patrickvonplaten
commited on
Commit
·
39682b1
1
Parent(s):
e3e7f3e
Update README.md
Browse files
README.md
CHANGED
@@ -152,7 +152,7 @@ According to [the official paper](https://arxiv.org/abs/2105.03824) (*cf.* with
|
|
152 |
|
153 |
| Task | MNLI-(m/mm) | QQP | QNLI | SST-2 | CoLA | STS-B | MRPC | RTE | Average |
|
154 |
|:----:|:-----------:|:----:|:----:|:-----:|:----:|:-----:|:----:|:----:|:-------:|
|
155 |
-
| | 72/73
|
156 |
|
157 |
|
158 |
The following table contains test results on the HuggingFace model in comparison with [bert-base-cased](https://hf.co/models/bert-base-cased). The training was done on a single 16GB NVIDIA Tesla V100 GPU. For MRPC/WNLI, the models were trained for 5 epochs, while for other tasks, the models were trained for 3 epochs. Please refer to the checkpoints linked with the scores. The sequence length used for 512 with batch size 16 and learning rate 2e-5.
|
@@ -160,15 +160,15 @@ The following table contains test results on the HuggingFace model in comparison
|
|
160 |
| Task | Metric | Result | | | Training time | |
|
161 |
| ----- | ---------------------- | --------------------------------------------------------------|----------------- | ------------------------------------------------------------------------- | ------------- | -------- |
|
162 |
| | | Bert (PyTorch) - Reproduced | FNet (PyTorch) - Reproduced | FNet (Flax) - Official | Bert | FNet |
|
163 |
-
| MNLI | Accuracy
|
164 |
-
| QQP | mean(Accuracy,F1) | [89.26](https://huggingface.co/gchhablani/bert-base-cased-finetuned-qqp) | [86.5](https://huggingface.co/gchhablani/fnet-base-finetuned-qqp) |
|
165 |
-
| QNLI | Accuracy | [90.99](https://huggingface.co/gchhablani/bert-base-cased-finetuned-qnli) | [84.39](https://huggingface.co/gchhablani/fnet-base-finetuned-qnli) |
|
166 |
-
| SST-2 | Accuracy | [92.32](https://huggingface.co/gchhablani/bert-base-cased-finetuned-sst2) | [89.45](https://huggingface.co/gchhablani/fnet-base-finetuned-sst2) |
|
167 |
-
| CoLA | Matthews corr
|
168 |
-
| STS-B | Spearman corr. | [89.26/88.98](https://huggingface.co/gchhablani/bert-base-cased-finetuned-stsb) | [82.56/82.19](https://huggingface.co/gchhablani/fnet-base-finetuned-stsb) |
|
169 |
-
| MRPC | mean(F1/Accuracy) | [88.15](https://huggingface.co/gchhablani/bert-base-cased-finetuned-mrpc) | [81.15](https://huggingface.co/gchhablani/fnet-base-finetuned-mrpc) |
|
170 |
-
| RTE | Accuracy | [67.15](https://huggingface.co/gchhablani/bert-base-cased-finetuned-qnli) | [62.82](https://huggingface.co/gchhablani/fnet-base-finetuned-qnli) |
|
171 |
-
| WNLI | Accuracy | [46.48](https://huggingface.co/gchhablani/bert-base-cased-finetuned-wnli) | [54.93](https://huggingface.co/gchhablani/fnet-base-finetuned-wnli) |
|
172 |
|
173 |
We can see that the FNet model achieves around ~93% of BERT's performance on average while it requires on average ~30% less time to fine-tune on the downstream tasks.
