File size: 10,997 Bytes
7722084
c17a12e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e11f578
 
 
da3dc27
e11f578
da3dc27
 
 
 
 
 
 
 
 
 
 
 
 
 
e11f578
7722084
c17a12e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7722084
 
0657afd
c17a12e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
da3dc27
 
c17a12e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
da3dc27
 
c17a12e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
da3dc27
 
c17a12e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
da3dc27
 
c17a12e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7722084
c17a12e
7722084
c17a12e
7722084
c17a12e
7722084
c17a12e
7722084
 
c17a12e
7722084
c17a12e
7722084
c17a12e
 
 
7722084
c17a12e
7722084
da3dc27
7722084
c17a12e
7722084
c17a12e
7722084
c17a12e
 
 
 
 
7722084
c17a12e
7722084
c17a12e
7722084
c17a12e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7722084
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
---
language: 
- en
- sp
- ja
- pe
- hi
- fr
- ch
- be
- gu
- ge
- te
- it
- ar
- po
- ta
- ma
- ma
- or
- pa
- po
- ur
- ga
- he
- ko
- ca
- th
- du
- in
- vi
- bu
- fi
- ce
- la
- tu
- ru
- cr
- sw
- yo
- ku
- bu
- ma
- cz
- fi
- so
- ta
- sw
- si
- ka
- zh
- ig
- xh
- ro
- ha
- es
- sl
- li
- gr
- ne
- as
- no

widget:
- text: "Translate to German:  My name is Arthur"
  example_title: "Translation"
- text: "Please answer to the following question. Who is going to be the next Ballon d'or?"
  example_title: "Question Answering"
- text: "Q: Can Geoffrey Hinton have a conversation with George Washington? Give the rationale before answering."
  example_title: "Logical reasoning"
- text: "Please answer the following question. What is the boiling point of Nitrogen?"
  example_title: "Scientific knowledge"
- text: "Answer the following yes/no question. Can you write a whole Haiku in a single tweet?"
  example_title: "Yes/no question"
- text: "Answer the following yes/no question by reasoning step-by-step. Can you write a whole Haiku in a single tweet?"
  example_title: "Reasoning task"
- text: "Q: ( False or not False or False ) is? A: Let's think step by step"
  example_title: "Boolean Expressions"
- text: "The square root of x is the cube root of y. What is y to the power of 2, if x = 4?"
  example_title: "Math reasoning"
- text: "Premise:  At my age you will probably have learnt one lesson. Hypothesis:  It's not certain how many lessons you'll learn by your thirties. Does the premise entail the hypothesis?"
  example_title: "Premise and hypothesis"

tags:
- text2text-generation

datasets:
- svakulenk0/qrecc
- taskmaster2
- djaym7/wiki_dialog
- deepmind/code_contests
- lambada
- gsm8k
- aqua_rat
- esnli
- quasc
- qed


license: apache-2.0
---

# Model Card for FLAN-T5 XXL

![model image](https://s3.amazonaws.com/moonup/production/uploads/1666363435475-62441d1d9fdefb55a0b7d12c.png)

#  Table of Contents

0. [TL;DR](#TL;DR)
1. [Model Details](#model-details)
2. [Usage](#usage)
3. [Uses](#uses)
4. [Bias, Risks, and Limitations](#bias-risks-and-limitations)
5. [Training Details](#training-details)
6. [Evaluation](#evaluation)
7. [Environmental Impact](#environmental-impact)
8. [Citation](#citation)

# TL;DR

If you already know T5, FLAN-T5 is just better at everything. For the same number of parameters, these models have been fine-tuned on more than 1000 additional tasks covering also more languages. 
As mentioned in the first few lines of the abstract : 
>  Flan-PaLM 540B achieves state-of-the-art performance on several benchmarks, such as 75.2% on five-shot MMLU. We also publicly release Flan-T5 checkpoints,1 which achieve strong few-shot performance even compared to much larger models, such as PaLM 62B. Overall, instruction finetuning is a general method for improving the performance and usability of pretrained language models.

**Disclaimer**: Content from **this** model card has been written by the Hugging Face team, and parts of it were copy pasted from the [T5 model card](https://huggingface.co/t5-large).

# Model Details

## Model Description


- **Model type:** Language model
- **Language(s) (NLP):** English, Spanish, Japanese, Persian, Hindi, French, Chinese, Bengali, Gujarati, German, Telugu, Italian, Arabic, Polish, Tamil, Marathi, Malayalam, Oriya, Panjabi, Portuguese, Urdu, Galician, Hebrew, Korean, Catalan, Thai, Dutch, Indonesian, Vietnamese, Bulgarian, Filipino, Central Khmer, Lao, Turkish, Russian, Croatian, Swedish, Yoruba, Kurdish, Burmese, Malay, Czech, Finnish, Somali, Tagalog, Swahili, Sinhala, Kannada, Zhuang, Igbo, Xhosa, Romanian, Haitian, Estonian, Slovak, Lithuanian, Greek, Nepali, Assamese, Norwegian
- **License:** Apache 2.0
- **Related Models:** [All FLAN-T5 Checkpoints](https://huggingface.co/models?search=flan-t5)
- **Original Checkpoints:** [All Original FLAN-T5 Checkpoints](https://github.com/google-research/t5x/blob/main/docs/models.md#flan-t5-checkpoints)
- **Resources for more information:**
  - [Research paper](https://arxiv.org/pdf/2210.11416.pdf)
  - [GitHub Repo](https://github.com/google-research/t5x)
  - [Hugging Face FLAN-T5 Docs (Similar to T5) ](https://huggingface.co/docs/transformers/model_doc/t5)

# Usage

Find below some example scripts on how to use the model in `transformers`:

## Using the Pytorch model

### Running the model on a CPU

<details>
<summary> Click to expand </summary>

```python

from transformers import T5Tokenizer, T5ForConditionalGeneration

tokenizer = T5Tokenizer.from_pretrained("google/flan-t5-xxl")
model = T5ForConditionalGeneration.from_pretrained("google/flan-t5-xxl")

input_text = "translate English to German: How old are you?"
input_ids = tokenizer.encode(input_text, return_tensors="pt").input_ids

outputs = model.generate(input_ids)
print(tokenizer.decode(outputs[0]))
```

</details>

### Running the model on a GPU

<details>
<summary> Click to expand </summary>

```python
# pip install accelerate
from transformers import T5Tokenizer, T5ForConditionalGeneration

tokenizer = T5Tokenizer.from_pretrained("google/flan-t5-xxl")
model = T5ForConditionalGeneration.from_pretrained("google/flan-t5-xxl", device_map="auto")

input_text = "translate English to German: How old are you?"
input_ids = tokenizer.encode(input_text, return_tensors="pt").input_ids.to("cuda")

outputs = model.generate(input_ids)
print(tokenizer.decode(outputs[0]))
```

</details>

### Running the model on a GPU using different precisions

#### FP16

<details>
<summary> Click to expand </summary>

```python
# pip install accelerate
import torch
from transformers import T5Tokenizer, T5ForConditionalGeneration

tokenizer = T5Tokenizer.from_pretrained("google/flan-t5-xxl")
model = T5ForConditionalGeneration.from_pretrained("google/flan-t5-xxl", device_map="auto", torch_dtype=torch.float16)

input_text = "translate English to German: How old are you?"
input_ids = tokenizer.encode(input_text, return_tensors="pt").input_ids.to("cuda")

outputs = model.generate(input_ids)
print(tokenizer.decode(outputs[0]))
```

</details>

#### INT8

<details>
<summary> Click to expand </summary>

```python
# pip install bitsandbytes accelerate
from transformers import T5Tokenizer, T5ForConditionalGeneration

tokenizer = T5Tokenizer.from_pretrained("google/flan-t5-xxl")
model = T5ForConditionalGeneration.from_pretrained("google/flan-t5-xxl", device_map="auto", load_in_8bit=True)

input_text = "translate English to German: How old are you?"
input_ids = tokenizer.encode(input_text, return_tensors="pt").input_ids.to("cuda")

outputs = model.generate(input_ids)
print(tokenizer.decode(outputs[0]))
```

</details>

# Uses

## Direct Use and Downstream Use

The authors write in [the original paper's model card](https://arxiv.org/pdf/2210.11416.pdf) that: 

> The primary use is research on language models, including: research on zero-shot NLP tasks and in-context few-shot learning NLP tasks, such as reasoning, and question answering; advancing fairness and safety research, and understanding limitations of current large language models

See the [research paper](https://arxiv.org/pdf/2210.11416.pdf) for further details.

## Out-of-Scope Use

More information needed.

# Bias, Risks, and Limitations

The information below in this section are copied from the model's [official model card](https://arxiv.org/pdf/2210.11416.pdf):

> Language models, including Flan-T5, can potentially be used for language generation in a harmful way, according to Rae et al. (2021). Flan-T5 should not be used directly in any application, without a prior assessment of safety and fairness concerns specific to the application.

## Ethical considerations and risks

> Flan-T5 is fine-tuned on a large corpus of text data that was not filtered for explicit content or assessed for existing biases. As a result the model itself is potentially vulnerable to generating equivalently inappropriate content or replicating inherent biases in the underlying data.

## Known Limitations

> Flan-T5 has not been tested in real world applications.

## Sensitive Use:

> Flan-T5 should not be applied for any unacceptable use cases, e.g., generation of abusive speech.

# Training Details

## Training Data

The model was trained on a mixture of tasks, that includes the tasks described in the table below (from the original paper, figure 2):

![table.png](https://s3.amazonaws.com/moonup/production/uploads/1666363265279-62441d1d9fdefb55a0b7d12c.png)


## Training Procedure

According to the model card from the [original paper](https://arxiv.org/pdf/2210.11416.pdf):

> These models are based on pretrained T5 (Raffel et al., 2020) and fine-tuned with instructions for better zero-shot and few-shot performance. There is one fine-tuned Flan model per T5 model size.

The model has been trained on TPU v3 or TPU v4 pods, using [`t5x`](https://github.com/google-research/t5x) codebase together with [`jax`](https://github.com/google/jax).


# Evaluation

## Testing Data, Factors & Metrics

The authors evaluated the model on various tasks covering several languages (1836 in total). See the table below for some quantitative evaluation:
![image.png](https://s3.amazonaws.com/moonup/production/uploads/1666361983550-62441d1d9fdefb55a0b7d12c.png)
For full details, please check the [research paper](https://arxiv.org/pdf/2210.11416.pdf).

## Results 

For full results for FLAN-T5-XXL, see the [research paper](https://arxiv.org/pdf/2210.11416.pdf), Table 3.

# Environmental Impact

Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).

- **Hardware Type:** Google Cloud TPU Pods - TPU v3 or TPU v4  | Number of chips ≥ 4.
- **Hours used:** More information needed
- **Cloud Provider:** GCP
- **Compute Region:** More information needed
- **Carbon Emitted:** More information needed

# Citation

**BibTeX:**

```bibtex
@misc{https://doi.org/10.48550/arxiv.2210.11416,
  doi = {10.48550/ARXIV.2210.11416},
  
  url = {https://arxiv.org/abs/2210.11416},
  
  author = {Chung, Hyung Won and Hou, Le and Longpre, Shayne and Zoph, Barret and Tay, Yi and Fedus, William and Li, Eric and Wang, Xuezhi and Dehghani, Mostafa and Brahma, Siddhartha and Webson, Albert and Gu, Shixiang Shane and Dai, Zhuyun and Suzgun, Mirac and Chen, Xinyun and Chowdhery, Aakanksha and Narang, Sharan and Mishra, Gaurav and Yu, Adams and Zhao, Vincent and Huang, Yanping and Dai, Andrew and Yu, Hongkun and Petrov, Slav and Chi, Ed H. and Dean, Jeff and Devlin, Jacob and Roberts, Adam and Zhou, Denny and Le, Quoc V. and Wei, Jason},
  
  keywords = {Machine Learning (cs.LG), Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
  
  title = {Scaling Instruction-Finetuned Language Models},
  
  publisher = {arXiv},
  
  year = {2022},
  
  copyright = {Creative Commons Attribution 4.0 International}
}
```