Text Generation
Transformers
PyTorch
Manx
gpt2
goldfish
text-generation-inference
Inference Endpoints
goldfish-models commited on
Commit
f939196
1 Parent(s): ee4b7fb

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +64 -0
README.md ADDED
@@ -0,0 +1,64 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ ---
3
+ license: apache-2.0
4
+ language:
5
+ - glv
6
+ datasets:
7
+ - allenai/MADLAD-400
8
+ - cis-lmu/Glot500
9
+ - legacy-datasets/wikipedia
10
+ library_name: transformers
11
+ pipeline_tag: text-generation
12
+ tags:
13
+ - goldfish
14
+
15
+ ---
16
+
17
+ # glv_latn_5mb
18
+
19
+ Goldfish is a suite of monolingual language models trained for 350 languages.
20
+ This model is the <b>Manx</b> (Latin script) model trained on 5MB of data, after accounting for an estimated byte premium of 1.22; content-matched text in Manx takes on average 1.22x as many UTF-8 bytes to encode as English.
21
+ The Goldfish models are trained primarily for comparability across languages and for low-resource languages; Goldfish performance for high-resource languages is not designed to be comparable with modern large language models (LLMs).
22
+
23
+ Note: glv_latn is an [individual language](https://iso639-3.sil.org/code_tables/639/data) code. It is not contained in any macrolanguage codes contained in Goldfish (for script latn).
24
+
25
+ All training and hyperparameter details are in our paper, [Goldfish: Monolingual Language Models for 350 Languages (Chang et al., 2024)](https://github.com/tylerachang/goldfish/blob/main/goldfish_paper_20240815.pdf).
26
+
27
+ Training code and sample usage: https://github.com/tylerachang/goldfish
28
+
29
+ Sample usage also in this Google Colab: [link](https://colab.research.google.com/drive/1rHFpnQsyXJ32ONwCosWZ7frjOYjbGCXG?usp=sharing)
30
+
31
+ ## Model details:
32
+
33
+ To access all Goldfish model details programmatically, see https://github.com/tylerachang/goldfish/model_details.json.
34
+ All models are trained with a [CLS] (same as [BOS]) token prepended, and a [SEP] (same as [EOS]) token separating sequences.
35
+ Details for this model specifically:
36
+
37
+ * Architecture: gpt2
38
+ * Parameters: 39087104
39
+ * Maximum sequence length: 512 tokens
40
+ * Training text data (raw): 6.12MB
41
+ * Training text data (byte premium scaled): 5.005MB
42
+ * Training tokens: 1482240 (x10 epochs)
43
+ * Vocabulary size: 50000
44
+ * Compute cost: 1121086451220480.0 FLOPs or ~0.1 NVIDIA A6000 GPU hours
45
+
46
+ Training datasets (percentages prior to deduplication):
47
+ * 42.26375%: [MADLAD-400 (CommonCrawl)](https://huggingface.co/datasets/allenai/MADLAD-400)
48
+ * 41.05658%: [Glot500](https://huggingface.co/datasets/cis-lmu/Glot500), including [Wortschatz Leipzig Data](https://wortschatz.uni-leipzig.de/en/download), [Tatoeba](https://tatoeba.org/en/), [Wikipedia Hugging Face](https://huggingface.co/datasets/legacy-datasets/wikipedia)
49
+ * 16.67753%: [Wikipedia 2023/08](https://dumps.wikimedia.org/)
50
+ * 0.00213%: [Tatoeba](https://tatoeba.org/en/)
51
+
52
+
53
+ ## Citation
54
+
55
+ If you use this model, please cite:
56
+
57
+ ```
58
+ @article{chang-etal-2024-goldfish,
59
+ title={Goldfish: Monolingual Language Models for 350 Languages},
60
+ author={Chang, Tyler A. and Arnett, Catherine and Tu, Zhuowen and Bergen, Benjamin K.},
61
+ journal={Preprint},
62
+ year={2024},
63
+ }
64
+ ```