Chriskuei commited on
Commit
6a3a040
1 Parent(s): 67eb539
Files changed (36) hide show
  1. all_results.json +15 -0
  2. checkpoint-4000/config.json +26 -0
  3. checkpoint-4000/global_step4000/mp_rank_00_model_states.pt +3 -0
  4. checkpoint-4000/global_step4000/zero_pp_rank_2_mp_rank_00_optim_states.pt +3 -0
  5. checkpoint-4000/pytorch_model-00001-of-00002.bin +3 -0
  6. checkpoint-4000/rng_state_1.pth +3 -0
  7. checkpoint-4000/rng_state_2.pth +3 -0
  8. checkpoint-4000/rng_state_3.pth +3 -0
  9. checkpoint-4000/rng_state_4.pth +3 -0
  10. checkpoint-4000/rng_state_5.pth +3 -0
  11. checkpoint-4000/rng_state_6.pth +3 -0
  12. checkpoint-4000/rng_state_7.pth +3 -0
  13. checkpoint-4000/trainer_state.json +3142 -0
  14. checkpoint-4000/training_args.bin +3 -0
  15. checkpoint-4000/zero_to_fp32.py +578 -0
  16. config.json +26 -0
  17. eval_results.json +10 -0
  18. generation_config.json +9 -0
  19. pytorch_model-00001-of-00002.bin +3 -0
  20. pytorch_model-00002-of-00002.bin +3 -0
  21. pytorch_model.bin.index.json +330 -0
  22. runs/Jul19_14-52-29_715436/1689749887.7189374/events.out.tfevents.1689749887.715436.72469.1 +3 -0
  23. runs/Jul19_14-52-29_715436/events.out.tfevents.1689749887.715436.72469.0 +3 -0
  24. runs/Jul19_14-59-01_715436/1689750342.6405456/events.out.tfevents.1689750342.715436.75291.1 +3 -0
  25. runs/Jul19_14-59-01_715436/events.out.tfevents.1689750342.715436.75291.0 +3 -0
  26. runs/Jul19_15-22-48_715436/1689751771.9245906/events.out.tfevents.1689751771.715436.80001.1 +3 -0
  27. runs/Jul19_15-22-48_715436/events.out.tfevents.1689751771.715436.80001.0 +3 -0
  28. runs/Jul20_03-05-51_715436/1689793875.322509/events.out.tfevents.1689793875.715436.71505.1 +3 -0
  29. runs/Jul20_03-05-51_715436/events.out.tfevents.1689793875.715436.71505.0 +3 -0
  30. runs/Jul20_03-05-51_715436/events.out.tfevents.1689902211.715436.71505.2 +3 -0
  31. special_tokens_map.json +23 -0
  32. tokenizer.model +3 -0
  33. tokenizer_config.json +35 -0
  34. train_results.json +8 -0
  35. trainer_state.json +3820 -0
  36. training_args.bin +3 -0
all_results.json ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 1.0,
3
+ "eval_accuracy": 0.3399546485260771,
4
+ "eval_loss": 4.18359375,
5
+ "eval_runtime": 6.4986,
6
+ "eval_samples": 35,
7
+ "eval_samples_per_second": 5.386,
8
+ "eval_steps_per_second": 0.308,
9
+ "perplexity": 65.60118435636834,
10
+ "train_loss": 3.7094925158997714,
11
+ "train_runtime": 108243.5499,
12
+ "train_samples": 311198,
13
+ "train_samples_per_second": 2.875,
14
+ "train_steps_per_second": 0.045
15
+ }
checkpoint-4000/config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "/data/searchgpt/yq/GoGPT/outputs-pt-v1-7b-llama2/ckpt",
3
+ "architectures": [
4
+ "LlamaForCausalLM"
5
+ ],
6
+ "bos_token_id": 1,
7
+ "eos_token_id": 2,
8
+ "hidden_act": "silu",
9
+ "hidden_size": 4096,
10
+ "initializer_range": 0.02,
11
+ "intermediate_size": 11008,
12
+ "max_position_embeddings": 2048,
13
+ "model_type": "llama",
14
+ "num_attention_heads": 32,
15
+ "num_hidden_layers": 32,
16
+ "num_key_value_heads": 32,
17
+ "pad_token_id": 0,
18
+ "pretraining_tp": 1,
19
+ "rms_norm_eps": 1e-05,
20
+ "rope_scaling": null,
21
+ "tie_word_embeddings": false,
22
+ "torch_dtype": "float16",
23
+ "transformers_version": "4.29.1",
24
+ "use_cache": false,
25
+ "vocab_size": 68419
26
+ }
checkpoint-4000/global_step4000/mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:814e8129fe526c42fdbd6fe4ff2c9b21f0c161f6982e3883c3e5fea1260a4cb1
3
+ size 2607759360
checkpoint-4000/global_step4000/zero_pp_rank_2_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:aabd69e33896e791496a8b91b6325d7e6dafe50483e2ed374bf68f6bbc025924
3
+ size 840736473
checkpoint-4000/pytorch_model-00001-of-00002.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bcb73d2c6cc7cec148b9ea0157637718f3414f3a18d493daf4255e47befedae9
3
+ size 10531361877
checkpoint-4000/rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f7f1e51f8b260af2143aa0e342ab171171f7d983fbaaf95e9400d872b4d8c542
3
+ size 21687
checkpoint-4000/rng_state_2.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:057591ad3bc33c9f75b1e6556c3c29b4328e0785d67a420f2a5a8bb25e58812e
3
+ size 21687
checkpoint-4000/rng_state_3.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5b595d89f2fe53ca5dccc290b880b858a60eb07a5f694175f05519f2257fafbf
3
+ size 21687
checkpoint-4000/rng_state_4.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8dae996da909b80faa4e9fef9f945126f53fa3c7c6da06367a3f71ae24b0f138
3
+ size 21687
checkpoint-4000/rng_state_5.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8de190b28a07218f4d05a1c7ccfccc4e53d6033af244fe3bd9fe3e20275d59de
3
+ size 21687
checkpoint-4000/rng_state_6.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a4cccb61a1758c3ec09da0ddc7ef0957d32362d5baa800f340839c1fa72376e2
3
+ size 21687
checkpoint-4000/rng_state_7.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ed085eb5cf063033df209f9c7714e3c87ee78a57b9ee629a7258a15bd8cde7ac
3
+ size 21687
checkpoint-4000/trainer_state.json ADDED
@@ -0,0 +1,3142 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 0.8226221079691517,
5
+ "global_step": 4000,
6
+ "is_hyper_param_search": false,
7
+ "is_local_process_zero": true,
8
+ "is_world_process_zero": true,
9
+ "log_history": [
10
+ {
11
+ "epoch": 0.0,
12
+ "learning_rate": 0,
13
+ "loss": 11.981,
14
+ "step": 1
15
+ },
16
+ {
17
+ "epoch": 0.0,
18
+ "learning_rate": 3.9970117109141705e-05,
19
+ "loss": 12.0789,
20
+ "step": 10
21
+ },
22
+ {
23
+ "epoch": 0.0,
24
+ "learning_rate": 9.331893267009234e-05,
25
+ "loss": 10.7133,
26
+ "step": 20
27
+ },
28
+ {
29
+ "epoch": 0.01,
30
+ "learning_rate": 0.00011407670594843083,
31
+ "loss": 8.7339,
32
+ "step": 30
33
+ },
34
+ {
35
+ "epoch": 0.01,
36
+ "learning_rate": 0.00012721122651399258,
37
+ "loss": 8.301,
38
+ "step": 40
39
+ },
40
+ {
41
+ "epoch": 0.01,
42
+ "learning_rate": 0.00013684136855727938,
43
+ "loss": 8.1964,
44
+ "step": 50
45
+ },
46
+ {
47
+ "epoch": 0.01,
48
+ "eval_accuracy": 0.10310832025117739,
49
+ "eval_loss": 8.203125,
50
+ "eval_runtime": 6.5764,
51
+ "eval_samples_per_second": 5.322,
52
+ "eval_steps_per_second": 0.304,
53
+ "step": 50
54
+ },
55
+ {
56
+ "epoch": 0.01,
57
+ "learning_rate": 0.00014444862339428802,
58
+ "loss": 8.0553,
59
+ "step": 60
60
+ },
61
+ {
62
+ "epoch": 0.01,
63
+ "learning_rate": 0.00015073705430110066,
64
+ "loss": 7.9436,
65
+ "step": 70
66
+ },
67
+ {
68
+ "epoch": 0.02,
69
+ "learning_rate": 0.00015609707636042195,
70
+ "loss": 7.8368,
71
+ "step": 80
72
+ },
73
+ {
74
+ "epoch": 0.02,
75
+ "learning_rate": 0.00016076788727202945,
76
+ "loss": 7.7333,
77
+ "step": 90
78
+ },
79
+ {
80
+ "epoch": 0.02,
81
+ "learning_rate": 0.00016490670495758757,
82
+ "loss": 7.6139,
83
+ "step": 100
84
+ },
85
+ {
86
+ "epoch": 0.02,
87
+ "eval_accuracy": 0.12459794174079888,
88
+ "eval_loss": 7.81640625,
89
+ "eval_runtime": 6.6059,
90
+ "eval_samples_per_second": 5.298,
91
+ "eval_steps_per_second": 0.303,
92
+ "step": 100
93
+ },
94
+ {
95
+ "epoch": 0.02,
96
+ "learning_rate": 0.0001686224178807056,
97
+ "loss": 7.4892,
98
+ "step": 110
99
+ },
100
+ {
101
+ "epoch": 0.02,
102
+ "learning_rate": 0.000171993565594773,
103
+ "loss": 7.3256,
104
+ "step": 120
105
+ },
106
+ {
107
+ "epoch": 0.03,
108
+ "learning_rate": 0.00017507866443784335,
109
+ "loss": 7.1827,
110
+ "step": 130
111
+ },
112
+ {
113
+ "epoch": 0.03,
114
+ "learning_rate": 0.0001779224840062419,
115
+ "loss": 6.9698,
116
+ "step": 140
117
+ },
118
+ {
119
+ "epoch": 0.03,
120
+ "learning_rate": 0.00018056004207494319,
121
+ "loss": 6.8162,
122
+ "step": 150
123
+ },
124
+ {
125
+ "epoch": 0.03,
126
+ "eval_accuracy": 0.1567556253270539,
127
+ "eval_loss": 7.08203125,
128
+ "eval_runtime": 6.5908,
129
+ "eval_samples_per_second": 5.31,
130
+ "eval_steps_per_second": 0.303,
131
+ "step": 150
132
+ },
133
+ {
134
+ "epoch": 0.03,
135
+ "learning_rate": 0.00018301924610008189,
136
+ "loss": 6.6293,
137
+ "step": 160
138
+ },
139
+ {
140
+ "epoch": 0.03,
141
+ "learning_rate": 0.00018532269677939782,
142
+ "loss": 6.4114,
143
+ "step": 170
144
+ },
145
+ {
146
+ "epoch": 0.04,
147
+ "learning_rate": 0.00018748895370481112,
148
+ "loss": 6.2911,
149
+ "step": 180
150
+ },
151
+ {
152
+ "epoch": 0.04,
153
+ "learning_rate": 0.00018953344483335556,
154
+ "loss": 6.1047,
155
+ "step": 190
156
+ },
157
+ {
158
+ "epoch": 0.04,
159
+ "learning_rate": 0.00019146913367833817,
160
+ "loss": 5.9957,
161
+ "step": 200
162
+ },
163
+ {
164
+ "epoch": 0.04,
165
+ "eval_accuracy": 0.19811616954474098,
166
+ "eval_loss": 6.4296875,
167
+ "eval_runtime": 6.5897,
168
+ "eval_samples_per_second": 5.311,
169
+ "eval_steps_per_second": 0.304,
170
+ "step": 200
171
+ },
172
+ {
173
+ "epoch": 0.04,
174
+ "learning_rate": 0.00019330701776944063,
175
+ "loss": 5.8281,
176
+ "step": 210
177
+ },
178
+ {
179
+ "epoch": 0.05,
180
+ "learning_rate": 0.00019505650713185044,
181
+ "loss": 5.6927,
182
+ "step": 220
183
+ },
184
+ {
185
+ "epoch": 0.05,
186
+ "learning_rate": 0.00019672571585424665,
187
+ "loss": 5.5564,
188
+ "step": 230
189
+ },
190
+ {
191
+ "epoch": 0.05,
192
+ "learning_rate": 0.00019832168964685297,
193
+ "loss": 5.3813,
194
+ "step": 240
195
+ },
196
+ {
197
+ "epoch": 0.05,
198
+ "learning_rate": 0.0001998505855457085,
199
+ "loss": 5.2496,
200
+ "step": 250
201
+ },
202
+ {
203
+ "epoch": 0.05,
204
+ "eval_accuracy": 0.24055817198674342,
205
+ "eval_loss": 5.8203125,
206
+ "eval_runtime": 6.6013,
207
+ "eval_samples_per_second": 5.302,
208
+ "eval_steps_per_second": 0.303,
209
+ "step": 250
210
+ },
211
+ {
212
+ "epoch": 0.05,
213
+ "learning_rate": 0.0001996535296665223,
214
+ "loss": 5.13,
215
+ "step": 260
216
+ },
217
+ {
218
+ "epoch": 0.06,
219
+ "learning_rate": 0.0001992204417496752,
220
+ "loss": 5.0354,
221
+ "step": 270
222
+ },
223
+ {
224
+ "epoch": 0.06,
225
+ "learning_rate": 0.00019878735383282807,
226
+ "loss": 4.9021,
227
+ "step": 280
228
+ },
229
+ {
230
+ "epoch": 0.06,
231
+ "learning_rate": 0.00019835426591598097,
232
+ "loss": 4.8181,
233
+ "step": 290
234
+ },
235
+ {
236
+ "epoch": 0.06,
237
+ "learning_rate": 0.00019792117799913384,
238
+ "loss": 4.6993,
239
+ "step": 300
240
+ },
241
+ {
242
+ "epoch": 0.06,
243
+ "eval_accuracy": 0.2641758241758242,
244
+ "eval_loss": 5.41796875,
245
+ "eval_runtime": 6.6009,
246
+ "eval_samples_per_second": 5.302,
247
+ "eval_steps_per_second": 0.303,
248
+ "step": 300
249
+ },
250
+ {
251
+ "epoch": 0.06,
252
+ "learning_rate": 0.0001974880900822867,
253
+ "loss": 4.6761,
254
+ "step": 310
255
+ },
256
+ {
257
+ "epoch": 0.07,
258
+ "learning_rate": 0.00019705500216543958,
259
+ "loss": 4.5908,
260
+ "step": 320
261
+ },
262
+ {
263
+ "epoch": 0.07,
264
+ "learning_rate": 0.00019662191424859245,
265
+ "loss": 4.5301,
266
+ "step": 330
267
+ },
268
+ {
269
+ "epoch": 0.07,
270
+ "learning_rate": 0.00019618882633174535,
271
+ "loss": 4.4729,
272
+ "step": 340
273
+ },
274
+ {
275
+ "epoch": 0.07,
276
+ "learning_rate": 0.00019575573841489822,
277
+ "loss": 4.3928,
278
+ "step": 350
279
+ },
280
+ {
281
+ "epoch": 0.07,
282
+ "eval_accuracy": 0.27927437641723357,
283
+ "eval_loss": 5.14453125,
284
+ "eval_runtime": 6.6101,
285
+ "eval_samples_per_second": 5.295,
286
+ "eval_steps_per_second": 0.303,
287
+ "step": 350
288
+ },
289
+ {
290
+ "epoch": 0.07,
291
+ "learning_rate": 0.00019532265049805112,
292
+ "loss": 4.4083,
293
+ "step": 360
294
+ },
295
+ {
296
+ "epoch": 0.08,
297
+ "learning_rate": 0.000194889562581204,
298
+ "loss": 4.336,
299
+ "step": 370
300
+ },
301
+ {
302
+ "epoch": 0.08,
303
+ "learning_rate": 0.0001944564746643569,
304
+ "loss": 4.2714,
305
+ "step": 380
306
+ },
307
+ {
308
+ "epoch": 0.08,
309
+ "learning_rate": 0.00019402338674750976,
310
+ "loss": 4.2124,
311
+ "step": 390
312
+ },
313
+ {
314
+ "epoch": 0.08,
315
+ "learning_rate": 0.00019359029883066263,
316
+ "loss": 4.2395,
317
+ "step": 400
318
+ },
319
+ {
320
+ "epoch": 0.08,
321
+ "eval_accuracy": 0.2894470608756323,
322
+ "eval_loss": 4.96875,
323
+ "eval_runtime": 6.5945,
324
+ "eval_samples_per_second": 5.307,
325
+ "eval_steps_per_second": 0.303,
326
+ "step": 400
327
+ },
328
+ {
329
+ "epoch": 0.08,
330
+ "learning_rate": 0.0001931572109138155,
331
+ "loss": 4.1867,
332
+ "step": 410
333
+ },
334
+ {
335
+ "epoch": 0.09,
336
+ "learning_rate": 0.0001927241229969684,
337
+ "loss": 4.1687,
338
+ "step": 420
339
+ },
340
+ {
341
+ "epoch": 0.09,
342
+ "learning_rate": 0.00019229103508012127,
343
+ "loss": 4.1027,
344
+ "step": 430
345
+ },
346
+ {
347
+ "epoch": 0.09,
348
+ "learning_rate": 0.00019185794716327414,
349
+ "loss": 4.1233,
350
+ "step": 440
351
+ },
352
+ {
353
+ "epoch": 0.09,
354
+ "learning_rate": 0.00019142485924642704,
355
+ "loss": 4.0781,
356
+ "step": 450
357
+ },
358
+ {
359
+ "epoch": 0.09,
360
+ "eval_accuracy": 0.29638932496075354,
361
+ "eval_loss": 4.8515625,
362
+ "eval_runtime": 6.5996,
363
+ "eval_samples_per_second": 5.303,
364
+ "eval_steps_per_second": 0.303,
365
+ "step": 450
366
+ },
367
+ {
368
+ "epoch": 0.09,
369
+ "learning_rate": 0.0001909917713295799,
370
+ "loss": 4.0855,
371
+ "step": 460
372
+ },
373
+ {
374
+ "epoch": 0.1,
375
+ "learning_rate": 0.0001905586834127328,
376
+ "loss": 4.0859,
377
+ "step": 470
378
+ },
379
+ {
380
+ "epoch": 0.1,
381
+ "learning_rate": 0.00019012559549588568,
382
+ "loss": 4.0124,
383
+ "step": 480
384
+ },
385
+ {
386
+ "epoch": 0.1,
387
+ "learning_rate": 0.00018969250757903855,
388
+ "loss": 4.0151,
389
+ "step": 490
390
+ },
391
+ {
392
+ "epoch": 0.1,
393
+ "learning_rate": 0.00018925941966219142,
394
+ "loss": 4.0409,
395
+ "step": 500
396
+ },
397
+ {
398
+ "epoch": 0.1,
399
+ "eval_accuracy": 0.30181057038199893,
400
+ "eval_loss": 4.76953125,
401
+ "eval_runtime": 6.6117,
402
+ "eval_samples_per_second": 5.294,
403
+ "eval_steps_per_second": 0.302,
404
+ "step": 500
405
+ },
406
+ {
407
+ "epoch": 0.1,
408
+ "learning_rate": 0.00018882633174534431,
409
+ "loss": 3.9912,
410
+ "step": 510
411
+ },
412
+ {
413
+ "epoch": 0.11,
414
+ "learning_rate": 0.00018839324382849718,
415
+ "loss": 3.9383,
416
+ "step": 520
417
+ },
418
+ {
419
+ "epoch": 0.11,
420
+ "learning_rate": 0.00018796015591165008,
421
+ "loss": 3.9764,
422
+ "step": 530
423
+ },
424
+ {
425
+ "epoch": 0.11,
426
+ "learning_rate": 0.00018752706799480295,
427
+ "loss": 3.9809,
428
+ "step": 540
429
+ },
430
+ {
431
+ "epoch": 0.11,
432
+ "learning_rate": 0.00018709398007795585,
433
+ "loss": 3.9178,
434
+ "step": 550
435
+ },
436
+ {
437
+ "epoch": 0.11,
438
+ "eval_accuracy": 0.30575963718820864,
439
+ "eval_loss": 4.703125,
440
+ "eval_runtime": 6.6265,
441
+ "eval_samples_per_second": 5.282,
442
+ "eval_steps_per_second": 0.302,
443
+ "step": 550
444
+ },
445
+ {
446
+ "epoch": 0.12,
447
+ "learning_rate": 0.00018666089216110872,
448
+ "loss": 3.9073,
449
+ "step": 560
450
+ },
451
+ {
452
+ "epoch": 0.12,
453
+ "learning_rate": 0.0001862278042442616,
454
+ "loss": 3.9459,
455
+ "step": 570
456
+ },
457
+ {
458
+ "epoch": 0.12,
459
+ "learning_rate": 0.00018579471632741446,
460
+ "loss": 3.9535,
461
+ "step": 580
462
+ },
463
+ {
464
+ "epoch": 0.12,
465
+ "learning_rate": 0.00018536162841056733,
466
+ "loss": 3.8982,
467
+ "step": 590
468
+ },
469
+ {
470
+ "epoch": 0.12,
471
+ "learning_rate": 0.00018492854049372023,
472
+ "loss": 3.834,
473
+ "step": 600
474
+ },
475
+ {
476
+ "epoch": 0.12,
477
+ "eval_accuracy": 0.3082574568288854,
478
+ "eval_loss": 4.65625,
479
+ "eval_runtime": 6.6135,
480
+ "eval_samples_per_second": 5.292,
481
+ "eval_steps_per_second": 0.302,
482
+ "step": 600
483
+ },
484
+ {
485
+ "epoch": 0.13,
486
+ "learning_rate": 0.0001844954525768731,
487
+ "loss": 3.8759,
488
+ "step": 610
489
+ },
490
+ {
491
+ "epoch": 0.13,
492
+ "learning_rate": 0.000184062364660026,
493
+ "loss": 3.8835,
494
+ "step": 620
495
+ },
496
+ {
497
+ "epoch": 0.13,
498
+ "learning_rate": 0.00018362927674317887,
499
+ "loss": 3.9003,
500
+ "step": 630
501
+ },
502
+ {
503
+ "epoch": 0.13,
504
+ "learning_rate": 0.00018319618882633177,
505
+ "loss": 3.8538,
506
+ "step": 640
507
+ },
508
+ {
509
+ "epoch": 0.13,
510
+ "learning_rate": 0.00018276310090948464,
511
+ "loss": 3.8316,
512
+ "step": 650
513
+ },
514
+ {
515
+ "epoch": 0.13,
516
+ "eval_accuracy": 0.30981336124193265,
517
+ "eval_loss": 4.625,
518
+ "eval_runtime": 6.6039,
519
+ "eval_samples_per_second": 5.3,
520
+ "eval_steps_per_second": 0.303,
521
+ "step": 650
522
+ },
523
+ {
524
+ "epoch": 0.14,
525
+ "learning_rate": 0.00018233001299263754,
526
+ "loss": 3.9085,
527
+ "step": 660
528
+ },
529
+ {
530
+ "epoch": 0.14,
531
+ "learning_rate": 0.00018189692507579038,
532
+ "loss": 3.7825,
533
+ "step": 670
534
+ },
535
+ {
536
+ "epoch": 0.14,
537
+ "learning_rate": 0.00018146383715894328,
538
+ "loss": 3.824,
539
+ "step": 680
540
+ },
541
+ {
542
+ "epoch": 0.14,
543
+ "learning_rate": 0.00018103074924209615,
544
+ "loss": 3.8457,
545
+ "step": 690
546
+ },
547
+ {
548
+ "epoch": 0.14,
549
+ "learning_rate": 0.00018059766132524902,
550
+ "loss": 3.8197,
551
+ "step": 700
552
+ },
553
+ {
554
+ "epoch": 0.14,
555
+ "eval_accuracy": 0.3116902145473574,
556
+ "eval_loss": 4.59765625,
557
+ "eval_runtime": 6.6155,
558
+ "eval_samples_per_second": 5.291,
559
+ "eval_steps_per_second": 0.302,
560
+ "step": 700
561
+ },
562
+ {
563
+ "epoch": 0.15,
564
+ "learning_rate": 0.00018016457340840192,
565
+ "loss": 3.79,
566
+ "step": 710
567
+ },
568
+ {
569
+ "epoch": 0.15,
570
+ "learning_rate": 0.00017973148549155479,
571
+ "loss": 3.7907,
572
+ "step": 720
573
+ },
574
+ {
575
+ "epoch": 0.15,
576
+ "learning_rate": 0.00017929839757470768,
577
+ "loss": 3.7797,
578
+ "step": 730
579
+ },
580
+ {
581
+ "epoch": 0.15,
582
+ "learning_rate": 0.00017886530965786055,
583
+ "loss": 3.7533,
584
+ "step": 740
585
+ },
586
+ {
587
+ "epoch": 0.15,
588
+ "learning_rate": 0.00017843222174101345,
589
+ "loss": 3.7464,
590
+ "step": 750
591
+ },
592
+ {
593
+ "epoch": 0.15,
594
+ "eval_accuracy": 0.31469038897610324,
595
+ "eval_loss": 4.5625,
596
+ "eval_runtime": 6.5988,
597
+ "eval_samples_per_second": 5.304,
598
+ "eval_steps_per_second": 0.303,
599
+ "step": 750
600
+ },
601
+ {
602
+ "epoch": 0.16,
603
+ "learning_rate": 0.00017799913382416632,
604
+ "loss": 3.7347,
605
+ "step": 760
606
+ },
607
+ {
608
+ "epoch": 0.16,
609
+ "learning_rate": 0.0001775660459073192,
610
+ "loss": 3.7917,
611
+ "step": 770
612
+ },
613
+ {
614
+ "epoch": 0.16,
615
+ "learning_rate": 0.00017713295799047206,
616
+ "loss": 3.8106,
617
+ "step": 780
618
+ },
619
+ {
620
+ "epoch": 0.16,
621
+ "learning_rate": 0.00017669987007362496,
622
+ "loss": 3.7289,
623
+ "step": 790
624
+ },
625
+ {
626
+ "epoch": 0.16,
627
+ "learning_rate": 0.00017626678215677783,
628
+ "loss": 3.767,
629
+ "step": 800
630
+ },
631
+ {
632
+ "epoch": 0.16,
633
+ "eval_accuracy": 0.3163718820861678,
634
+ "eval_loss": 4.5390625,
635
+ "eval_runtime": 6.604,
636
+ "eval_samples_per_second": 5.3,
637
+ "eval_steps_per_second": 0.303,
638
+ "step": 800
639
+ },
640
+ {
641
+ "epoch": 0.17,
642
+ "learning_rate": 0.00017583369423993073,
643
+ "loss": 3.7362,
644
+ "step": 810
645
+ },
646
+ {
647
+ "epoch": 0.17,
648
+ "learning_rate": 0.0001754006063230836,
649
+ "loss": 3.7474,
650
+ "step": 820
651
+ },
652
+ {
653
+ "epoch": 0.17,
654
+ "learning_rate": 0.00017496751840623647,
655
+ "loss": 3.7485,
656
+ "step": 830
657
+ },
658
+ {
659
+ "epoch": 0.17,
660
+ "learning_rate": 0.00017453443048938937,
661
+ "loss": 3.7341,
662
+ "step": 840
663
+ },
664
+ {
665
+ "epoch": 0.17,
666
+ "learning_rate": 0.00017410134257254224,
667
+ "loss": 3.7511,
668
+ "step": 850
669
+ },
670
+ {
671
+ "epoch": 0.17,
672
+ "eval_accuracy": 0.3172649572649573,
673
+ "eval_loss": 4.515625,
674
+ "eval_runtime": 6.6093,
675
+ "eval_samples_per_second": 5.296,
676
+ "eval_steps_per_second": 0.303,
677
+ "step": 850
678
+ },
679
+ {
680
+ "epoch": 0.18,
681
+ "learning_rate": 0.0001736682546556951,
682
+ "loss": 3.6862,
683
+ "step": 860
684
+ },
685
+ {
686
+ "epoch": 0.18,
687
+ "learning_rate": 0.00017323516673884798,
688
+ "loss": 3.6411,
689
+ "step": 870
690
+ },
691
+ {
692
+ "epoch": 0.18,
693
+ "learning_rate": 0.00017280207882200088,
694
+ "loss": 3.7181,
695
+ "step": 880
696
+ },
697
+ {
698
+ "epoch": 0.18,
699
+ "learning_rate": 0.00017236899090515375,
700
+ "loss": 3.6471,
701
+ "step": 890
702
+ },
703
+ {
704
+ "epoch": 0.19,
705
+ "learning_rate": 0.00017193590298830665,
706
+ "loss": 3.7166,
707
+ "step": 900
708
+ },
709
+ {
710
+ "epoch": 0.19,
711
+ "eval_accuracy": 0.3188278388278388,
712
+ "eval_loss": 4.4921875,
713
+ "eval_runtime": 6.6113,
714
+ "eval_samples_per_second": 5.294,
715
+ "eval_steps_per_second": 0.303,
716
+ "step": 900
717
+ },
718
+ {
719
+ "epoch": 0.19,
720
+ "learning_rate": 0.00017150281507145952,
721
+ "loss": 3.6869,
722
+ "step": 910
723
+ },
724
+ {
725
+ "epoch": 0.19,
726
+ "learning_rate": 0.00017106972715461241,
727
+ "loss": 3.6728,
728
+ "step": 920
729
+ },
730
+ {
731
+ "epoch": 0.19,
732
+ "learning_rate": 0.00017063663923776528,
733
+ "loss": 3.7705,
734
+ "step": 930
735
+ },
736
+ {
737
+ "epoch": 0.19,
738
+ "learning_rate": 0.00017020355132091815,
739
+ "loss": 3.6728,
740
+ "step": 940
741
+ },
742
+ {
743
+ "epoch": 0.2,
744
+ "learning_rate": 0.00016977046340407103,
745
+ "loss": 3.6908,
746
+ "step": 950
747
+ },
748
+ {
749
+ "epoch": 0.2,
750
+ "eval_accuracy": 0.3190441304727019,
751
+ "eval_loss": 4.48046875,
752
+ "eval_runtime": 6.5961,
753
+ "eval_samples_per_second": 5.306,
754
+ "eval_steps_per_second": 0.303,
755
+ "step": 950
756
+ },
757
+ {
758
+ "epoch": 0.2,
759
+ "learning_rate": 0.0001693373754872239,
760
+ "loss": 3.5988,
761
+ "step": 960
762
+ },
763
+ {
764
+ "epoch": 0.2,
765
+ "learning_rate": 0.0001689042875703768,
766
+ "loss": 3.6713,
767
+ "step": 970
768
+ },
769
+ {
770
+ "epoch": 0.2,
771
+ "learning_rate": 0.00016847119965352966,
772
+ "loss": 3.7165,
773
+ "step": 980
774
+ },
775
+ {
776
+ "epoch": 0.2,
777
+ "learning_rate": 0.00016803811173668256,
778
+ "loss": 3.7098,
779
+ "step": 990
780
+ },
781
+ {
782
+ "epoch": 0.21,
783
+ "learning_rate": 0.00016760502381983543,
784
+ "loss": 3.617,
785
+ "step": 1000
786
+ },
787
+ {
788
+ "epoch": 0.21,
789
+ "eval_accuracy": 0.3208442351299494,
790
+ "eval_loss": 4.46484375,
791
+ "eval_runtime": 6.5949,
792
+ "eval_samples_per_second": 5.307,
793
+ "eval_steps_per_second": 0.303,
794
+ "step": 1000
795
+ },
796
+ {
797
+ "epoch": 0.21,
798
+ "learning_rate": 0.00016717193590298833,
799
+ "loss": 3.6629,
800
+ "step": 1010
801
+ },
802
+ {
803
+ "epoch": 0.21,
804
+ "learning_rate": 0.0001667388479861412,
805
+ "loss": 3.684,
806
+ "step": 1020
807
+ },
808
+ {
809
+ "epoch": 0.21,
810
+ "learning_rate": 0.00016630576006929407,
811
+ "loss": 3.6877,
812
+ "step": 1030
813
+ },
814
+ {
815
+ "epoch": 0.21,
816
+ "learning_rate": 0.00016587267215244694,
817
+ "loss": 3.6274,
818
+ "step": 1040
819
+ },
820
+ {
821
+ "epoch": 0.22,
822
+ "learning_rate": 0.00016543958423559984,
823
+ "loss": 3.6734,
824
+ "step": 1050
825
+ },
826
+ {
827
+ "epoch": 0.22,
828
+ "eval_accuracy": 0.3213535670678528,
829
+ "eval_loss": 4.453125,
830
+ "eval_runtime": 6.5974,
831
+ "eval_samples_per_second": 5.305,
832
+ "eval_steps_per_second": 0.303,
833
+ "step": 1050
834
+ },
835
+ {
836
+ "epoch": 0.22,
837
+ "learning_rate": 0.0001650064963187527,
838
+ "loss": 3.6895,
839
+ "step": 1060
840
+ },
841
+ {
842
+ "epoch": 0.22,
843
+ "learning_rate": 0.0001645734084019056,
844
+ "loss": 3.6662,
845
+ "step": 1070
846
+ },
847
+ {
848
+ "epoch": 0.22,
849
+ "learning_rate": 0.00016414032048505848,
850
+ "loss": 3.6152,
851
+ "step": 1080
852
+ },
853
+ {
854
+ "epoch": 0.22,
855
+ "learning_rate": 0.00016370723256821135,
856
+ "loss": 3.6531,
857
+ "step": 1090
858
+ },
859
+ {
860
+ "epoch": 0.23,
861
+ "learning_rate": 0.00016327414465136425,
862
+ "loss": 3.6916,
863
+ "step": 1100
864
+ },
865
+ {
866
+ "epoch": 0.23,
867
+ "eval_accuracy": 0.32398395255538115,
868
+ "eval_loss": 4.43359375,
869
+ "eval_runtime": 6.5897,
870
+ "eval_samples_per_second": 5.311,
871
+ "eval_steps_per_second": 0.304,
872
+ "step": 1100
873
+ },
874
+ {
875
+ "epoch": 0.23,
876
+ "learning_rate": 0.00016284105673451712,
877
+ "loss": 3.6961,
878
+ "step": 1110
879
+ },
880
+ {
881
+ "epoch": 0.23,
882
+ "learning_rate": 0.00016240796881767,
883
+ "loss": 3.5811,
884
+ "step": 1120
885
+ },
886
+ {
887
+ "epoch": 0.23,
888
+ "learning_rate": 0.00016197488090082286,
889
+ "loss": 3.6161,
890
+ "step": 1130
891
+ },
892
+ {
893
+ "epoch": 0.23,
894
+ "learning_rate": 0.00016154179298397576,
895
+ "loss": 3.6305,
896
+ "step": 1140
897
+ },
898
+ {
899
+ "epoch": 0.24,
900
+ "learning_rate": 0.00016110870506712863,
901
+ "loss": 3.629,
902
+ "step": 1150
903
+ },
904
+ {
905
+ "epoch": 0.24,
906
+ "eval_accuracy": 0.32400488400488403,
907
+ "eval_loss": 4.421875,
908
+ "eval_runtime": 6.5985,
909
+ "eval_samples_per_second": 5.304,
910
+ "eval_steps_per_second": 0.303,
911
+ "step": 1150
912
+ },
913
+ {
914
+ "epoch": 0.24,
915
+ "learning_rate": 0.00016067561715028152,
916
+ "loss": 3.6467,
917
+ "step": 1160
918
+ },
919
+ {
920
+ "epoch": 0.24,
921
+ "learning_rate": 0.0001602425292334344,
922
+ "loss": 3.6573,
923
+ "step": 1170
924
+ },
925
+ {
926
+ "epoch": 0.24,
927
+ "learning_rate": 0.0001598094413165873,
928
+ "loss": 3.6372,
929
+ "step": 1180
930
+ },
931
+ {
932
+ "epoch": 0.24,
933
+ "learning_rate": 0.00015937635339974016,
934
+ "loss": 3.6369,
935
+ "step": 1190
936
+ },
937
+ {
938
+ "epoch": 0.25,
939
+ "learning_rate": 0.00015894326548289303,
940
+ "loss": 3.6001,
941
+ "step": 1200
942
+ },
943
+ {
944
+ "epoch": 0.25,
945
+ "eval_accuracy": 0.3247165532879819,
946
+ "eval_loss": 4.4140625,
947
+ "eval_runtime": 6.602,
948
+ "eval_samples_per_second": 5.301,
949
+ "eval_steps_per_second": 0.303,
950
+ "step": 1200
951
+ },
952
+ {
953
+ "epoch": 0.25,
954
+ "learning_rate": 0.0001585101775660459,
955
+ "loss": 3.5843,
956
+ "step": 1210
957
+ },
958
+ {
959
+ "epoch": 0.25,
960
+ "learning_rate": 0.00015807708964919877,
961
+ "loss": 3.6407,
962
+ "step": 1220
963
+ },
964
+ {
965
+ "epoch": 0.25,
966
+ "learning_rate": 0.00015764400173235167,
967
+ "loss": 3.6413,
968
+ "step": 1230
969
+ },
970
+ {
971
+ "epoch": 0.26,
972
+ "learning_rate": 0.00015721091381550454,
973
+ "loss": 3.5963,
974
+ "step": 1240
975
+ },
976
+ {
977
+ "epoch": 0.26,
978
+ "learning_rate": 0.00015677782589865744,
979
+ "loss": 3.6053,
980
+ "step": 1250
981
+ },
982
+ {
983
+ "epoch": 0.26,
984
+ "eval_accuracy": 0.32607709750566893,
985
+ "eval_loss": 4.40234375,
986
+ "eval_runtime": 6.5982,
987
+ "eval_samples_per_second": 5.304,
988
+ "eval_steps_per_second": 0.303,
989
+ "step": 1250
990
+ },
991
+ {
992
+ "epoch": 0.26,
993
+ "learning_rate": 0.0001563447379818103,
994
+ "loss": 3.6049,
995
+ "step": 1260
996
+ },
997
+ {
998
+ "epoch": 0.26,
999
+ "learning_rate": 0.0001559116500649632,
1000
+ "loss": 3.6112,
1001
+ "step": 1270
1002
+ },
1003
+ {
1004
+ "epoch": 0.26,
1005
+ "learning_rate": 0.00015547856214811608,
1006
+ "loss": 3.5872,
1007
+ "step": 1280
1008
+ },
1009
+ {
1010
+ "epoch": 0.27,
1011
+ "learning_rate": 0.00015504547423126895,
1012
+ "loss": 3.6328,
1013
+ "step": 1290
1014
+ },
1015
+ {
1016
+ "epoch": 0.27,
1017
+ "learning_rate": 0.00015461238631442182,
1018
+ "loss": 3.5803,
1019
+ "step": 1300
1020
+ },
1021
+ {
1022
+ "epoch": 0.27,
1023
+ "eval_accuracy": 0.32540729112157685,
1024
+ "eval_loss": 4.390625,
1025
+ "eval_runtime": 6.5995,
1026
+ "eval_samples_per_second": 5.303,
1027
+ "eval_steps_per_second": 0.303,
1028
+ "step": 1300
1029
+ },
1030
+ {
1031
+ "epoch": 0.27,
1032
+ "learning_rate": 0.00015417929839757472,
1033
+ "loss": 3.6153,
1034
+ "step": 1310
1035
+ },
1036
+ {
1037
+ "epoch": 0.27,
1038
+ "learning_rate": 0.0001537462104807276,
1039
+ "loss": 3.5493,
1040
+ "step": 1320
1041
+ },
1042
+ {
1043
+ "epoch": 0.27,
1044
+ "learning_rate": 0.00015331312256388049,
1045
+ "loss": 3.5854,
1046
+ "step": 1330
1047
+ },
1048
+ {
1049
+ "epoch": 0.28,
1050
+ "learning_rate": 0.00015288003464703336,
1051
+ "loss": 3.6029,
1052
+ "step": 1340
1053
+ },
1054
+ {
1055
+ "epoch": 0.28,
1056
+ "learning_rate": 0.00015244694673018623,
1057
+ "loss": 3.5886,
1058
+ "step": 1350
1059
+ },
1060
+ {
1061
+ "epoch": 0.28,
1062
+ "eval_accuracy": 0.32738880167451595,
1063
+ "eval_loss": 4.37890625,
1064
+ "eval_runtime": 6.5931,
1065
+ "eval_samples_per_second": 5.309,
1066
+ "eval_steps_per_second": 0.303,
1067
+ "step": 1350
1068
+ },
1069
+ {
1070
+ "epoch": 0.28,
1071
+ "learning_rate": 0.00015201385881333913,
1072
+ "loss": 3.5496,
1073
+ "step": 1360
1074
+ },
1075
+ {
1076
+ "epoch": 0.28,
1077
+ "learning_rate": 0.000151580770896492,
1078
+ "loss": 3.557,
1079
+ "step": 1370
1080
+ },
1081
+ {
1082
+ "epoch": 0.28,
1083
+ "learning_rate": 0.00015114768297964487,
1084
+ "loss": 3.5647,
1085
+ "step": 1380
1086
+ },
1087
+ {
1088
+ "epoch": 0.29,
1089
+ "learning_rate": 0.00015071459506279774,
1090
+ "loss": 3.5912,
1091
+ "step": 1390
1092
+ },
1093
+ {
1094
+ "epoch": 0.29,
1095
+ "learning_rate": 0.00015028150714595063,
1096
+ "loss": 3.5033,
1097
+ "step": 1400
1098
+ },
1099
+ {
1100
+ "epoch": 0.29,
1101
+ "eval_accuracy": 0.3287981859410431,
1102
+ "eval_loss": 4.3671875,
1103
+ "eval_runtime": 6.593,
1104
+ "eval_samples_per_second": 5.309,
1105
+ "eval_steps_per_second": 0.303,
1106
+ "step": 1400
1107
+ },
1108
+ {
1109
+ "epoch": 0.29,
1110
+ "learning_rate": 0.0001498484192291035,
1111
+ "loss": 3.5814,
1112
+ "step": 1410
1113
+ },
1114
+ {
1115
+ "epoch": 0.29,
1116
+ "learning_rate": 0.0001494153313122564,
1117
+ "loss": 3.5834,
1118
+ "step": 1420
1119
+ },
1120
+ {
1121
+ "epoch": 0.29,
1122
+ "learning_rate": 0.00014898224339540927,
1123
+ "loss": 3.5661,
1124
+ "step": 1430
1125
+ },
1126
+ {
1127
+ "epoch": 0.3,
1128
+ "learning_rate": 0.00014854915547856217,
1129
+ "loss": 3.5844,
1130
+ "step": 1440
1131
+ },
1132
+ {
1133
+ "epoch": 0.3,
1134
+ "learning_rate": 0.00014811606756171504,
1135
+ "loss": 3.58,
1136
+ "step": 1450
1137
+ },
1138
+ {
1139
+ "epoch": 0.3,
1140
+ "eval_accuracy": 0.3283656026513169,
1141
+ "eval_loss": 4.36328125,
1142
+ "eval_runtime": 6.6004,
1143
+ "eval_samples_per_second": 5.303,
1144
+ "eval_steps_per_second": 0.303,
1145
+ "step": 1450
1146
+ },
1147
+ {
1148
+ "epoch": 0.3,
1149
+ "learning_rate": 0.0001476829796448679,
1150
+ "loss": 3.5874,
1151
+ "step": 1460
1152
+ },
1153
+ {
1154
+ "epoch": 0.3,
1155
+ "learning_rate": 0.00014724989172802078,
1156
+ "loss": 3.5736,
1157
+ "step": 1470
1158
+ },
1159
+ {
1160
+ "epoch": 0.3,
1161
+ "learning_rate": 0.00014681680381117365,
1162
+ "loss": 3.5659,
1163
+ "step": 1480
1164
+ },
1165
+ {
1166
+ "epoch": 0.31,
1167
+ "learning_rate": 0.00014638371589432655,
1168
+ "loss": 3.5632,
1169
+ "step": 1490
1170
+ },
1171
+ {
1172
+ "epoch": 0.31,
1173
+ "learning_rate": 0.00014595062797747942,
1174
+ "loss": 3.4966,
1175
+ "step": 1500
1176
+ },
1177
+ {
1178
+ "epoch": 0.31,
1179
+ "eval_accuracy": 0.32832373975231116,
1180
+ "eval_loss": 4.3515625,
1181
+ "eval_runtime": 6.592,
1182
+ "eval_samples_per_second": 5.309,
1183
+ "eval_steps_per_second": 0.303,
1184
+ "step": 1500
1185
+ },
1186
+ {
1187
+ "epoch": 0.31,
1188
+ "learning_rate": 0.00014551754006063232,
1189
+ "loss": 3.5236,
1190
+ "step": 1510
1191
+ },
1192
+ {
1193
+ "epoch": 0.31,
1194
+ "learning_rate": 0.0001450844521437852,
1195
+ "loss": 3.5277,
1196
+ "step": 1520
1197
+ },
1198
+ {
1199
+ "epoch": 0.31,
1200
+ "learning_rate": 0.0001446513642269381,
1201
+ "loss": 3.5237,
1202
+ "step": 1530
1203
+ },
1204
+ {
1205
+ "epoch": 0.32,
1206
+ "learning_rate": 0.00014421827631009096,
1207
+ "loss": 3.5719,
1208
+ "step": 1540
1209
+ },
1210
+ {
1211
+ "epoch": 0.32,
1212
+ "learning_rate": 0.00014378518839324383,
1213
+ "loss": 3.5411,
1214
+ "step": 1550
1215
+ },
1216
+ {
1217
+ "epoch": 0.32,
1218
+ "eval_accuracy": 0.32884004884004886,
1219
+ "eval_loss": 4.3515625,
1220
+ "eval_runtime": 6.6086,
1221
+ "eval_samples_per_second": 5.296,
1222
+ "eval_steps_per_second": 0.303,
1223
+ "step": 1550
1224
+ },
1225
+ {
1226
+ "epoch": 0.32,
1227
+ "learning_rate": 0.0001433521004763967,
1228
+ "loss": 3.5287,
1229
+ "step": 1560
1230
+ },
1231
+ {
1232
+ "epoch": 0.32,
1233
+ "learning_rate": 0.0001429190125595496,
1234
+ "loss": 3.5965,
1235
+ "step": 1570
1236
+ },
1237
+ {
1238
+ "epoch": 0.32,
1239
+ "learning_rate": 0.00014248592464270247,
1240
+ "loss": 3.5435,
1241
+ "step": 1580
1242
+ },
1243
+ {
1244
+ "epoch": 0.33,
1245
+ "learning_rate": 0.00014205283672585536,
1246
+ "loss": 3.5536,
1247
+ "step": 1590
1248
+ },
1249
+ {
1250
+ "epoch": 0.33,
1251
+ "learning_rate": 0.00014161974880900824,
1252
+ "loss": 3.527,
1253
+ "step": 1600
1254
+ },
1255
+ {
1256
+ "epoch": 0.33,
1257
+ "eval_accuracy": 0.33027036455607883,
1258
+ "eval_loss": 4.33984375,
1259
+ "eval_runtime": 6.5917,
1260
+ "eval_samples_per_second": 5.31,
1261
+ "eval_steps_per_second": 0.303,
1262
+ "step": 1600
1263
+ },
1264
+ {
1265
+ "epoch": 0.33,
1266
+ "learning_rate": 0.0001411866608921611,
1267
+ "loss": 3.5765,
1268
+ "step": 1610
1269
+ },
1270
+ {
1271
+ "epoch": 0.33,
1272
+ "learning_rate": 0.000140753572975314,
1273
+ "loss": 3.5882,
1274
+ "step": 1620
1275
+ },
1276
+ {
1277
+ "epoch": 0.34,
1278
+ "learning_rate": 0.00014032048505846687,
1279
+ "loss": 3.5135,
1280
+ "step": 1630
1281
+ },
1282
+ {
1283
+ "epoch": 0.34,
1284
+ "learning_rate": 0.00013988739714161974,
1285
+ "loss": 3.4924,
1286
+ "step": 1640
1287
+ },
1288
+ {
1289
+ "epoch": 0.34,
1290
+ "learning_rate": 0.00013945430922477262,
1291
+ "loss": 3.6018,
1292
+ "step": 1650
1293
+ },
1294
+ {
1295
+ "epoch": 0.34,
1296
+ "eval_accuracy": 0.3299284842141985,
1297
+ "eval_loss": 4.33203125,
1298
+ "eval_runtime": 6.5992,
1299
+ "eval_samples_per_second": 5.304,
1300
+ "eval_steps_per_second": 0.303,
1301
+ "step": 1650
1302
+ },
1303
+ {
1304
+ "epoch": 0.34,
1305
+ "learning_rate": 0.0001390212213079255,
1306
+ "loss": 3.5646,
1307
+ "step": 1660
1308
+ },
1309
+ {
1310
+ "epoch": 0.34,
1311
+ "learning_rate": 0.00013858813339107838,
1312
+ "loss": 3.5164,
1313
+ "step": 1670
1314
+ },
1315
+ {
1316
+ "epoch": 0.35,
1317
+ "learning_rate": 0.00013815504547423128,
1318
+ "loss": 3.5433,
1319
+ "step": 1680
1320
+ },
1321
+ {
1322
+ "epoch": 0.35,
1323
+ "learning_rate": 0.00013772195755738415,
1324
+ "loss": 3.4929,
1325
+ "step": 1690
1326
+ },
1327
+ {
1328
+ "epoch": 0.35,
1329
+ "learning_rate": 0.00013728886964053705,
1330
+ "loss": 3.4802,
1331
+ "step": 1700
1332
+ },
1333
+ {
1334
+ "epoch": 0.35,
1335
+ "eval_accuracy": 0.3301238444095587,
1336
+ "eval_loss": 4.32421875,
1337
+ "eval_runtime": 6.5899,
1338
+ "eval_samples_per_second": 5.311,
1339
+ "eval_steps_per_second": 0.303,
1340
+ "step": 1700
1341
+ },
1342
+ {
1343
+ "epoch": 0.35,
1344
+ "learning_rate": 0.00013685578172368992,
1345
+ "loss": 3.5211,
1346
+ "step": 1710
1347
+ },
1348
+ {
1349
+ "epoch": 0.35,
1350
+ "learning_rate": 0.00013642269380684282,
1351
+ "loss": 3.5424,
1352
+ "step": 1720
1353
+ },
1354
+ {
1355
+ "epoch": 0.36,
1356
+ "learning_rate": 0.00013598960588999566,
1357
+ "loss": 3.468,
1358
+ "step": 1730
1359
+ },
1360
+ {
1361
+ "epoch": 0.36,
1362
+ "learning_rate": 0.00013555651797314853,
1363
+ "loss": 3.5342,
1364
+ "step": 1740
1365
+ },
1366
+ {
1367
+ "epoch": 0.36,
1368
+ "learning_rate": 0.00013512343005630143,
1369
+ "loss": 3.4375,
1370
+ "step": 1750
1371
+ },
1372
+ {
1373
+ "epoch": 0.36,
1374
+ "eval_accuracy": 0.330584336298622,
1375
+ "eval_loss": 4.32421875,
1376
+ "eval_runtime": 6.5928,
1377
+ "eval_samples_per_second": 5.309,
1378
+ "eval_steps_per_second": 0.303,
1379
+ "step": 1750
1380
+ },
1381
+ {
1382
+ "epoch": 0.36,
1383
+ "learning_rate": 0.0001346903421394543,
1384
+ "loss": 3.5239,
1385
+ "step": 1760
1386
+ },
1387
+ {
1388
+ "epoch": 0.36,
1389
+ "learning_rate": 0.0001342572542226072,
1390
+ "loss": 3.5176,
1391
+ "step": 1770
1392
+ },
1393
+ {
1394
+ "epoch": 0.37,
1395
+ "learning_rate": 0.00013382416630576007,
1396
+ "loss": 3.4992,
1397
+ "step": 1780
1398
+ },
1399
+ {
1400
+ "epoch": 0.37,
1401
+ "learning_rate": 0.00013339107838891297,
1402
+ "loss": 3.457,
1403
+ "step": 1790
1404
+ },
1405
+ {
1406
+ "epoch": 0.37,
1407
+ "learning_rate": 0.00013295799047206584,
1408
+ "loss": 3.4873,
1409
+ "step": 1800
1410
+ },
1411
+ {
1412
+ "epoch": 0.37,
1413
+ "eval_accuracy": 0.33109366823652536,
1414
+ "eval_loss": 4.3203125,
1415
+ "eval_runtime": 6.6125,
1416
+ "eval_samples_per_second": 5.293,
1417
+ "eval_steps_per_second": 0.302,
1418
+ "step": 1800
1419
+ },
1420
+ {
1421
+ "epoch": 0.37,
1422
+ "learning_rate": 0.00013252490255521873,
1423
+ "loss": 3.5021,
1424
+ "step": 1810
1425
+ },
1426
+ {
1427
+ "epoch": 0.37,
1428
+ "learning_rate": 0.0001320918146383716,
1429
+ "loss": 3.4871,
1430
+ "step": 1820
1431
+ },
1432
+ {
1433
+ "epoch": 0.38,
1434
+ "learning_rate": 0.00013165872672152448,
1435
+ "loss": 3.47,
1436
+ "step": 1830
1437
+ },
1438
+ {
1439
+ "epoch": 0.38,
1440
+ "learning_rate": 0.00013122563880467735,
1441
+ "loss": 3.4462,
1442
+ "step": 1840
1443
+ },
1444
+ {
1445
+ "epoch": 0.38,
1446
+ "learning_rate": 0.00013079255088783024,
1447
+ "loss": 3.435,
1448
+ "step": 1850
1449
+ },
1450
+ {
1451
+ "epoch": 0.38,
1452
+ "eval_accuracy": 0.3309401709401709,
1453
+ "eval_loss": 4.3125,
1454
+ "eval_runtime": 6.5916,
1455
+ "eval_samples_per_second": 5.31,
1456
+ "eval_steps_per_second": 0.303,
1457
+ "step": 1850
1458
+ },
1459
+ {
1460
+ "epoch": 0.38,
1461
+ "learning_rate": 0.00013035946297098311,
1462
+ "loss": 3.4994,
1463
+ "step": 1860
1464
+ },
1465
+ {
1466
+ "epoch": 0.38,
1467
+ "learning_rate": 0.00012992637505413598,
1468
+ "loss": 3.5665,
1469
+ "step": 1870
1470
+ },
1471
+ {
1472
+ "epoch": 0.39,
1473
+ "learning_rate": 0.00012949328713728888,
1474
+ "loss": 3.5552,
1475
+ "step": 1880
1476
+ },
1477
+ {
1478
+ "epoch": 0.39,
1479
+ "learning_rate": 0.00012906019922044175,
1480
+ "loss": 3.5092,
1481
+ "step": 1890
1482
+ },
1483
+ {
1484
+ "epoch": 0.39,
1485
+ "learning_rate": 0.00012862711130359465,
1486
+ "loss": 3.4335,
1487
+ "step": 1900
1488
+ },
1489
+ {
1490
+ "epoch": 0.39,
1491
+ "eval_accuracy": 0.3317634746206175,
1492
+ "eval_loss": 4.3046875,
1493
+ "eval_runtime": 6.6183,
1494
+ "eval_samples_per_second": 5.288,
1495
+ "eval_steps_per_second": 0.302,
1496
+ "step": 1900
1497
+ },
1498
+ {
1499
+ "epoch": 0.39,
1500
+ "learning_rate": 0.00012819402338674752,
1501
+ "loss": 3.5154,
1502
+ "step": 1910
1503
+ },
1504
+ {
1505
+ "epoch": 0.39,
1506
+ "learning_rate": 0.0001277609354699004,
1507
+ "loss": 3.5207,
1508
+ "step": 1920
1509
+ },
1510
+ {
1511
+ "epoch": 0.4,
1512
+ "learning_rate": 0.00012732784755305326,
1513
+ "loss": 3.4869,
1514
+ "step": 1930
1515
+ },
1516
+ {
1517
+ "epoch": 0.4,
1518
+ "learning_rate": 0.00012689475963620616,
1519
+ "loss": 3.4773,
1520
+ "step": 1940
1521
+ },
1522
+ {
1523
+ "epoch": 0.4,
1524
+ "learning_rate": 0.00012646167171935903,
1525
+ "loss": 3.4595,
1526
+ "step": 1950
1527
+ },
1528
+ {
1529
+ "epoch": 0.4,
1530
+ "eval_accuracy": 0.3325239839525554,
1531
+ "eval_loss": 4.296875,
1532
+ "eval_runtime": 6.5968,
1533
+ "eval_samples_per_second": 5.306,
1534
+ "eval_steps_per_second": 0.303,
1535
+ "step": 1950
1536
+ },
1537
+ {
1538
+ "epoch": 0.4,
1539
+ "learning_rate": 0.00012602858380251193,
1540
+ "loss": 3.5035,
1541
+ "step": 1960
1542
+ },
1543
+ {
1544
+ "epoch": 0.41,
1545
+ "learning_rate": 0.0001255954958856648,
1546
+ "loss": 3.4692,
1547
+ "step": 1970
1548
+ },
1549
+ {
1550
+ "epoch": 0.41,
1551
+ "learning_rate": 0.0001251624079688177,
1552
+ "loss": 3.4712,
1553
+ "step": 1980
1554
+ },
1555
+ {
1556
+ "epoch": 0.41,
1557
+ "learning_rate": 0.00012472932005197057,
1558
+ "loss": 3.4558,
1559
+ "step": 1990
1560
+ },
1561
+ {
1562
+ "epoch": 0.41,
1563
+ "learning_rate": 0.00012429623213512344,
1564
+ "loss": 3.4937,
1565
+ "step": 2000
1566
+ },
1567
+ {
1568
+ "epoch": 0.41,
1569
+ "eval_accuracy": 0.3319448805163091,
1570
+ "eval_loss": 4.29296875,
1571
+ "eval_runtime": 6.5908,
1572
+ "eval_samples_per_second": 5.31,
1573
+ "eval_steps_per_second": 0.303,
1574
+ "step": 2000
1575
+ },
1576
+ {
1577
+ "epoch": 0.41,
1578
+ "learning_rate": 0.0001238631442182763,
1579
+ "loss": 3.5093,
1580
+ "step": 2010
1581
+ },
1582
+ {
1583
+ "epoch": 0.42,
1584
+ "learning_rate": 0.00012343005630142918,
1585
+ "loss": 3.4941,
1586
+ "step": 2020
1587
+ },
1588
+ {
1589
+ "epoch": 0.42,
1590
+ "learning_rate": 0.00012299696838458208,
1591
+ "loss": 3.4706,
1592
+ "step": 2030
1593
+ },
1594
+ {
1595
+ "epoch": 0.42,
1596
+ "learning_rate": 0.00012256388046773495,
1597
+ "loss": 3.5106,
1598
+ "step": 2040
1599
+ },
1600
+ {
1601
+ "epoch": 0.42,
1602
+ "learning_rate": 0.00012213079255088784,
1603
+ "loss": 3.4959,
1604
+ "step": 2050
1605
+ },
1606
+ {
1607
+ "epoch": 0.42,
1608
+ "eval_accuracy": 0.3324123495552067,
1609
+ "eval_loss": 4.28515625,
1610
+ "eval_runtime": 6.6003,
1611
+ "eval_samples_per_second": 5.303,
1612
+ "eval_steps_per_second": 0.303,
1613
+ "step": 2050
1614
+ },
1615
+ {
1616
+ "epoch": 0.42,
1617
+ "learning_rate": 0.00012169770463404072,
1618
+ "loss": 3.5218,
1619
+ "step": 2060
1620
+ },
1621
+ {
1622
+ "epoch": 0.43,
1623
+ "learning_rate": 0.0001212646167171936,
1624
+ "loss": 3.4813,
1625
+ "step": 2070
1626
+ },
1627
+ {
1628
+ "epoch": 0.43,
1629
+ "learning_rate": 0.00012083152880034647,
1630
+ "loss": 3.5107,
1631
+ "step": 2080
1632
+ },
1633
+ {
1634
+ "epoch": 0.43,
1635
+ "learning_rate": 0.00012039844088349937,
1636
+ "loss": 3.4568,
1637
+ "step": 2090
1638
+ },
1639
+ {
1640
+ "epoch": 0.43,
1641
+ "learning_rate": 0.00011996535296665224,
1642
+ "loss": 3.4987,
1643
+ "step": 2100
1644
+ },
1645
+ {
1646
+ "epoch": 0.43,
1647
+ "eval_accuracy": 0.3331658817373103,
1648
+ "eval_loss": 4.28515625,
1649
+ "eval_runtime": 6.6107,
1650
+ "eval_samples_per_second": 5.294,
1651
+ "eval_steps_per_second": 0.303,
1652
+ "step": 2100
1653
+ },
1654
+ {
1655
+ "epoch": 0.43,
1656
+ "learning_rate": 0.00011957557384148984,
1657
+ "loss": 3.458,
1658
+ "step": 2110
1659
+ },
1660
+ {
1661
+ "epoch": 0.44,
1662
+ "learning_rate": 0.0001191424859246427,
1663
+ "loss": 3.4656,
1664
+ "step": 2120
1665
+ },
1666
+ {
1667
+ "epoch": 0.44,
1668
+ "learning_rate": 0.00011870939800779559,
1669
+ "loss": 3.4505,
1670
+ "step": 2130
1671
+ },
1672
+ {
1673
+ "epoch": 0.44,
1674
+ "learning_rate": 0.00011827631009094846,
1675
+ "loss": 3.4182,
1676
+ "step": 2140
1677
+ },
1678
+ {
1679
+ "epoch": 0.44,
1680
+ "learning_rate": 0.00011784322217410136,
1681
+ "loss": 3.4001,
1682
+ "step": 2150
1683
+ },
1684
+ {
1685
+ "epoch": 0.44,
1686
+ "eval_accuracy": 0.3336403279260422,
1687
+ "eval_loss": 4.28515625,
1688
+ "eval_runtime": 6.5938,
1689
+ "eval_samples_per_second": 5.308,
1690
+ "eval_steps_per_second": 0.303,
1691
+ "step": 2150
1692
+ },
1693
+ {
1694
+ "epoch": 0.44,
1695
+ "learning_rate": 0.00011741013425725423,
1696
+ "loss": 3.4289,
1697
+ "step": 2160
1698
+ },
1699
+ {
1700
+ "epoch": 0.45,
1701
+ "learning_rate": 0.00011697704634040711,
1702
+ "loss": 3.4228,
1703
+ "step": 2170
1704
+ },
1705
+ {
1706
+ "epoch": 0.45,
1707
+ "learning_rate": 0.00011654395842355998,
1708
+ "loss": 3.4066,
1709
+ "step": 2180
1710
+ },
1711
+ {
1712
+ "epoch": 0.45,
1713
+ "learning_rate": 0.00011611087050671288,
1714
+ "loss": 3.4823,
1715
+ "step": 2190
1716
+ },
1717
+ {
1718
+ "epoch": 0.45,
1719
+ "learning_rate": 0.00011567778258986575,
1720
+ "loss": 3.4497,
1721
+ "step": 2200
1722
+ },
1723
+ {
1724
+ "epoch": 0.45,
1725
+ "eval_accuracy": 0.3340380254665969,
1726
+ "eval_loss": 4.28125,
1727
+ "eval_runtime": 6.606,
1728
+ "eval_samples_per_second": 5.298,
1729
+ "eval_steps_per_second": 0.303,
1730
+ "step": 2200
1731
+ },
1732
+ {
1733
+ "epoch": 0.45,
1734
+ "learning_rate": 0.00011524469467301864,
1735
+ "loss": 3.4737,
1736
+ "step": 2210
1737
+ },
1738
+ {
1739
+ "epoch": 0.46,
1740
+ "learning_rate": 0.0001148116067561715,
1741
+ "loss": 3.4564,
1742
+ "step": 2220
1743
+ },
1744
+ {
1745
+ "epoch": 0.46,
1746
+ "learning_rate": 0.00011437851883932438,
1747
+ "loss": 3.4865,
1748
+ "step": 2230
1749
+ },
1750
+ {
1751
+ "epoch": 0.46,
1752
+ "learning_rate": 0.00011394543092247727,
1753
+ "loss": 3.4496,
1754
+ "step": 2240
1755
+ },
1756
+ {
1757
+ "epoch": 0.46,
1758
+ "learning_rate": 0.00011351234300563015,
1759
+ "loss": 3.4068,
1760
+ "step": 2250
1761
+ },
1762
+ {
1763
+ "epoch": 0.46,
1764
+ "eval_accuracy": 0.33329147043432755,
1765
+ "eval_loss": 4.27734375,
1766
+ "eval_runtime": 6.6133,
1767
+ "eval_samples_per_second": 5.292,
1768
+ "eval_steps_per_second": 0.302,
1769
+ "step": 2250
1770
+ },
1771
+ {
1772
+ "epoch": 0.46,
1773
+ "learning_rate": 0.00011307925508878303,
1774
+ "loss": 3.4337,
1775
+ "step": 2260
1776
+ },
1777
+ {
1778
+ "epoch": 0.47,
1779
+ "learning_rate": 0.0001126461671719359,
1780
+ "loss": 3.4338,
1781
+ "step": 2270
1782
+ },
1783
+ {
1784
+ "epoch": 0.47,
1785
+ "learning_rate": 0.0001122130792550888,
1786
+ "loss": 3.4241,
1787
+ "step": 2280
1788
+ },
1789
+ {
1790
+ "epoch": 0.47,
1791
+ "learning_rate": 0.00011177999133824167,
1792
+ "loss": 3.497,
1793
+ "step": 2290
1794
+ },
1795
+ {
1796
+ "epoch": 0.47,
1797
+ "learning_rate": 0.00011134690342139455,
1798
+ "loss": 3.4634,
1799
+ "step": 2300
1800
+ },
1801
+ {
1802
+ "epoch": 0.47,
1803
+ "eval_accuracy": 0.3339822082679226,
1804
+ "eval_loss": 4.2734375,
1805
+ "eval_runtime": 6.5925,
1806
+ "eval_samples_per_second": 5.309,
1807
+ "eval_steps_per_second": 0.303,
1808
+ "step": 2300
1809
+ },
1810
+ {
1811
+ "epoch": 0.48,
1812
+ "learning_rate": 0.00011091381550454742,
1813
+ "loss": 3.4245,
1814
+ "step": 2310
1815
+ },
1816
+ {
1817
+ "epoch": 0.48,
1818
+ "learning_rate": 0.00011048072758770032,
1819
+ "loss": 3.4465,
1820
+ "step": 2320
1821
+ },
1822
+ {
1823
+ "epoch": 0.48,
1824
+ "learning_rate": 0.00011004763967085319,
1825
+ "loss": 3.498,
1826
+ "step": 2330
1827
+ },
1828
+ {
1829
+ "epoch": 0.48,
1830
+ "learning_rate": 0.00010961455175400607,
1831
+ "loss": 3.3637,
1832
+ "step": 2340
1833
+ },
1834
+ {
1835
+ "epoch": 0.48,
1836
+ "learning_rate": 0.00010918146383715895,
1837
+ "loss": 3.4324,
1838
+ "step": 2350
1839
+ },
1840
+ {
1841
+ "epoch": 0.48,
1842
+ "eval_accuracy": 0.333849642421071,
1843
+ "eval_loss": 4.27734375,
1844
+ "eval_runtime": 6.5996,
1845
+ "eval_samples_per_second": 5.303,
1846
+ "eval_steps_per_second": 0.303,
1847
+ "step": 2350
1848
+ },
1849
+ {
1850
+ "epoch": 0.49,
1851
+ "learning_rate": 0.00010874837592031182,
1852
+ "loss": 3.3816,
1853
+ "step": 2360
1854
+ },
1855
+ {
1856
+ "epoch": 0.49,
1857
+ "learning_rate": 0.00010831528800346471,
1858
+ "loss": 3.4245,
1859
+ "step": 2370
1860
+ },
1861
+ {
1862
+ "epoch": 0.49,
1863
+ "learning_rate": 0.00010788220008661758,
1864
+ "loss": 3.4567,
1865
+ "step": 2380
1866
+ },
1867
+ {
1868
+ "epoch": 0.49,
1869
+ "learning_rate": 0.00010744911216977047,
1870
+ "loss": 3.4122,
1871
+ "step": 2390
1872
+ },
1873
+ {
1874
+ "epoch": 0.49,
1875
+ "learning_rate": 0.00010701602425292334,
1876
+ "loss": 3.4039,
1877
+ "step": 2400
1878
+ },
1879
+ {
1880
+ "epoch": 0.49,
1881
+ "eval_accuracy": 0.3344147915576487,
1882
+ "eval_loss": 4.265625,
1883
+ "eval_runtime": 6.5992,
1884
+ "eval_samples_per_second": 5.304,
1885
+ "eval_steps_per_second": 0.303,
1886
+ "step": 2400
1887
+ },
1888
+ {
1889
+ "epoch": 0.5,
1890
+ "learning_rate": 0.00010658293633607624,
1891
+ "loss": 3.4124,
1892
+ "step": 2410
1893
+ },
1894
+ {
1895
+ "epoch": 0.5,
1896
+ "learning_rate": 0.00010614984841922911,
1897
+ "loss": 3.4309,
1898
+ "step": 2420
1899
+ },
1900
+ {
1901
+ "epoch": 0.5,
1902
+ "learning_rate": 0.00010571676050238199,
1903
+ "loss": 3.4464,
1904
+ "step": 2430
1905
+ },
1906
+ {
1907
+ "epoch": 0.5,
1908
+ "learning_rate": 0.00010528367258553486,
1909
+ "loss": 3.4136,
1910
+ "step": 2440
1911
+ },
1912
+ {
1913
+ "epoch": 0.5,
1914
+ "learning_rate": 0.00010485058466868776,
1915
+ "loss": 3.4502,
1916
+ "step": 2450
1917
+ },
1918
+ {
1919
+ "epoch": 0.5,
1920
+ "eval_accuracy": 0.33453340310483165,
1921
+ "eval_loss": 4.265625,
1922
+ "eval_runtime": 6.7512,
1923
+ "eval_samples_per_second": 5.184,
1924
+ "eval_steps_per_second": 0.296,
1925
+ "step": 2450
1926
+ },
1927
+ {
1928
+ "epoch": 0.51,
1929
+ "learning_rate": 0.00010441749675184063,
1930
+ "loss": 3.4062,
1931
+ "step": 2460
1932
+ },
1933
+ {
1934
+ "epoch": 0.51,
1935
+ "learning_rate": 0.00010398440883499351,
1936
+ "loss": 3.3951,
1937
+ "step": 2470
1938
+ },
1939
+ {
1940
+ "epoch": 0.51,
1941
+ "learning_rate": 0.00010355132091814638,
1942
+ "loss": 3.4322,
1943
+ "step": 2480
1944
+ },
1945
+ {
1946
