasets: `evaluator_enc` and `evaluator_val`
* Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator)
| Metric | evaluator_enc | evaluator_val |
|:--------------------|:--------------|:--------------|
| **cosine_accuracy** | **0.999** | **0.9873** |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 4,893 training samples
* Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>sentence_2</code>
* Approximate statistics based on the first 1000 samples:
| | sentence_0 | sentence_1 | sentence_2 |
|:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
| type | string | string | string |
| details | <ul><li>min: 2 tokens</li><li>mean: 83.38 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 18.38 tokens</li><li>max: 91 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 18.48 tokens</li><li>max: 102 tokens</li></ul> |
* Samples:
| sentence_0 | sentence_1 | sentence_2 |
|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>The usage is correct. The creator was simply testing your memory banks. There was much damage in the accident. Mister Singh. Come here a moment. This unit will see to your needs. Sir? I'll be back in a moment. Gentlemen, come with me.[SEP]You're on to something, Spock. What is it?</code> | <code>I've correlated all the available information on the Nomad probe, and I'm convinced that this object is indeed that probe.</code> | <code> DIC would explain both the!</code> |
| <code>Mister Spock, how many people are on Memory Alpha? It varies with the number of scholars, researchers, and scientists from the various Federation planets who are using the computer complex. Captain, we are within orbit range. Lock into orbit. Aye, sir.[SEP]It is leaving Memory Alpha, Captain.</code> | <code>Sensors give no readings of generated energy from Memory Alpha, Captain.</code> | <code> Weird huh?</code> |
| <code>We're guiding around most of the time ripples now. Mister Spock? All plotted but one, Captain. Coming up on it now. Seems to be fairly heavy displacement. Bones! Get back to your positions. The hypo, Captain.[SEP]It was set for cordrazine.</code> | <code>Empty.</code> | <code> Actually he's only in the Navy when they sang, In The Navy. The rest of the time he's just in generic fatigues. [House stares at him.] What? You brought it up! [House starts to walk out.] You didn't flush.</code> |
* Loss: [<code>TripletLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#tripletloss) with these parameters:
```json
{
"distance_metric": "TripletDistanceMetric.EUCLIDEAN",
"triplet_margin": 5
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `multi_dataset_batch_sampler`: round_robin
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 8
- `per_device_eval_batch_size`: 8
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1
- `num_train_epochs`: 3
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.0
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: round_robin
</details>
### Training Logs
| Epoch | Step | Training Loss | evaluator_enc_cosine_accuracy | evaluator_val_cosine_accuracy |
|:------:|:----:|:-------------:|:-----------------------------:|:-----------------------------:|
| -1 | -1 | - | 0.5866 | - |
| 0.4902 | 300 | - | 0.9875 | - |
| 0.8170 | 500 | 1.085 | - | - |
| 0.9804 | 600 | - | 0.9935 | - |
| 1.0 | 612 | - | 0.9937 | - |
| 1.4706 | 900 | - | 0.9967 | - |
| 1.6340 | 1000 | 0.1573 | - | - |
| 1.9608 | 1200 | - | 0.9980 | - |
| 2.0 | 1224 | - | 0.9980 | - |
| 2.4510 | 1500 | 0.0733 | 0.9990 | - |
| 2.9412 | 1800 | - | 0.9990 | - |
| 3.0 | 1836 | - | 0.9990 | - |
| -1 | -1 | - | - | 0.9873 |
### Framework Versions
- Python: 3.11.11
- Sentence Transformers: 3.4.1
- Transformers: 4.49.0
- PyTorch: 2.5.1+cu124
- Accelerate: 1.3.0
- Datasets: 3.3.2
- Tokenizers: 0.21.0
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### TripletLoss
```bibtex
@misc{hermans2017defense,
title={In Defense of the Triplet Loss for Person Re-Identification},
author={Alexander Hermans and Lucas Beyer and Bastian Leibe},
year={2017},
eprint={1703.07737},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |