patrickvonplaten commited on
Commit
a0b71b6
·
1 Parent(s): d132d07

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +10 -10
README.md CHANGED
@@ -159,16 +159,16 @@ The following table contains test results on the HuggingFace model in comparison
159
 
160
  | Task | Metric | Result | | Training time | |
161
  | ----- | ---------------------- | ------------------------------------------------------------------------------- | ------------------------------------------------------------------------- | ------------- | -------- |
162
- | | | Bert (PyTorch) - Reproduced | FNet (PyTorch) - Reproduced | Bert | FNet |
163
- | MNLI | Accuracy | [84.10](https://huggingface.co/gchhablani/bert-base-cased-finetuned-mnli) | [76.75](https://huggingface.co/gchhablani/fnet-base-finetuned-mnli) | 09:52:33 | 06:40:55 |
164
- | QQP | mean(Accuracy,F1) | [89.26](https://huggingface.co/gchhablani/bert-base-cased-finetuned-qqp) | [86.5](https://huggingface.co/gchhablani/fnet-base-finetuned-qqp) | 09:25:01 | 06:21:16 |
165
- | QNLI | Accuracy | [90.99](https://huggingface.co/gchhablani/bert-base-cased-finetuned-qnli) | [84.39](https://huggingface.co/gchhablani/fnet-base-finetuned-qnli) | 02:40:22 | 01:48:22 |
166
- | SST-2 | Accuracy | [92.32](https://huggingface.co/gchhablani/bert-base-cased-finetuned-sst2) | [89.45](https://huggingface.co/gchhablani/fnet-base-finetuned-sst2) | 01:42:17 | 01:09:27 |
167
- | CoLA | Matthews corr | [59.57](https://huggingface.co/gchhablani/bert-base-cased-finetuned-cola) | [35.94](https://huggingface.co/gchhablani/fnet-base-finetuned-cola) | 14:20 | 09:47 |
168
- | STS-B | Spearman corr. | [89.26/88.98](https://huggingface.co/gchhablani/bert-base-cased-finetuned-stsb) | [82.56/82.19](https://huggingface.co/gchhablani/fnet-base-finetuned-stsb) | 10:24 | 07:09 |
169
- | MRPC | mean(F1/Accuracy) | [88.15](https://huggingface.co/gchhablani/bert-base-cased-finetuned-mrpc) | [81.15](https://huggingface.co/gchhablani/fnet-base-finetuned-mrpc) | 11:12 | 07:48 |
170
- | RTE | Accuracy | [67.15](https://huggingface.co/gchhablani/bert-base-cased-finetuned-qnli) | [62.82](https://huggingface.co/gchhablani/fnet-base-finetuned-qnli) | 04:51 | 03:24 |
171
- | WNLI | Accuracy | [46.48](https://huggingface.co/gchhablani/bert-base-cased-finetuned-wnli) | [54.93](https://huggingface.co/gchhablani/fnet-base-finetuned-wnli) | 03:23 | 02:37 |
172
 
173
  We can see that the FNet model achieves around ~93% of BERT's performance on average while it requires on average ~30% less time to fine-tune on the downstream tasks.
174
 
 
159
 
160
  | Task | Metric | Result | | Training time | |
161
  | ----- | ---------------------- | ------------------------------------------------------------------------------- | ------------------------------------------------------------------------- | ------------- | -------- |
162
+ | | | Bert (PyTorch) - Reproduced | FNet (PyTorch) - Reproduced | FNet (Flax) - Official | Bert | FNet |
163
+ | MNLI | Accuracy | [84.10](https://huggingface.co/gchhablani/bert-base-cased-finetuned-mnli) | [76.75](https://huggingface.co/gchhablani/fnet-base-finetuned-mnli) | | 09:52:33 | 06:40:55 |
164
+ | QQP | mean(Accuracy,F1) | [89.26](https://huggingface.co/gchhablani/bert-base-cased-finetuned-qqp) | [86.5](https://huggingface.co/gchhablani/fnet-base-finetuned-qqp) | | 09:25:01 | 06:21:16 |
165
+ | QNLI | Accuracy | [90.99](https://huggingface.co/gchhablani/bert-base-cased-finetuned-qnli) | [84.39](https://huggingface.co/gchhablani/fnet-base-finetuned-qnli) | |02:40:22 | 01:48:22 |
166
+ | SST-2 | Accuracy | [92.32](https://huggingface.co/gchhablani/bert-base-cased-finetuned-sst2) | [89.45](https://huggingface.co/gchhablani/fnet-base-finetuned-sst2) | | 01:42:17 | 01:09:27 |
167
+ | CoLA | Matthews corr | [59.57](https://huggingface.co/gchhablani/bert-base-cased-finetuned-cola) | [35.94](https://huggingface.co/gchhablani/fnet-base-finetuned-cola) | | 14:20 | 09:47 |
168
+ | STS-B | Spearman corr. | [89.26/88.98](https://huggingface.co/gchhablani/bert-base-cased-finetuned-stsb) | [82.56/82.19](https://huggingface.co/gchhablani/fnet-base-finetuned-stsb) | |10:24 | 07:09 |
169
+ | MRPC | mean(F1/Accuracy) | [88.15](https://huggingface.co/gchhablani/bert-base-cased-finetuned-mrpc) | [81.15](https://huggingface.co/gchhablani/fnet-base-finetuned-mrpc) | |11:12 | 07:48 |
170
+ | RTE | Accuracy | [67.15](https://huggingface.co/gchhablani/bert-base-cased-finetuned-qnli) | [62.82](https://huggingface.co/gchhablani/fnet-base-finetuned-qnli) | |04:51 | 03:24 |
171
+ | WNLI | Accuracy | [46.48](https://huggingface.co/gchhablani/bert-base-cased-finetuned-wnli) | [54.93](https://huggingface.co/gchhablani/fnet-base-finetuned-wnli) | |03:23 | 02:37 |
172
 
173
  We can see that the FNet model achieves around ~93% of BERT's performance on average while it requires on average ~30% less time to fine-tune on the downstream tasks.
174