+ "epoch": 0.51,
1947
+ "learning_rate": 0.00010311823300129926,
1948
+ "loss": 3.4107,
1949
+ "step": 2490
1950
+ },
1951
+ {
1952
+ "epoch": 0.51,
1953
+ "learning_rate": 0.00010268514508445215,
1954
+ "loss": 3.4104,
1955
+ "step": 2500
1956
+ },
1957
+ {
1958
+ "epoch": 0.51,
1959
+ "eval_accuracy": 0.33495900924472355,
1960
+ "eval_loss": 4.2578125,
1961
+ "eval_runtime": 6.5889,
1962
+ "eval_samples_per_second": 5.312,
1963
+ "eval_steps_per_second": 0.304,
1964
+ "step": 2500
1965
+ },
1966
+ {
1967
+ "epoch": 0.52,
1968
+ "learning_rate": 0.00010225205716760502,
1969
+ "loss": 3.4181,
1970
+ "step": 2510
1971
+ },
1972
+ {
1973
+ "epoch": 0.52,
1974
+ "learning_rate": 0.00010181896925075791,
1975
+ "loss": 3.3979,
1976
+ "step": 2520
1977
+ },
1978
+ {
1979
+ "epoch": 0.52,
1980
+ "learning_rate": 0.00010138588133391078,
1981
+ "loss": 3.3911,
1982
+ "step": 2530
1983
+ },
1984
+ {
1985
+ "epoch": 0.52,
1986
+ "learning_rate": 0.00010095279341706368,
1987
+ "loss": 3.4303,
1988
+ "step": 2540
1989
+ },
1990
+ {
1991
+ "epoch": 0.52,
1992
+ "learning_rate": 0.00010051970550021655,
1993
+ "loss": 3.5251,
1994
+ "step": 2550
1995
+ },
1996
+ {
1997
+ "epoch": 0.52,
1998
+ "eval_accuracy": 0.33599860457003317,
1999
+ "eval_loss": 4.2578125,
2000
+ "eval_runtime": 6.5946,
2001
+ "eval_samples_per_second": 5.307,
2002
+ "eval_steps_per_second": 0.303,
2003
+ "step": 2550
2004
+ },
2005
+ {
2006
+ "epoch": 0.53,
2007
+ "learning_rate": 0.00010008661758336943,
2008
+ "loss": 3.4337,
2009
+ "step": 2560
2010
+ },
2011
+ {
2012
+ "epoch": 0.53,
2013
+ "learning_rate": 9.96535296665223e-05,
2014
+ "loss": 3.3906,
2015
+ "step": 2570
2016
+ },
2017
+ {
2018
+ "epoch": 0.53,
2019
+ "learning_rate": 9.922044174967519e-05,
2020
+ "loss": 3.4714,
2021
+ "step": 2580
2022
+ },
2023
+ {
2024
+ "epoch": 0.53,
2025
+ "learning_rate": 9.878735383282807e-05,
2026
+ "loss": 3.4061,
2027
+ "step": 2590
2028
+ },
2029
+ {
2030
+ "epoch": 0.53,
2031
+ "learning_rate": 9.835426591598095e-05,
2032
+ "loss": 3.4176,
2033
+ "step": 2600
2034
+ },
2035
+ {
2036
+ "epoch": 0.53,
2037
+ "eval_accuracy": 0.3363404849119135,
2038
+ "eval_loss": 4.25,
2039
+ "eval_runtime": 6.594,
2040
+ "eval_samples_per_second": 5.308,
2041
+ "eval_steps_per_second": 0.303,
2042
+ "step": 2600
2043
+ },
2044
+ {
2045
+ "epoch": 0.54,
2046
+ "learning_rate": 9.792117799913382e-05,
2047
+ "loss": 3.37,
2048
+ "step": 2610
2049
+ },
2050
+ {
2051
+ "epoch": 0.54,
2052
+ "learning_rate": 9.748809008228671e-05,
2053
+ "loss": 3.3931,
2054
+ "step": 2620
2055
+ },
2056
+ {
2057
+ "epoch": 0.54,
2058
+ "learning_rate": 9.705500216543959e-05,
2059
+ "loss": 3.4052,
2060
+ "step": 2630
2061
+ },
2062
+ {
2063
+ "epoch": 0.54,
2064
+ "learning_rate": 9.662191424859248e-05,
2065
+ "loss": 3.4269,
2066
+ "step": 2640
2067
+ },
2068
+ {
2069
+ "epoch": 0.54,
2070
+ "learning_rate": 9.618882633174535e-05,
2071
+ "loss": 3.3795,
2072
+ "step": 2650
2073
+ },
2074
+ {
2075
+ "epoch": 0.54,
2076
+ "eval_accuracy": 0.3354404325832897,
2077
+ "eval_loss": 4.25,
2078
+ "eval_runtime": 6.6039,
2079
+ "eval_samples_per_second": 5.3,
2080
+ "eval_steps_per_second": 0.303,
2081
+ "step": 2650
2082
+ },
2083
+ {
2084
+ "epoch": 0.55,
2085
+ "learning_rate": 9.575573841489823e-05,
2086
+ "loss": 3.4064,
2087
+ "step": 2660
2088
+ },
2089
+ {
2090
+ "epoch": 0.55,
2091
+ "learning_rate": 9.532265049805112e-05,
2092
+ "loss": 3.4207,
2093
+ "step": 2670
2094
+ },
2095
+ {
2096
+ "epoch": 0.55,
2097
+ "learning_rate": 9.488956258120399e-05,
2098
+ "loss": 3.4353,
2099
+ "step": 2680
2100
+ },
2101
+ {
2102
+ "epoch": 0.55,
2103
+ "learning_rate": 9.445647466435687e-05,
2104
+ "loss": 3.4497,
2105
+ "step": 2690
2106
+ },
2107
+ {
2108
+ "epoch": 0.56,
2109
+ "learning_rate": 9.402338674750974e-05,
2110
+ "loss": 3.3656,
2111
+ "step": 2700
2112
+ },
2113
+ {
2114
+ "epoch": 0.56,
2115
+ "eval_accuracy": 0.33636839351125064,
2116
+ "eval_loss": 4.25,
2117
+ "eval_runtime": 6.5948,
2118
+ "eval_samples_per_second": 5.307,
2119
+ "eval_steps_per_second": 0.303,
2120
+ "step": 2700
2121
+ },
2122
+ {
2123
+ "epoch": 0.56,
2124
+ "learning_rate": 9.359029883066262e-05,
2125
+ "loss": 3.3736,
2126
+ "step": 2710
2127
+ },
2128
+ {
2129
+ "epoch": 0.56,
2130
+ "learning_rate": 9.315721091381551e-05,
2131
+ "loss": 3.4236,
2132
+ "step": 2720
2133
+ },
2134
+ {
2135
+ "epoch": 0.56,
2136
+ "learning_rate": 9.272412299696839e-05,
2137
+ "loss": 3.4234,
2138
+ "step": 2730
2139
+ },
2140
+ {
2141
+ "epoch": 0.56,
2142
+ "learning_rate": 9.229103508012126e-05,
2143
+ "loss": 3.3849,
2144
+ "step": 2740
2145
+ },
2146
+ {
2147
+ "epoch": 0.57,
2148
+ "learning_rate": 9.185794716327415e-05,
2149
+ "loss": 3.3938,
2150
+ "step": 2750
2151
+ },
2152
+ {
2153
+ "epoch": 0.57,
2154
+ "eval_accuracy": 0.33627769056340484,
2155
+ "eval_loss": 4.24609375,
2156
+ "eval_runtime": 6.5953,
2157
+ "eval_samples_per_second": 5.307,
2158
+ "eval_steps_per_second": 0.303,
2159
+ "step": 2750
2160
+ },
2161
+ {
2162
+ "epoch": 0.57,
2163
+ "learning_rate": 9.142485924642703e-05,
2164
+ "loss": 3.375,
2165
+ "step": 2760
2166
+ },
2167
+ {
2168
+ "epoch": 0.57,
2169
+ "learning_rate": 9.099177132957992e-05,
2170
+ "loss": 3.4365,
2171
+ "step": 2770
2172
+ },
2173
+ {
2174
+ "epoch": 0.57,
2175
+ "learning_rate": 9.055868341273279e-05,
2176
+ "loss": 3.4068,
2177
+ "step": 2780
2178
+ },
2179
+ {
2180
+ "epoch": 0.57,
2181
+ "learning_rate": 9.012559549588567e-05,
2182
+ "loss": 3.4333,
2183
+ "step": 2790
2184
+ },
2185
+ {
2186
+ "epoch": 0.58,
2187
+ "learning_rate": 8.969250757903855e-05,
2188
+ "loss": 3.3757,
2189
+ "step": 2800
2190
+ },
2191
+ {
2192
+ "epoch": 0.58,
2193
+ "eval_accuracy": 0.33639630211058785,
2194
+ "eval_loss": 4.24609375,
2195
+ "eval_runtime": 6.5987,
2196
+ "eval_samples_per_second": 5.304,
2197
+ "eval_steps_per_second": 0.303,
2198
+ "step": 2800
2199
+ },
2200
+ {
2201
+ "epoch": 0.58,
2202
+ "learning_rate": 8.925941966219143e-05,
2203
+ "loss": 3.4111,
2204
+ "step": 2810
2205
+ },
2206
+ {
2207
+ "epoch": 0.58,
2208
+ "learning_rate": 8.882633174534431e-05,
2209
+ "loss": 3.4143,
2210
+ "step": 2820
2211
+ },
2212
+ {
2213
+ "epoch": 0.58,
2214
+ "learning_rate": 8.839324382849718e-05,
2215
+ "loss": 3.4307,
2216
+ "step": 2830
2217
+ },
2218
+ {
2219
+ "epoch": 0.58,
2220
+ "learning_rate": 8.796015591165006e-05,
2221
+ "loss": 3.3366,
2222
+ "step": 2840
2223
+ },
2224
+ {
2225
+ "epoch": 0.59,
2226
+ "learning_rate": 8.752706799480295e-05,
2227
+ "loss": 3.407,
2228
+ "step": 2850
2229
+ },
2230
+ {
2231
+ "epoch": 0.59,
2232
+ "eval_accuracy": 0.33731728588871446,
2233
+ "eval_loss": 4.234375,
2234
+ "eval_runtime": 6.6038,
2235
+ "eval_samples_per_second": 5.3,
2236
+ "eval_steps_per_second": 0.303,
2237
+ "step": 2850
2238
+ },
2239
+ {
2240
+ "epoch": 0.59,
2241
+ "learning_rate": 8.709398007795583e-05,
2242
+ "loss": 3.3506,
2243
+ "step": 2860
2244
+ },
2245
+ {
2246
+ "epoch": 0.59,
2247
+ "learning_rate": 8.66608921611087e-05,
2248
+ "loss": 3.429,
2249
+ "step": 2870
2250
+ },
2251
+ {
2252
+ "epoch": 0.59,
2253
+ "learning_rate": 8.622780424426159e-05,
2254
+ "loss": 3.338,
2255
+ "step": 2880
2256
+ },
2257
+ {
2258
+ "epoch": 0.59,
2259
+ "learning_rate": 8.579471632741447e-05,
2260
+ "loss": 3.4252,
2261
+ "step": 2890
2262
+ },
2263
+ {
2264
+ "epoch": 0.6,
2265
+ "learning_rate": 8.536162841056736e-05,
2266
+ "loss": 3.3986,
2267
+ "step": 2900
2268
+ },
2269
+ {
2270
+ "epoch": 0.6,
2271
+ "eval_accuracy": 0.33657770800627945,
2272
+ "eval_loss": 4.23828125,
2273
+ "eval_runtime": 6.5874,
2274
+ "eval_samples_per_second": 5.313,
2275
+ "eval_steps_per_second": 0.304,
2276
+ "step": 2900
2277
+ },
2278
+ {
2279
+ "epoch": 0.6,
2280
+ "learning_rate": 8.492854049372023e-05,
2281
+ "loss": 3.4023,
2282
+ "step": 2910
2283
+ },
2284
+ {
2285
+ "epoch": 0.6,
2286
+ "learning_rate": 8.449545257687311e-05,
2287
+ "loss": 3.3919,
2288
+ "step": 2920
2289
+ },
2290
+ {
2291
+ "epoch": 0.6,
2292
+ "learning_rate": 8.4062364660026e-05,
2293
+ "loss": 3.3691,
2294
+ "step": 2930
2295
+ },
2296
+ {
2297
+ "epoch": 0.6,
2298
+ "learning_rate": 8.362927674317888e-05,
2299
+ "loss": 3.4017,
2300
+ "step": 2940
2301
+ },
2302
+ {
2303
+ "epoch": 0.61,
2304
+ "learning_rate": 8.319618882633175e-05,
2305
+ "loss": 3.4311,
2306
+ "step": 2950
2307
+ },
2308
+ {
2309
+ "epoch": 0.61,
2310
+ "eval_accuracy": 0.3370940170940171,
2311
+ "eval_loss": 4.234375,
2312
+ "eval_runtime": 6.5922,
2313
+ "eval_samples_per_second": 5.309,
2314
+ "eval_steps_per_second": 0.303,
2315
+ "step": 2950
2316
+ },
2317
+ {
2318
+ "epoch": 0.61,
2319
+ "learning_rate": 8.276310090948462e-05,
2320
+ "loss": 3.4224,
2321
+ "step": 2960
2322
+ },
2323
+ {
2324
+ "epoch": 0.61,
2325
+ "learning_rate": 8.23300129926375e-05,
2326
+ "loss": 3.3781,
2327
+ "step": 2970
2328
+ },
2329
+ {
2330
+ "epoch": 0.61,
2331
+ "learning_rate": 8.189692507579039e-05,
2332
+ "loss": 3.383,
2333
+ "step": 2980
2334
+ },
2335
+ {
2336
+ "epoch": 0.61,
2337
+ "learning_rate": 8.146383715894327e-05,
2338
+ "loss": 3.4332,
2339
+ "step": 2990
2340
+ },
2341
+ {
2342
+ "epoch": 0.62,
2343
+ "learning_rate": 8.103074924209616e-05,
2344
+ "loss": 3.3716,
2345
+ "step": 3000
2346
+ },
2347
+ {
2348
+ "epoch": 0.62,
2349
+ "eval_accuracy": 0.33713587999302286,
2350
+ "eval_loss": 4.234375,
2351
+ "eval_runtime": 6.5875,
2352
+ "eval_samples_per_second": 5.313,
2353
+ "eval_steps_per_second": 0.304,
2354
+ "step": 3000
2355
+ },
2356
+ {
2357
+ "epoch": 0.62,
2358
+ "learning_rate": 8.059766132524903e-05,
2359
+ "loss": 3.4123,
2360
+ "step": 3010
2361
+ },
2362
+ {
2363
+ "epoch": 0.62,
2364
+ "learning_rate": 8.016457340840191e-05,
2365
+ "loss": 3.4181,
2366
+ "step": 3020
2367
+ },
2368
+ {
2369
+ "epoch": 0.62,
2370
+ "learning_rate": 7.97314854915548e-05,
2371
+ "loss": 3.3851,
2372
+ "step": 3030
2373
+ },
2374
+ {
2375
+ "epoch": 0.63,
2376
+ "learning_rate": 7.929839757470768e-05,
2377
+ "loss": 3.4224,
2378
+ "step": 3040
2379
+ },
2380
+ {
2381
+ "epoch": 0.63,
2382
+ "learning_rate": 7.886530965786055e-05,
2383
+ "loss": 3.3831,
2384
+ "step": 3050
2385
+ },
2386
+ {
2387
+ "epoch": 0.63,
2388
+ "eval_accuracy": 0.33774986917844063,
2389
+ "eval_loss": 4.23046875,
2390
+ "eval_runtime": 6.5895,
2391
+ "eval_samples_per_second": 5.311,
2392
+ "eval_steps_per_second": 0.304,
2393
+ "step": 3050
2394
+ },
2395
+ {
2396
+ "epoch": 0.63,
2397
+ "learning_rate": 7.843222174101343e-05,
2398
+ "loss": 3.3965,
2399
+ "step": 3060
2400
+ },
2401
+ {
2402
+ "epoch": 0.63,
2403
+ "learning_rate": 7.799913382416632e-05,
2404
+ "loss": 3.4016,
2405
+ "step": 3070
2406
+ },
2407
+ {
2408
+ "epoch": 0.63,
2409
+ "learning_rate": 7.756604590731919e-05,
2410
+ "loss": 3.4047,
2411
+ "step": 3080
2412
+ },
2413
+ {
2414
+ "epoch": 0.64,
2415
+ "learning_rate": 7.713295799047207e-05,
2416
+ "loss": 3.3618,
2417
+ "step": 3090
2418
+ },
2419
+ {
2420
+ "epoch": 0.64,
2421
+ "learning_rate": 7.669987007362494e-05,
2422
+ "loss": 3.375,
2423
+ "step": 3100
2424
+ },
2425
+ {
2426
+ "epoch": 0.64,
2427
+ "eval_accuracy": 0.3377638234781092,
2428
+ "eval_loss": 4.23046875,
2429
+ "eval_runtime": 6.5887,
2430
+ "eval_samples_per_second": 5.312,
2431
+ "eval_steps_per_second": 0.304,
2432
+ "step": 3100
2433
+ },
2434
+ {
2435
+ "epoch": 0.64,
2436
+ "learning_rate": 7.626678215677783e-05,
2437
+ "loss": 3.3899,
2438
+ "step": 3110
2439
+ },
2440
+ {
2441
+ "epoch": 0.64,
2442
+ "learning_rate": 7.583369423993071e-05,
2443
+ "loss": 3.3723,
2444
+ "step": 3120
2445
+ },
2446
+ {
2447
+ "epoch": 0.64,
2448
+ "learning_rate": 7.54006063230836e-05,
2449
+ "loss": 3.381,
2450
+ "step": 3130
2451
+ },
2452
+ {
2453
+ "epoch": 0.65,
2454
+ "learning_rate": 7.496751840623647e-05,
2455
+ "loss": 3.3558,
2456
+ "step": 3140
2457
+ },
2458
+ {
2459
+ "epoch": 0.65,
2460
+ "learning_rate": 7.453443048938935e-05,
2461
+ "loss": 3.3677,
2462
+ "step": 3150
2463
+ },
2464
+ {
2465
+ "epoch": 0.65,
2466
+ "eval_accuracy": 0.33846851561137276,
2467
+ "eval_loss": 4.21875,
2468
+ "eval_runtime": 6.5962,
2469
+ "eval_samples_per_second": 5.306,
2470
+ "eval_steps_per_second": 0.303,
2471
+ "step": 3150
2472
+ },
2473
+ {
2474
+ "epoch": 0.65,
2475
