Commit
·
acf4948
1
Parent(s):
71c1b6b
Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Official model repo of EMNLP 2023 paper "Length is a Curse and a Blessing for Document-level Semantics"
|
2 |
+
|
3 |
+
### Model Summary
|
4 |
+
|
5 |
+
LASER-cubed-bert-base-unsup is an **unsupervised** model trained on wiki1M dataset. Without needing the datasets to have long texts, it provides surprising generalizability on long document retrieval.
|
6 |
+
|
7 |
+
- **Developed by:** Chenghao Xiao, Yizhi Li, G Thomas Hudson, Chenghua Lin, Noura Al-Moubayed
|
8 |
+
- **Shared by:** Chenghao Xiao
|
9 |
+
- **Model type:** BERT-base
|
10 |
+
- **Language(s) (NLP):** English
|
11 |
+
- **Finetuned from model:** BERT-base-uncased
|
12 |
+
|
13 |
+
### Model Sources
|
14 |
+
|
15 |
+
- **Github Repo:** https://github.com/gowitheflow-1998/LA-SER-cubed
|
16 |
+
- **Paper:** https://aclanthology.org/2023.emnlp-main.86/
|
17 |
+
|
18 |
+
|
19 |
+
### Usage
|
20 |
+
Use the model with Sentence Transformers:
|
21 |
+
```python
|
22 |
+
from sentence_transformers import SentenceTransformer
|
23 |
+
model = SentenceTransformer("gowitheflow/LASER-cubed-bert-base-unsup")
|
24 |
+
|
25 |
+
text = "LASER-cubed is a dope model - It generalizes to long texts without needing the training sets to have long texts."
|
26 |
+
representation = model.encode(text)
|
27 |
+
```
|
28 |
+
### Evaluation
|
29 |
+
Evaluate it with the BEIR framework:
|
30 |
+
```python
|
31 |
+
from beir.retrieval import models
|
32 |
+
from beir.datasets.data_loader import GenericDataLoader
|
33 |
+
from beir.retrieval.evaluation import EvaluateRetrieval
|
34 |
+
from beir.retrieval.search.dense import DenseRetrievalExactSearch as DRES
|
35 |
+
|
36 |
+
# download the datasets with BEIR original repo youself first
|
37 |
+
data_path = './datasets/arguana'
|
38 |
+
corpus, queries, qrels = GenericDataLoader(data_folder=data_path).load(split="test")
|
39 |
+
model = DRES(models.SentenceBERT("gowitheflow/LASER-cubed-bert-base-unsup"), batch_size=512)
|
40 |
+
retriever = EvaluateRetrieval(model, score_function="cos_sim")
|
41 |
+
results = retriever.retrieve(corpus, queries)
|
42 |
+
ndcg, _map, recall, precision = retriever.evaluate(qrels, results, retriever.k_values)
|
43 |
+
|
44 |
+
```
|
45 |
+
### Downstream Use
|
46 |
+
|
47 |
+
Information Retrieval
|
48 |
+
|
49 |
+
### Out-of-Scope Use
|
50 |
+
|
51 |
+
The model is not for further fine-tuning to do other tasks (such as classification), as it's trained to do representation tasks with similarity matching.
|
52 |
+
|
53 |
+
|
54 |
+
|
55 |
+
## Training Details
|
56 |
+
|
57 |
+
max seq 256, batch size 256, lr 3e-05, 1 epoch, 10% warmup, 1 A100.
|
58 |
+
|
59 |
+
### Training Data
|
60 |
+
|
61 |
+
wiki 1M
|
62 |
+
|
63 |
+
### Training Procedure
|
64 |
+
|
65 |
+
Please refer to the paper.
|
66 |
+
|
67 |
+
## Evaluation
|
68 |
+
|
69 |
+
|
70 |
+
### Results
|
71 |
+
|
72 |
+
|
73 |
+
|
74 |
+
**BibTeX:**
|
75 |
+
|
76 |
+
@inproceedings{xiao2023length,
|
77 |
+
title={Length is a Curse and a Blessing for Document-level Semantics},
|
78 |
+
author={Xiao, Chenghao and Li, Yizhi and Hudson, G and Lin, Chenghua and Al Moubayed, Noura},
|
79 |
+
booktitle={Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing},
|
80 |
+
pages={1385--1396},
|
81 |
+
year={2023}
|
82 |
+
}
|