Commit
·
a0b71b6
1
Parent(s):
d132d07
Update README.md
Browse files
README.md
CHANGED
@@ -159,16 +159,16 @@ The following table contains test results on the HuggingFace model in comparison
|
|
159 |
|
160 |
| Task | Metric | Result | | Training time | |
|
161 |
| ----- | ---------------------- | ------------------------------------------------------------------------------- | ------------------------------------------------------------------------- | ------------- | -------- |
|
162 |
-
| | | Bert (PyTorch) - Reproduced | FNet (PyTorch) - Reproduced
|
163 |
-
| MNLI | Accuracy | [84.10](https://huggingface.co/gchhablani/bert-base-cased-finetuned-mnli) | [76.75](https://huggingface.co/gchhablani/fnet-base-finetuned-mnli) | 09:52:33 | 06:40:55 |
|
164 |
-
| QQP | mean(Accuracy,F1) | [89.26](https://huggingface.co/gchhablani/bert-base-cased-finetuned-qqp) | [86.5](https://huggingface.co/gchhablani/fnet-base-finetuned-qqp) | 09:25:01 | 06:21:16 |
|
165 |
-
| QNLI | Accuracy | [90.99](https://huggingface.co/gchhablani/bert-base-cased-finetuned-qnli) | [84.39](https://huggingface.co/gchhablani/fnet-base-finetuned-qnli) |
|
166 |
-
| SST-2 | Accuracy | [92.32](https://huggingface.co/gchhablani/bert-base-cased-finetuned-sst2) | [89.45](https://huggingface.co/gchhablani/fnet-base-finetuned-sst2) | 01:42:17 | 01:09:27 |
|
167 |
-
| CoLA | Matthews corr | [59.57](https://huggingface.co/gchhablani/bert-base-cased-finetuned-cola) | [35.94](https://huggingface.co/gchhablani/fnet-base-finetuned-cola) | 14:20 | 09:47 |
|
168 |
-
| STS-B | Spearman corr. | [89.26/88.98](https://huggingface.co/gchhablani/bert-base-cased-finetuned-stsb) | [82.56/82.19](https://huggingface.co/gchhablani/fnet-base-finetuned-stsb) |
|
169 |
-
| MRPC | mean(F1/Accuracy) | [88.15](https://huggingface.co/gchhablani/bert-base-cased-finetuned-mrpc) | [81.15](https://huggingface.co/gchhablani/fnet-base-finetuned-mrpc) |
|
170 |
-
| RTE | Accuracy | [67.15](https://huggingface.co/gchhablani/bert-base-cased-finetuned-qnli) | [62.82](https://huggingface.co/gchhablani/fnet-base-finetuned-qnli) |
|
171 |
-
| WNLI | Accuracy | [46.48](https://huggingface.co/gchhablani/bert-base-cased-finetuned-wnli) | [54.93](https://huggingface.co/gchhablani/fnet-base-finetuned-wnli) |
|
172 |
|
173 |
We can see that the FNet model achieves around ~93% of BERT's performance on average while it requires on average ~30% less time to fine-tune on the downstream tasks.
|
174 |
|
|
|
159 |
|
160 |
| Task | Metric | Result | | Training time | |
|
161 |
| ----- | ---------------------- | ------------------------------------------------------------------------------- | ------------------------------------------------------------------------- | ------------- | -------- |
|
162 |
+
| | | Bert (PyTorch) - Reproduced | FNet (PyTorch) - Reproduced | FNet (Flax) - Official | Bert | FNet |
|
163 |
+
| MNLI | Accuracy | [84.10](https://huggingface.co/gchhablani/bert-base-cased-finetuned-mnli) | [76.75](https://huggingface.co/gchhablani/fnet-base-finetuned-mnli) | | 09:52:33 | 06:40:55 |
|
164 |
+
| QQP | mean(Accuracy,F1) | [89.26](https://huggingface.co/gchhablani/bert-base-cased-finetuned-qqp) | [86.5](https://huggingface.co/gchhablani/fnet-base-finetuned-qqp) | | 09:25:01 | 06:21:16 |
|
165 |
+
| QNLI | Accuracy | [90.99](https://huggingface.co/gchhablani/bert-base-cased-finetuned-qnli) | [84.39](https://huggingface.co/gchhablani/fnet-base-finetuned-qnli) | |02:40:22 | 01:48:22 |
|
166 |
+
| SST-2 | Accuracy | [92.32](https://huggingface.co/gchhablani/bert-base-cased-finetuned-sst2) | [89.45](https://huggingface.co/gchhablani/fnet-base-finetuned-sst2) | | 01:42:17 | 01:09:27 |
|
167 |
+
| CoLA | Matthews corr | [59.57](https://huggingface.co/gchhablani/bert-base-cased-finetuned-cola) | [35.94](https://huggingface.co/gchhablani/fnet-base-finetuned-cola) | | 14:20 | 09:47 |
|
168 |
+
| STS-B | Spearman corr. | [89.26/88.98](https://huggingface.co/gchhablani/bert-base-cased-finetuned-stsb) | [82.56/82.19](https://huggingface.co/gchhablani/fnet-base-finetuned-stsb) | |10:24 | 07:09 |
|
169 |
+
| MRPC | mean(F1/Accuracy) | [88.15](https://huggingface.co/gchhablani/bert-base-cased-finetuned-mrpc) | [81.15](https://huggingface.co/gchhablani/fnet-base-finetuned-mrpc) | |11:12 | 07:48 |
|
170 |
+
| RTE | Accuracy | [67.15](https://huggingface.co/gchhablani/bert-base-cased-finetuned-qnli) | [62.82](https://huggingface.co/gchhablani/fnet-base-finetuned-qnli) | |04:51 | 03:24 |
|
171 |
+
| WNLI | Accuracy | [46.48](https://huggingface.co/gchhablani/bert-base-cased-finetuned-wnli) | [54.93](https://huggingface.co/gchhablani/fnet-base-finetuned-wnli) | |03:23 | 02:37 |
|
172 |
|
173 |
We can see that the FNet model achieves around ~93% of BERT's performance on average while it requires on average ~30% less time to fine-tune on the downstream tasks.
|
174 |
|