+ "learning_rate": 7.410134257254223e-05,
2476
+ "loss": 3.3414,
2477
+ "step": 3160
2478
+ },
2479
+ {
2480
+ "epoch": 0.65,
2481
+ "learning_rate": 7.366825465569512e-05,
2482
+ "loss": 3.4144,
2483
+ "step": 3170
2484
+ },
2485
+ {
2486
+ "epoch": 0.65,
2487
+ "learning_rate": 7.323516673884799e-05,
2488
+ "loss": 3.3503,
2489
+ "step": 3180
2490
+ },
2491
+ {
2492
+ "epoch": 0.66,
2493
+ "learning_rate": 7.280207882200087e-05,
2494
+ "loss": 3.3716,
2495
+ "step": 3190
2496
+ },
2497
+ {
2498
+ "epoch": 0.66,
2499
+ "learning_rate": 7.236899090515376e-05,
2500
+ "loss": 3.3968,
2501
+ "step": 3200
2502
+ },
2503
+ {
2504
+ "epoch": 0.66,
2505
+ "eval_accuracy": 0.3386220129077272,
2506
+ "eval_loss": 4.22265625,
2507
+ "eval_runtime": 6.5929,
2508
+ "eval_samples_per_second": 5.309,
2509
+ "eval_steps_per_second": 0.303,
2510
+ "step": 3200
2511
+ },
2512
+ {
2513
+ "epoch": 0.66,
2514
+ "learning_rate": 7.193590298830663e-05,
2515
+ "loss": 3.3485,
2516
+ "step": 3210
2517
+ },
2518
+ {
2519
+ "epoch": 0.66,
2520
+ "learning_rate": 7.150281507145951e-05,
2521
+ "loss": 3.4172,
2522
+ "step": 3220
2523
+ },
2524
+ {
2525
+ "epoch": 0.66,
2526
+ "learning_rate": 7.106972715461238e-05,
2527
+ "loss": 3.3727,
2528
+ "step": 3230
2529
+ },
2530
+ {
2531
+ "epoch": 0.67,
2532
+ "learning_rate": 7.063663923776527e-05,
2533
+ "loss": 3.3616,
2534
+ "step": 3240
2535
+ },
2536
+ {
2537
+ "epoch": 0.67,
2538
+ "learning_rate": 7.020355132091815e-05,
2539
+ "loss": 3.4069,
2540
+ "step": 3250
2541
+ },
2542
+ {
2543
+ "epoch": 0.67,
2544
+ "eval_accuracy": 0.3380429094714809,
2545
+ "eval_loss": 4.21875,
2546
+ "eval_runtime": 6.5865,
2547
+ "eval_samples_per_second": 5.314,
2548
+ "eval_steps_per_second": 0.304,
2549
+ "step": 3250
2550
+ },
2551
+ {
2552
+ "epoch": 0.67,
2553
+ "learning_rate": 6.977046340407103e-05,
2554
+ "loss": 3.3583,
2555
+ "step": 3260
2556
+ },
2557
+ {
2558
+ "epoch": 0.67,
2559
+ "learning_rate": 6.93373754872239e-05,
2560
+ "loss": 3.3753,
2561
+ "step": 3270
2562
+ },
2563
+ {
2564
+ "epoch": 0.67,
2565
+ "learning_rate": 6.890428757037679e-05,
2566
+ "loss": 3.3443,
2567
+ "step": 3280
2568
+ },
2569
+ {
2570
+ "epoch": 0.68,
2571
+ "learning_rate": 6.847119965352967e-05,
2572
+ "loss": 3.3682,
2573
+ "step": 3290
2574
+ },
2575
+ {
2576
+ "epoch": 0.68,
2577
+ "learning_rate": 6.803811173668256e-05,
2578
+ "loss": 3.4192,
2579
+ "step": 3300
2580
+ },
2581
+ {
2582
+ "epoch": 0.68,
2583
+ "eval_accuracy": 0.33877551020408164,
2584
+ "eval_loss": 4.21484375,
2585
+ "eval_runtime": 6.6033,
2586
+ "eval_samples_per_second": 5.3,
2587
+ "eval_steps_per_second": 0.303,
2588
+ "step": 3300
2589
+ },
2590
+ {
2591
+ "epoch": 0.68,
2592
+ "learning_rate": 6.760502381983543e-05,
2593
+ "loss": 3.3657,
2594
+ "step": 3310
2595
+ },
2596
+ {
2597
+ "epoch": 0.68,
2598
+ "learning_rate": 6.717193590298831e-05,
2599
+ "loss": 3.3773,
2600
+ "step": 3320
2601
+ },
2602
+ {
2603
+ "epoch": 0.68,
2604
+ "learning_rate": 6.67388479861412e-05,
2605
+ "loss": 3.3604,
2606
+ "step": 3330
2607
+ },
2608
+ {
2609
+ "epoch": 0.69,
2610
+ "learning_rate": 6.630576006929407e-05,
2611
+ "loss": 3.404,
2612
+ "step": 3340
2613
+ },
2614
+ {
2615
+ "epoch": 0.69,
2616
+ "learning_rate": 6.587267215244695e-05,
2617
+ "loss": 3.3881,
2618
+ "step": 3350
2619
+ },
2620
+ {
2621
+ "epoch": 0.69,
2622
+ "eval_accuracy": 0.33830804116518404,
2623
+ "eval_loss": 4.21484375,
2624
+ "eval_runtime": 6.6138,
2625
+ "eval_samples_per_second": 5.292,
2626
+ "eval_steps_per_second": 0.302,
2627
+ "step": 3350
2628
+ },
2629
+ {
2630
+ "epoch": 0.69,
2631
+ "learning_rate": 6.543958423559982e-05,
2632
+ "loss": 3.3855,
2633
+ "step": 3360
2634
+ },
2635
+ {
2636
+ "epoch": 0.69,
2637
+ "learning_rate": 6.50064963187527e-05,
2638
+ "loss": 3.314,
2639
+ "step": 3370
2640
+ },
2641
+ {
2642
+ "epoch": 0.7,
2643
+ "learning_rate": 6.457340840190559e-05,
2644
+ "loss": 3.4034,
2645
+ "step": 3380
2646
+ },
2647
+ {
2648
+ "epoch": 0.7,
2649
+ "learning_rate": 6.414032048505847e-05,
2650
+ "loss": 3.3969,
2651
+ "step": 3390
2652
+ },
2653
+ {
2654
+ "epoch": 0.7,
2655
+ "learning_rate": 6.370723256821134e-05,
2656
+ "loss": 3.3858,
2657
+ "step": 3400
2658
+ },
2659
+ {
2660
+ "epoch": 0.7,
2661
+ "eval_accuracy": 0.33836385836385835,
2662
+ "eval_loss": 4.2109375,
2663
+ "eval_runtime": 6.6099,
2664
+ "eval_samples_per_second": 5.295,
2665
+ "eval_steps_per_second": 0.303,
2666
+ "step": 3400
2667
+ },
2668
+ {
2669
+ "epoch": 0.7,
2670
+ "learning_rate": 6.327414465136423e-05,
2671
+ "loss": 3.388,
2672
+ "step": 3410
2673
+ },
2674
+ {
2675
+ "epoch": 0.7,
2676
+ "learning_rate": 6.284105673451711e-05,
2677
+ "loss": 3.3832,
2678
+ "step": 3420
2679
+ },
2680
+ {
2681
+ "epoch": 0.71,
2682
+ "learning_rate": 6.240796881767e-05,
2683
+ "loss": 3.3098,
2684
+ "step": 3430
2685
+ },
2686
+ {
2687
+ "epoch": 0.71,
2688
+ "learning_rate": 6.197488090082287e-05,
2689
+ "loss": 3.3794,
2690
+ "step": 3440
2691
+ },
2692
+ {
2693
+ "epoch": 0.71,
2694
+ "learning_rate": 6.154179298397575e-05,
2695
+ "loss": 3.3999,
2696
+ "step": 3450
2697
+ },
2698
+ {
2699
+ "epoch": 0.71,
2700
+ "eval_accuracy": 0.33883132740275596,
2701
+ "eval_loss": 4.2109375,
2702
+ "eval_runtime": 6.6039,
2703
+ "eval_samples_per_second": 5.3,
2704
+ "eval_steps_per_second": 0.303,
2705
+ "step": 3450
2706
+ },
2707
+ {
2708
+ "epoch": 0.71,
2709
+ "learning_rate": 6.110870506712864e-05,
2710
+ "loss": 3.3278,
2711
+ "step": 3460
2712
+ },
2713
+ {
2714
+ "epoch": 0.71,
2715
+ "learning_rate": 6.0675617150281506e-05,
2716
+ "loss": 3.3645,
2717
+ "step": 3470
2718
+ },
2719
+ {
2720
+ "epoch": 0.72,
2721
+ "learning_rate": 6.024252923343438e-05,
2722
+ "loss": 3.3563,
2723
+ "step": 3480
2724
+ },
2725
+ {
2726
+ "epoch": 0.72,
2727
+ "learning_rate": 5.985275010827198e-05,
2728
+ "loss": 3.358,
2729
+ "step": 3490
2730
+ },
2731
+ {
2732
+ "epoch": 0.72,
2733
+ "learning_rate": 5.9419662191424864e-05,
2734
+ "loss": 3.3907,
2735
+ "step": 3500
2736
+ },
2737
+ {
2738
+ "epoch": 0.72,
2739
+ "eval_accuracy": 0.33894296180010464,
2740
+ "eval_loss": 4.2109375,
2741
+ "eval_runtime": 6.6054,
2742
+ "eval_samples_per_second": 5.299,
2743
+ "eval_steps_per_second": 0.303,
2744
+ "step": 3500
2745
+ },
2746
+ {
2747
+ "epoch": 0.72,
2748
+ "learning_rate": 5.898657427457774e-05,
2749
+ "loss": 3.4023,
2750
+ "step": 3510
2751
+ },
2752
+ {
2753
+ "epoch": 0.72,
2754
+ "learning_rate": 5.8553486357730626e-05,
2755
+ "loss": 3.3519,
2756
+ "step": 3520
2757
+ },
2758
+ {
2759
+ "epoch": 0.73,
2760
+ "learning_rate": 5.81203984408835e-05,
2761
+ "loss": 3.3514,
2762
+ "step": 3530
2763
+ },
2764
+ {
2765
+ "epoch": 0.73,
2766
+ "learning_rate": 5.768731052403639e-05,
2767
+ "loss": 3.3151,
2768
+ "step": 3540
2769
+ },
2770
+ {
2771
+ "epoch": 0.73,
2772
+ "learning_rate": 5.7254222607189265e-05,
2773
+ "loss": 3.3929,
2774
+ "step": 3550
2775
+ },
2776
+ {
2777
+ "epoch": 0.73,
2778
+ "eval_accuracy": 0.33893598465027036,
2779
+ "eval_loss": 4.2109375,
2780
+ "eval_runtime": 6.5935,
2781
+ "eval_samples_per_second": 5.308,
2782
+ "eval_steps_per_second": 0.303,
2783
+ "step": 3550
2784
+ },
2785
+ {
2786
+ "epoch": 0.73,
2787
+ "learning_rate": 5.6821134690342135e-05,
2788
+ "loss": 3.3983,
2789
+ "step": 3560
2790
+ },
2791
+ {
2792
+ "epoch": 0.73,
2793
+ "learning_rate": 5.638804677349502e-05,
2794
+ "loss": 3.3281,
2795
+ "step": 3570
2796
+ },
2797
+ {
2798
+ "epoch": 0.74,
2799
+ "learning_rate": 5.59549588566479e-05,
2800
+ "loss": 3.3654,
2801
+ "step": 3580
2802
+ },
2803
+ {
2804
+ "epoch": 0.74,
2805
+ "learning_rate": 5.552187093980078e-05,
2806
+ "loss": 3.379,
2807
+ "step": 3590
2808
+ },
2809
+ {
2810
+ "epoch": 0.74,
2811
+ "learning_rate": 5.508878302295366e-05,
2812
+ "loss": 3.3738,
2813
+ "step": 3600
2814
+ },
2815
+ {
2816
+ "epoch": 0.74,
2817
+ "eval_accuracy": 0.33964067678353393,
2818
+ "eval_loss": 4.20703125,
2819
+ "eval_runtime": 6.6063,
2820
+ "eval_samples_per_second": 5.298,
2821
+ "eval_steps_per_second": 0.303,
2822
+ "step": 3600
2823
+ },
2824
+ {
2825
+ "epoch": 0.74,
2826
+ "learning_rate": 5.465569510610654e-05,
2827
+ "loss": 3.3727,
2828
+ "step": 3610
2829
+ },
2830
+ {
2831
+ "epoch": 0.74,
2832
+ "learning_rate": 5.426591598094414e-05,
2833
+ "loss": 3.3401,
2834
+ "step": 3620
2835
+ },
2836
+ {
2837
+ "epoch": 0.75,
2838
+ "learning_rate": 5.3832828064097017e-05,
2839
+ "loss": 3.3583,
2840
+ "step": 3630
2841
+ },
2842
+ {
2843
+ "epoch": 0.75,
2844
+ "learning_rate": 5.33997401472499e-05,
2845
+ "loss": 3.3868,
2846
+ "step": 3640
2847
+ },
2848
+ {
2849
+ "epoch": 0.75,
2850
+ "learning_rate": 5.296665223040277e-05,
2851
+ "loss": 3.3839,
2852
+ "step": 3650
2853
+ },
2854
+ {
2855
+ "epoch": 0.75,
2856
+ "eval_accuracy": 0.3392918192918193,
2857
+ "eval_loss": 4.20703125,
2858
+ "eval_runtime": 6.5952,
2859
+ "eval_samples_per_second": 5.307,
2860
+ "eval_steps_per_second": 0.303,
2861
+ "step": 3650
2862
+ },
2863
+ {
2864
+ "epoch": 0.75,
2865
+ "learning_rate": 5.253356431355565e-05,
2866
+ "loss": 3.3713,
2867
+ "step": 3660
2868
+ },
2869
+ {
2870
+ "epoch": 0.75,
2871
+ "learning_rate": 5.210047639670853e-05,
2872
+ "loss": 3.3649,
2873
+ "step": 3670
2874
+ },
2875
+ {
2876
+ "epoch": 0.76,
2877
+ "learning_rate": 5.166738847986141e-05,
2878
+ "loss": 3.3836,
2879
+ "step": 3680
2880
+ },
2881
+ {
2882
+ "epoch": 0.76,
2883
+ "learning_rate": 5.1234300563014294e-05,
2884
+ "loss": 3.3227,
2885
+ "step": 3690
2886
+ },
2887
+ {
2888
+ "epoch": 0.76,
2889
+ "learning_rate": 5.080121264616717e-05,
2890
+ "loss": 3.3854,
2891
+ "step": 3700
2892
+ },
2893
+ {
2894
+ "epoch": 0.76,
2895
+ "eval_accuracy": 0.3399546485260771,
2896
+ "eval_loss": 4.20703125,
2897
+ "eval_runtime": 6.6101,
2898
+ "eval_samples_per_second": 5.295,
2899
+ "eval_steps_per_second": 0.303,
2900
+ "step": 3700
2901
+ },
2902
+ {
2903
+ "epoch": 0.76,
2904
+ "learning_rate": 5.0368124729320056e-05,
2905
+ "loss": 3.3536,
2906
+ "step": 3710
2907
+ },
2908
+ {
2909
+ "epoch": 0.77,
2910
+ "learning_rate": 4.993503681247293e-05,
2911
+ "loss": 3.3943,
2912
+ "step": 3720
2913
+ },
2914
+ {
2915
+ "epoch": 0.77,
2916
+ "learning_rate": 4.950194889562582e-05,
2917
+ "loss": 3.3705,
2918
+ "step": 3730
2919
+ },
2920
+ {
2921
+ "epoch": 0.77,
2922
+ "learning_rate": 4.9068860978778694e-05,
2923
+ "loss": 3.3525,
2924
+ "step": 3740
2925
+ },
2926
+ {
2927
+ "epoch": 0.77,
2928
+ "learning_rate": 4.863577306193157e-05,
2929
+ "loss": 3.297,
2930
+ "step": 3750
2931
+ },
2932
+ {
2933
+ "epoch": 0.77,
2934
+ "eval_accuracy": 0.339236002093145,
2935
+ "eval_loss": 4.20703125,
2936
+ "eval_runtime": 6.5942,
2937
+ "eval_samples_per_second": 5.308,
2938
+ "eval_steps_per_second": 0.303,
2939
+ "step": 3750
2940
+ },
2941
+ {
2942
+ "epoch": 0.77,
2943
+ "learning_rate": 4.8202685145084456e-05,
2944
+ "loss": 3.3305,
2945
+ "step": 3760
2946
+ },
2947
+ {
2948
+ "epoch": 0.78,
2949
+ "learning_rate": 4.776959722823733e-05,
2950
+ "loss": 3.3789,
2951
+ "step": 3770
2952
+ },
2953
+ {
2954
+ "epoch": 0.78,
2955
+ "learning_rate": 4.733650931139022e-05,
2956
+ "loss": 3.4127,
2957
+ "step": 3780
2958
+ },
2959
+ {
2960
+ "epoch": 0.78,
2961
+ "learning_rate": 4.6903421394543095e-05,
2962
+ "loss": 3.3234,
2963
+ "step": 3790
2964
+ },
2965
+ {
2966
+ "epoch": 0.78,
2967
+ "learning_rate": 4.647033347769598e-05,
2968
+ "loss": 3.2951,
2969
+ "step": 3800
2970
+ },
2971
+ {
2972
+ "epoch": 0.78,
2973
+ "eval_accuracy": 0.3394732251875109,
2974
+ "eval_loss": 4.203125,
2975
+ "eval_runtime": 6.5899,
2976
+ "eval_samples_per_second": 5.311,
2977
+ "eval_steps_per_second": 0.303,
2978
+ "step": 3800
2979
+ },
2980
+ {
2981
+ "epoch": 0.78,
2982
+ "learning_rate": 4.603724556084885e-05,
2983
+ "loss": 3.3538,
2984
+ "step": 3810
2985
+ },
2986
+ {
2987
+ "epoch": 0.79,
2988
+ "learning_rate": 4.5604157644001733e-05,
2989
+ "loss": 3.4101,
2990
+ "step": 3820
2991
+ },
2992
+ {
2993
+ "epoch": 0.79,
2994
+ "learning_rate": 4.517106972715461e-05,
2995
+ "loss": 3.3232,
2996
+ "step": 3830
2997
+ },
2998
+ {
2999
+ "epoch": 0.79,
3000
+ "learning_rate": 4.4737981810307495e-05,
3001
+ "loss": 3.3519,
3002
+ "step": 3840
3003
+ },
3004
+ {
3005
+ "epoch": 0.79,