|
174 |
|
|
|
152 |
|
153 |
| Task | MNLI-(m/mm) | QQP | QNLI | SST-2 | CoLA | STS-B | MRPC | RTE | Average |
|
154 |
|:----:|:-----------:|:----:|:----:|:-----:|:----:|:-----:|:----:|:----:|:-------:|
|
155 |
+
| | 72/73 | 83 | 80 | 95 | 69 | 79 | 76 | 63| 76.7 |
|
156 |
|
157 |
|
158 |
The following table contains test results on the HuggingFace model in comparison with [bert-base-cased](https://hf.co/models/bert-base-cased). The training was done on a single 16GB NVIDIA Tesla V100 GPU. For MRPC/WNLI, the models were trained for 5 epochs, while for other tasks, the models were trained for 3 epochs. Please refer to the checkpoints linked with the scores. The sequence length used for 512 with batch size 16 and learning rate 2e-5.
|
|
|
160 |
| Task | Metric | Result | | | Training time | |
|
161 |
| ----- | ---------------------- | --------------------------------------------------------------|----------------- | ------------------------------------------------------------------------- | ------------- | -------- |
|
162 |
| | | Bert (PyTorch) - Reproduced | FNet (PyTorch) - Reproduced | FNet (Flax) - Official | Bert | FNet |
|
163 |
+
| MNLI | Accuracy or Match/Mismatch | [84.10](https://huggingface.co/gchhablani/bert-base-cased-finetuned-mnli) (Accuracy) | [76.75](https://huggingface.co/gchhablani/fnet-base-finetuned-mnli) (Accuracy) | 72/73 (Match/Mismatch) | 09:52:33 | 06:40:55 |
|
164 |
+
| QQP | mean(Accuracy,F1) | [89.26](https://huggingface.co/gchhablani/bert-base-cased-finetuned-qqp) | [86.5](https://huggingface.co/gchhablani/fnet-base-finetuned-qqp) | 83 | 09:25:01 | 06:21:16 |
|
165 |
+
| QNLI | Accuracy | [90.99](https://huggingface.co/gchhablani/bert-base-cased-finetuned-qnli) | [84.39](https://huggingface.co/gchhablani/fnet-base-finetuned-qnli) | 80 |02:40:22 | 01:48:22 |
|
166 |
+
| SST-2 | Accuracy | [92.32](https://huggingface.co/gchhablani/bert-base-cased-finetuned-sst2) | [89.45](https://huggingface.co/gchhablani/fnet-base-finetuned-sst2) | 95 | 01:42:17 | 01:09:27 |
|
167 |
+
| CoLA | Matthews corr or Accuracy | [59.57](https://huggingface.co/gchhablani/bert-base-cased-finetuned-cola) (Matthews corr) | [35.94](https://huggingface.co/gchhablani/fnet-base-finetuned-cola) (Matthews Corr) | 69 (Accuracy) | 14:20 | 09:47 |
|
168 |
+
| STS-B | Spearman corr. | [89.26/88.98](https://huggingface.co/gchhablani/bert-base-cased-finetuned-stsb) | [82.56/82.19](https://huggingface.co/gchhablani/fnet-base-finetuned-stsb) | 79 |10:24 | 07:09 |
|
169 |
+
| MRPC | mean(F1/Accuracy) | [88.15](https://huggingface.co/gchhablani/bert-base-cased-finetuned-mrpc) | [81.15](https://huggingface.co/gchhablani/fnet-base-finetuned-mrpc) | 76 |11:12 | 07:48 |
|
170 |
+
| RTE | Accuracy | [67.15](https://huggingface.co/gchhablani/bert-base-cased-finetuned-qnli) | [62.82](https://huggingface.co/gchhablani/fnet-base-finetuned-qnli) | 63 |04:51 | 03:24 |
|
171 |
+
| WNLI | Accuracy | [46.48](https://huggingface.co/gchhablani/bert-base-cased-finetuned-wnli) | [54.93](https://huggingface.co/gchhablani/fnet-base-finetuned-wnli) | - |03:23 | 02:37 |
|
172 |
|
173 |
We can see that the FNet model achieves around ~93% of BERT's performance on average while it requires on average ~30% less time to fine-tune on the downstream tasks.
|
174 |
|