3006
+ "learning_rate": 4.430489389346037e-05,
3007
+ "loss": 3.3587,
3008
+ "step": 3850
3009
+ },
3010
+ {
3011
+ "epoch": 0.79,
3012
+ "eval_accuracy": 0.3401709401709402,
3013
+ "eval_loss": 4.19921875,
3014
+ "eval_runtime": 6.5915,
3015
+ "eval_samples_per_second": 5.31,
3016
+ "eval_steps_per_second": 0.303,
3017
+ "step": 3850
3018
+ },
3019
+ {
3020
+ "epoch": 0.79,
3021
+ "learning_rate": 4.3871805976613256e-05,
3022
+ "loss": 3.3519,
3023
+ "step": 3860
3024
+ },
3025
+ {
3026
+ "epoch": 0.8,
3027
+ "learning_rate": 4.3438718059766134e-05,
3028
+ "loss": 3.3635,
3029
+ "step": 3870
3030
+ },
3031
+ {
3032
+ "epoch": 0.8,
3033
+ "learning_rate": 4.300563014291901e-05,
3034
+ "loss": 3.4013,
3035
+ "step": 3880
3036
+ },
3037
+ {
3038
+ "epoch": 0.8,
3039
+ "learning_rate": 4.2572542226071895e-05,
3040
+ "loss": 3.3224,
3041
+ "step": 3890
3042
+ },
3043
+ {
3044
+ "epoch": 0.8,
3045
+ "learning_rate": 4.213945430922477e-05,
3046
+ "loss": 3.3237,
3047
+ "step": 3900
3048
+ },
3049
+ {
3050
+ "epoch": 0.8,
3051
+ "eval_accuracy": 0.33935461364032793,
3052
+ "eval_loss": 4.203125,
3053
+ "eval_runtime": 6.5894,
3054
+ "eval_samples_per_second": 5.312,
3055
+ "eval_steps_per_second": 0.304,
3056
+ "step": 3900
3057
+ },
3058
+ {
3059
+ "epoch": 0.8,
3060
+ "learning_rate": 4.170636639237766e-05,
3061
+ "loss": 3.3706,
3062
+ "step": 3910
3063
+ },
3064
+ {
3065
+ "epoch": 0.81,
3066
+ "learning_rate": 4.1273278475530534e-05,
3067
+ "loss": 3.3024,
3068
+ "step": 3920
3069
+ },
3070
+ {
3071
+ "epoch": 0.81,
3072
+ "learning_rate": 4.084019055868342e-05,
3073
+ "loss": 3.3717,
3074
+ "step": 3930
3075
+ },
3076
+ {
3077
+ "epoch": 0.81,
3078
+ "learning_rate": 4.0407102641836295e-05,
3079
+ "loss": 3.35,
3080
+ "step": 3940
3081
+ },
3082
+ {
3083
+ "epoch": 0.81,
3084
+ "learning_rate": 3.997401472498917e-05,
3085
+ "loss": 3.3136,
3086
+ "step": 3950
3087
+ },
3088
+ {
3089
+ "epoch": 0.81,
3090
+ "eval_accuracy": 0.3393267050409908,
3091
+ "eval_loss": 4.203125,
3092
+ "eval_runtime": 6.6033,
3093
+ "eval_samples_per_second": 5.3,
3094
+ "eval_steps_per_second": 0.303,
3095
+ "step": 3950
3096
+ },
3097
+ {
3098
+ "epoch": 0.81,
3099
+ "learning_rate": 3.954092680814206e-05,
3100
+ "loss": 3.3281,
3101
+ "step": 3960
3102
+ },
3103
+ {
3104
+ "epoch": 0.82,
3105
+ "learning_rate": 3.9107838891294934e-05,
3106
+ "loss": 3.2916,
3107
+ "step": 3970
3108
+ },
3109
+ {
3110
+ "epoch": 0.82,
3111
+ "learning_rate": 3.867475097444782e-05,
3112
+ "loss": 3.3578,
3113
+ "step": 3980
3114
+ },
3115
+ {
3116
+ "epoch": 0.82,
3117
+ "learning_rate": 3.8241663057600696e-05,
3118
+ "loss": 3.3789,
3119
+ "step": 3990
3120
+ },
3121
+ {
3122
+ "epoch": 0.82,
3123
+ "learning_rate": 3.780857514075358e-05,
3124
+ "loss": 3.3367,
3125
+ "step": 4000
3126
+ },
3127
+ {
3128
+ "epoch": 0.82,
3129
+ "eval_accuracy": 0.33942438513867085,
3130
+ "eval_loss": 4.203125,
3131
+ "eval_runtime": 6.5852,
3132
+ "eval_samples_per_second": 5.315,
3133
+ "eval_steps_per_second": 0.304,
3134
+ "step": 4000
3135
+ }
3136
+ ],
3137
+ "max_steps": 4862,
3138
+ "num_train_epochs": 1,
3139
+ "total_flos": 4.250832212066304e+19,
3140
+ "trial_name": null,
3141
+ "trial_params": null
3142
+ }
checkpoint-4000/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8882a918bcb9a315dfcc77f1a3a879de69b8b68f463ac4b04ba7f0c085598f2d
3
+ size 5115
checkpoint-4000/zero_to_fp32.py ADDED
@@ -0,0 +1,578 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example: python zero_to_fp32.py . pytorch_model.bin
14
+
15
+ import argparse
16
+ import torch
17
+ import glob
18
+ import math
19
+ import os
20
+ import re
21
+ from collections import OrderedDict
22
+ from dataclasses import dataclass
23
+
24
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
25
+ # DeepSpeed data structures it has to be available in the current python environment.
26
+ from deepspeed.utils import logger
27
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
28
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
29
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
30
+
31
+
32
+ @dataclass
33
+ class zero_model_state:
34
+ buffers: dict()
35
+ param_shapes: dict()
36
+ shared_params: list
37
+ ds_version: int
38
+ frozen_param_shapes: dict()
39
+ frozen_param_fragments: dict()
40
+
41
+
42
+ debug = 0
43
+
44
+ # load to cpu
45
+ device = torch.device('cpu')
46
+
47
+
48
+ def atoi(text):
49
+ return int(text) if text.isdigit() else text
50
+
51
+
52
+ def natural_keys(text):
53
+ '''
54
+ alist.sort(key=natural_keys) sorts in human order
55
+ http://nedbatchelder.com/blog/200712/human_sorting.html
56
+ (See Toothy's implementation in the comments)
57
+ '''
58
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
59
+
60
+
61
+ def get_model_state_file(checkpoint_dir, zero_stage):
62
+ if not os.path.isdir(checkpoint_dir):
63
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
64
+
65
+ # there should be only one file
66
+ if zero_stage == 2:
67
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
68
+ elif zero_stage == 3:
69
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
70
+
71
+ if not os.path.exists(file):
72
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
73
+
74
+ return file
75
+
76
+
77
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
78
+ # XXX: need to test that this simple glob rule works for multi-node setup too
79
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
80
+
81
+ if len(ckpt_files) == 0:
82
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
83
+
84
+ return ckpt_files
85
+
86
+
87
+ def get_optim_files(checkpoint_dir):
88
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
89
+
90
+
91
+ def get_model_state_files(checkpoint_dir):
92
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
93
+
94
+
95
+ def parse_model_states(files):
96
+ zero_model_states = []
97
+ for file in files:
98
+ state_dict = torch.load(file, map_location=device)
99
+
100
+ if BUFFER_NAMES not in state_dict:
101
+ raise ValueError(f"{file} is not a model state checkpoint")
102
+ buffer_names = state_dict[BUFFER_NAMES]
103
+ if debug:
104
+ print("Found buffers:", buffer_names)
105
+
106
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
107
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
108
+ param_shapes = state_dict[PARAM_SHAPES]
109
+
110
+ # collect parameters that are included in param_shapes
111
+ param_names = []
112
+ for s in param_shapes:
113
+ for name in s.keys():
114
+ param_names.append(name)
115
+
116
+ # update with frozen parameters
117
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
118
+ if frozen_param_shapes is not None:
119
+ if debug:
120
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
121
+ param_names += list(frozen_param_shapes.keys())
122
+
123
+ # handle shared params
124
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
125
+
126
+ ds_version = state_dict.get(DS_VERSION, None)
127
+
128
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
129
+
130
+ z_model_state = zero_model_state(buffers=buffers,
131
+ param_shapes=param_shapes,
132
+ shared_params=shared_params,
133
+ ds_version=ds_version,
134
+ frozen_param_shapes=frozen_param_shapes,
135
+ frozen_param_fragments=frozen_param_fragments)
136
+ zero_model_states.append(z_model_state)
137
+
138
+ return zero_model_states
139
+
140
+
141
+ def parse_optim_states(files, ds_checkpoint_dir):
142
+
143
+ total_files = len(files)
144
+ state_dicts = []
145
+ for f in files:
146
+ state_dicts.append(torch.load(f, map_location=device))
147
+
148
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
149
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
150
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
151
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
152
+
153
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
154
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
155
+ # use the max of the partition_count to get the dp world_size.
156
+
157
+ if type(world_size) is list:
158
+ world_size = max(world_size)
159
+
160
+ if world_size != total_files:
161
+ raise ValueError(
162
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
163
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
164
+ )
165
+
166
+ # the groups are named differently in each stage
167
+ if zero_stage == 2:
168
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
169
+ elif zero_stage == 3:
170
+ fp32_groups_key = FP32_FLAT_GROUPS
171
+ else:
172
+ raise ValueError(f"unknown zero stage {zero_stage}")
173
+
174
+ if zero_stage == 2:
175
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
176
+ elif zero_stage == 3:
177
+ # if there is more than one param group, there will be multiple flattened tensors - one
178
+ # flattened tensor per group - for simplicity merge them into a single tensor
179
+ #
180
+ # XXX: could make the script more memory efficient for when there are multiple groups - it
181
+ # will require matching the sub-lists of param_shapes for each param group flattened tensor
182
+
183
+ fp32_flat_groups = [
184
+ torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
185
+ ]
186
+
187
+ return zero_stage, world_size, fp32_flat_groups
188
+
189
+
190
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir):
191
+ """
192
+ Returns fp32 state_dict reconstructed from ds checkpoint
193
+
194
+ Args:
195
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
196
+
197
+ """
198
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
199
+
200
+ optim_files = get_optim_files(ds_checkpoint_dir)
201
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
202
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
203
+
204
+ model_files = get_model_state_files(ds_checkpoint_dir)
205
+
206
+ zero_model_states = parse_model_states(model_files)
207
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
208
+
209
+ if zero_stage == 2:
210
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states)
211
+ elif zero_stage == 3:
212
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states)
213
+
214
+
215
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
216
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
217
+ return
218
+
219
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
220
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
221
+
222
+ if debug:
223
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
224
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
225
+
226
+ wanted_params = len(frozen_param_shapes)
227
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
228
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
229
+ print(f'Frozen params: Have {avail_numel} numels to process.')
230
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
231
+
232
+ total_params = 0
233
+ total_numel = 0
234
+ for name, shape in frozen_param_shapes.items():
235
+ total_params += 1
236
+ unpartitioned_numel = shape.numel()
237
+ total_numel += unpartitioned_numel
238
+
239
+ state_dict[name] = frozen_param_fragments[name]
240
+
241
+ if debug:
242
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
243
+
244
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
245
+
246
+
247
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
248
+ param_shapes = zero_model_states[0].param_shapes
249
+
250
+ # Reconstruction protocol:
251
+ #
252
+ # XXX: document this
253
+
254
+ if debug:
255
+ for i in range(world_size):
256
+ for j in range(len(fp32_flat_groups[0])):
257
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
258
+
259
+ # XXX: memory usage doubles here (zero2)
260
+ num_param_groups = len(fp32_flat_groups[0])
261
+ merged_single_partition_of_fp32_groups = []
262
+ for i in range(num_param_groups):
263
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
264
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
265
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
266
+ avail_numel = sum(
267
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
268
+
269
+ if debug:
270
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
271
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
272
+ # not asserting if there is a mismatch due to possible padding
273
+ print(f"Have {avail_numel} numels to process.")
274
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
275
+
276
+ # params
277
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
278
+ # out-of-core computing solution
279
+ total_numel = 0
280
+ total_params = 0
281
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
282
+ offset = 0
283
+ avail_numel = full_single_fp32_vector.numel()
284
+ for name, shape in shapes.items():
285
+
286
+ unpartitioned_numel = shape.numel()
287
+ total_numel += unpartitioned_numel
288
+ total_params += 1
289
+
290
+ if debug:
291
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
292
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
293
+ offset += unpartitioned_numel
294
+
295
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
296
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
297
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
298
+ # live optimizer object, so we are checking that the numbers are within the right range
299
+ align_to = 2 * world_size
300
+
301
+ def zero2_align(x):
302
+ return align_to * math.ceil(x / align_to)
303
+
304
+ if debug:
305
+ print(f"original offset={offset}, avail_numel={avail_numel}")
306
+
307
+ offset = zero2_align(offset)
308
+ avail_numel = zero2_align(avail_numel)
309
+
310
+ if debug:
311
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
312
+
313
+ # Sanity check
314
+ if offset != avail_numel:
315
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
316
+
317
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
318
+
319
+
320
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states):
321
+ state_dict = OrderedDict()
322
+
323
+ # buffers
324
+ buffers = zero_model_states[0].buffers
325
+ state_dict.update(buffers)
326
+ if debug:
327
+ print(f"added {len(buffers)} buffers")
328
+
329
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
330
+
331
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
332
+
333
+ # recover shared parameters
334
+ for pair in zero_model_states[0].shared_params:
335
+ if pair[1] in state_dict:
336
+ state_dict[pair[0]] = state_dict[pair[1]]
337
+
338
+ return state_dict
339
+
340
+
341
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
342
+ remainder = unpartitioned_numel % world_size
343
+ padding_numel = (world_size - remainder) if remainder else 0
344
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
345
+ return partitioned_numel, padding_numel
346
+
347
+
348
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
349
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
350
+ return
351
+
352
+ if debug:
353
+ for i in range(world_size):
354
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
355
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
356
+
357
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
358
+ wanted_params = len(frozen_param_shapes)
359
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
360
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
361
+ print(f'Frozen params: Have {avail_numel} numels to process.')
362
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
363
+
364
+ total_params = 0
365
+ total_numel = 0
366
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
367
+ total_params += 1
368
+ unpartitioned_numel = shape.numel()
369
+ total_numel += unpartitioned_numel
370
+
371
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
372
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
373
+
374
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
375
+
376
+ if debug:
377
+ print(
378
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
379
+ )
380
+
381
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
382
+
383
+
384
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
385
+ param_shapes = zero_model_states[0].param_shapes
386
+ avail_numel = fp32_flat_groups[0].numel() * world_size
387
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
388
+ # param, re-consolidating each param, while dealing with padding if any
389
+
390
+ # merge list of dicts, preserving order
391
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
392
+
393
+ if debug:
394
+ for i in range(world_size):
395
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
396
+
397
+ wanted_params = len(param_shapes)
398
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
399
+ # not asserting if there is a mismatch due to possible padding
400
+ avail_numel = fp32_flat_groups[0].numel() * world_size
401
+ print(f"Trainable params: Have {avail_numel} numels to process.")
402
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
403
+
404
+ # params
405
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
406
+ # out-of-core computing solution
407
+ offset = 0
408
+ total_numel = 0
409
+ total_params = 0
410
+ for name, shape in param_shapes.items():
411
+
412
+ unpartitioned_numel = shape.numel()
413
+ total_numel += unpartitioned_numel
414
+ total_params += 1
415
+
416
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
417
+
418
+ if debug:
419
+ print(
420
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
421
+ )
422
+
423
+ # XXX: memory usage doubles here
424
+ state_dict[name] = torch.cat(
425
+ tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
426
+ 0).narrow(0, 0, unpartitioned_numel).view(shape)
427
+ offset += partitioned_numel
428
+
429
+ offset *= world_size
430
+
431
+ # Sanity check
432
+ if offset != avail_numel:
433
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
434
+
435
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
436
+
437
+
438
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states):
439
+ state_dict = OrderedDict()
440
+
441
+ # buffers
442
+ buffers = zero_model_states[0].buffers
443
+ state_dict.update(buffers)
444
+ if debug:
445
+ print(f"added {len(buffers)} buffers")
446
+
447
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
448
+
449
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
450
+
451
+ # recover shared parameters
452
+ for pair in zero_model_states[0].shared_params:
453
+ if pair[1] in state_dict:
454
+ state_dict[pair[0]] = state_dict[pair[1]]
455
+
456
+ return state_dict
457
+
458
+
459
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None):
460
+ """
461
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
462
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
463
+ via a model hub.
464
+
465
+ Args:
466
+ - ``checkpoint_dir``: path to the desired checkpoint folder
467
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
468
+
469
+ Returns:
470
+ - pytorch ``state_dict``
471
+
472
+ Note: this approach may not work if your application doesn't have sufficient free CPU memory and
473
+ you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
474
+ the checkpoint.
475
+
476
+ A typical usage might be ::
477
+
478
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
479
+ # do the training and checkpoint saving
480
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
481
+ model = model.cpu() # move to cpu
482
+ model.load_state_dict(state_dict)
483
+ # submit to model hub or save the model to share with others
484
+
485
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
486
+ application. i.e. you will need to re-initialize the deepspeed engine, since
487
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
488
+
489
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
490
+
491
+ """
492
+ if tag is None:
493
+ latest_path = os.path.join(checkpoint_dir, 'latest')
494
+ if os.path.isfile(latest_path):
495
+ with open(latest_path, 'r') as fd:
496
+ tag = fd.read().strip()
497
+ else:
498
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
499
+
500
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
501
+
502
+ if not os.path.isdir(ds_checkpoint_dir):
503
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
504
+
505
+ return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir)
506
+
507
+
508
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None):
509
+ """
510
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
511
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
512
+
513
+ Args:
514
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
515
+ - ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
516
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
517
+ """
518
+
519
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
520
+ print(f"Saving fp32 state dict to {output_file}")
521
+ torch.save(state_dict, output_file)
522
+
523
+
524
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
525
+ """
526
+ 1. Put the provided model to cpu
527
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
528
+ 3. Load it into the provided model
529
+
530
+ Args:
531
+ - ``model``: the model object to update
532
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
533
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
534
+
535
+ Returns:
536
+ - ``model`: modified model
537
+
538
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
539
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
540
+ conveniently placed for you in the checkpoint folder.
541
+
542
+ A typical usage might be ::
543
+
544
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
545
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
546
+ # submit to model hub or save the model to share with others
547
+
548
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
549
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
550
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
551
+
552
+ """
553
+ logger.info(f"Extracting fp32 weights")
554
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
555
+
556
+ logger.info(f"Overwriting model with fp32 weights")
557
+ model = model.cpu()
558
+ model.load_state_dict(state_dict, strict=False)
559
+
560
+ return model
561
+
562
+
563
+ if __name__ == "__main__":
564
+
565
+ parser = argparse.ArgumentParser()
566
+ parser.add_argument("checkpoint_dir",
567
+ type=str,
568
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
569
+ parser.add_argument(
570
+ "output_file",
571
+ type=str,
572
+ help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
573
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
574
+ args = parser.parse_args()
575
+
576
+ debug = args.debug
577
+
578
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, args.output_file)
config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "/data/searchgpt/yq/GoGPT/outputs-pt-v1-7b-llama2/ckpt",
3
+ "architectures": [
4
+ "LlamaForCausalLM"
5
+ ],
6
+ "bos_token_id": 1,
7
+ "eos_token_id": 2,
8
+ "hidden_act": "silu",
9
+ "hidden_size": 4096,
10
+ "initializer_range": 0.02,
11
+ "intermediate_size": 11008,
12
+ "max_position_embeddings": 2048,
13
+ "model_type": "llama",
14
+ "num_attention_heads": 32,
15
+ "num_hidden_layers": 32,
16
+ "num_key_value_heads": 32,
17
+ "pad_token_id": 0,
18
+ "pretraining_tp": 1,
19
+ "rms_norm_eps": 1e-05,
20
+ "rope_scaling": null,
21
+ "tie_word_embeddings": false,
22
+ "torch_dtype": "float16",
23
+ "transformers_version": "4.29.1",
24
+ "use_cache": false,
25
+ "vocab_size": 68419
26
+ }
eval_results.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 1.0,
3
+ "eval_accuracy": 0.3399546485260771,
4
+ "eval_loss": 4.18359375,
5
+ "eval_runtime": 6.4986,
6
+ "eval_samples": 35,
7
+ "eval_samples_per_second": 5.386,
8
+ "eval_steps_per_second": 0.308,
9
+ "perplexity": 65.60118435636834
10
+ }
generation_config.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 1,
4
+ "eos_token_id": 2,
5
+ "pad_token_id": 32000,
6
+ "temperature": 0.9,
7
+ "top_p": 0.6,
8
+ "transformers_version": "4.29.1"
9
+ }
pytorch_model-00001-of-00002.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e27a3fe69c3ac40f851ec16e6c0c29431d3ba07234fca4bec97ba11215aef46c
3
+ size 10531361877
pytorch_model-00002-of-00002.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5f40b716a3e179d24dc15bda48d5351ddb0461de378fcfd377f90b72b35afe9f
3
+ size 4663254577
pytorch_model.bin.index.json ADDED
@@ -0,0 +1,330 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 14073524224
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "pytorch_model-00002-of-00002.bin",
7
+ "model.embed_tokens.weight": "pytorch_model-00001-of-00002.bin",
8
+ "model.layers.0.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
9
+ "model.layers.0.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
10
+ "model.layers.0.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
11
+ "model.layers.0.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
12
+ "model.layers.0.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
13
+ "model.layers.0.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
14
+ "model.layers.0.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
15
+ "model.layers.0.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
16
+ "model.layers.0.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
17
+ "model.layers.0.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
18
+ "model.layers.1.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
19
+ "model.layers.1.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
20
+ "model.layers.1.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
21
+ "model.layers.1.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
22
+ "model.layers.1.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
23
+ "model.layers.1.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
24
+ "model.layers.1.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
25
+ "model.layers.1.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
26
+ "model.layers.1.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
27
+ "model.layers.1.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
28
+ "model.layers.10.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
29
+ "model.layers.10.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
30
+ "model.layers.10.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
31
+ "model.layers.10.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
32
+ "model.layers.10.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
33
+ "model.layers.10.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
34
+ "model.layers.10.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
35
+ "model.layers.10.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
36
+ "model.layers.10.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
37
+ "model.layers.10.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
38
+ "model.layers.11.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
39
+ "model.layers.11.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
40
+ "model.layers.11.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
41
+ "model.layers.11.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
42
+ "model.layers.11.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
43
+ "model.layers.11.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
44
+ "model.layers.11.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
45
+ "model.layers.11.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
46
+ "model.layers.11.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
47
+ "model.layers.11.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
48
+ "model.layers.12.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
49
+ "model.layers.12.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
50
+ "model.layers.12.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
51
+ "model.layers.12.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
52
+ "model.layers.12.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
53
+ "model.layers.12.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
54
+ "model.layers.12.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
55
+ "model.layers.12.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
56
+ "model.layers.12.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
57
+ "model.layers.12.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
58
+ "model.layers.13.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
59
+ "model.layers.13.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
60
+ "model.layers.13.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
61
+ "model.layers.13.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
62
+ "model.layers.13.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
63
+ "model.layers.13.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
64
+ "model.layers.13.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
65
+ "model.layers.13.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
66
+ "model.layers.13.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
67
+ "model.layers.13.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
68
+ "model.layers.14.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
69
+ "model.layers.14.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
70
+ "model.layers.14.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
71
+ "model.layers.14.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
72
+ "model.layers.14.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
73
+ "model.layers.14.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
74
+ "model.layers.14.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
75
+ "model.layers.14.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
76
+ "model.layers.14.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
77
+ "model.layers.14.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
78
+ "model.layers.15.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
79
+ "model.layers.15.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
80
+ "model.layers.15.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
81
+ "model.layers.15.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
82
+ "model.layers.15.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
83
+ "model.layers.15.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
84
+ "model.layers.15.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
85
+ "model.layers.15.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
86
+ "model.layers.15.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
87
+ "model.layers.15.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
88
+ "model.layers.16.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
89
+ "model.layers.16.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
90
+ "model.layers.16.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
91
+ "model.layers.16.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
92
+ "model.layers.16.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
93
+ "model.layers.16.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
94
+ "model.layers.16.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
95
+ "model.layers.16.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
96
+ "model.layers.16.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
97
+ "model.layers.16.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
98
+ "model.layers.17.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
99
+ "model.layers.17.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
100
+ "model.layers.17.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
101
+ "model.layers.17.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
102
+ "model.layers.17.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
103
+ "model.layers.17.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
104
+ "model.layers.17.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
105
+ "model.layers.17.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
106
+ "model.layers.17.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
107
+ "model.layers.17.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
108
+ "model.layers.18.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
109
+ "model.layers.18.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
110
+ "model.layers.18.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
111
+ "model.layers.18.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
112
+ "model.layers.18.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
113
+ "model.layers.18.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
114
+ "model.layers.18.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
115
+ "model.layers.18.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
116
+ "model.layers.18.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
117
+ "model.layers.18.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
118
+ "model.layers.19.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
119
+ "model.layers.19.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
120
+ "model.layers.19.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
121
+ "model.layers.19.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
122
+ "model.layers.19.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
123
+ "model.layers.19.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
124
+ "model.layers.19.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
125
+ "model.layers.19.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
126
+ "model.layers.19.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
127
+ "model.layers.19.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
128
+ "model.layers.2.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
129
+ "model.layers.2.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
130
+ "model.layers.2.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
131
+ "model.layers.2.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
132
+ "model.layers.2.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
133
+ "model.layers.2.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
134
+ "model.layers.2.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
135
+ "model.layers.2.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
136
+ "model.layers.2.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
137
+ "model.layers.2.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
138
+ "model.layers.20.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
139
+ "model.layers.20.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
140
+ "model.layers.20.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
141
+ "model.layers.20.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
142
+ "model.layers.20.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
143
+ "model.layers.20.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
144
+ "model.layers.20.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
145
+ "model.layers.20.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
146
+ "model.layers.20.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
147
+ "model.layers.20.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
148
+ "model.layers.21.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
149
+ "model.layers.21.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
150
+ "model.layers.21.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
151
+ "model.layers.21.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
152
+ "model.layers.21.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
153
+ "model.layers.21.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
154
+ "model.layers.21.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
155
+ "model.layers.21.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
156
+ "model.layers.21.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
157
+ "model.layers.21.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
158
+ "model.layers.22.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
159
+ "model.layers.22.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
160
+ "model.layers.22.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
161
+ "model.layers.22.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
162
+ "model.layers.22.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
163
+ "model.layers.22.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
164
+ "model.layers.22.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
165
+ "model.layers.22.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
166
+ "model.layers.22.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
167
+ "model.layers.22.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
168
+ "model.layers.23.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
169
+ "model.layers.23.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
170
+ "model.layers.23.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
171
+ "model.layers.23.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
172
+ "model.layers.23.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
173
+ "model.layers.23.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
174
+ "model.layers.23.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
175
+ "model.layers.23.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
176
+ "model.layers.23.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00002.bin",
177
+ "model.layers.23.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
178
+ "model.layers.24.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
179
+ "model.layers.24.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
180
+ "model.layers.24.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
181
+ "model.layers.24.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
182
+ "model.layers.24.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
183
+ "model.layers.24.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
184
+ "model.layers.24.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
185
+ "model.layers.24.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
186
+ "model.layers.24.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00002.bin",
187
+ "model.layers.24.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
188
+ "model.layers.25.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
189
+ "model.layers.25.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
190
+ "model.layers.25.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
191
+ "model.layers.25.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
192
+ "model.layers.25.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
193
+ "model.layers.25.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
194
+ "model.layers.25.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
195
+ "model.layers.25.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
196
+ "model.layers.25.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00002.bin",
197
+ "model.layers.25.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
198
+ "model.layers.26.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
199
+ "model.layers.26.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
200
+ "model.layers.26.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
201
+ "model.layers.26.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
202
+ "model.layers.26.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
203
+ "model.layers.26.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
204
+ "model.layers.26.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
205
+ "model.layers.26.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
206
+ "model.layers.26.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00002.bin",
207
+ "model.layers.26.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
208
+ "model.layers.27.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
209
+ "model.layers.27.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
210
+ "model.layers.27.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
211
+ "model.layers.27.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
212
+ "model.layers.27.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
213
+ "model.layers.27.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
214
+ "model.layers.27.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
215
+ "model.layers.27.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
216
+ "model.layers.27.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00002.bin",
217
+ "model.layers.27.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
218
+ "model.layers.28.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
219
+ "model.layers.28.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
220
+ "model.layers.28.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
221
+ "model.layers.28.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
222
+ "model.layers.28.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
223
+ "model.layers.28.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
224
+ "model.layers.28.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
225
+ "model.layers.28.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
226
+ "model.layers.28.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00002.bin",
227
+ "model.layers.28.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
228
+ "model.layers.29.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
229
+ "model.layers.29.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
230
+ "model.layers.29.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
231
+ "model.layers.29.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
232
+ "model.layers.29.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
233
+ "model.layers.29.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
234
+ "model.layers.29.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
235
+ "model.layers.29.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
236
+ "model.layers.29.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00002.bin",
237
+ "model.layers.29.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
238
+ "model.layers.3.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
239
+ "model.layers.3.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
240
+ "model.layers.3.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
241
+ "model.layers.3.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
242
+ "model.layers.3.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
243
+ "model.layers.3.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
244
+ "model.layers.3.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
245
+ "model.layers.3.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
246
+ "model.layers.3.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
247
+ "model.layers.3.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
248
+ "model.layers.30.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
249
+ "model.layers.30.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
250
+ "model.layers.30.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
251
+ "model.layers.30.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
252
+ "model.layers.30.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
253
+ "model.layers.30.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
254
+ "model.layers.30.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
255
+ "model.layers.30.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
256
+ "model.layers.30.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00002.bin",
257
+ "model.layers.30.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
258
+ "model.layers.31.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
259
+ "model.layers.31.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
260
+ "model.layers.31.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
261
+ "model.layers.31.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
262
+ "model.layers.31.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
263
+ "model.layers.31.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
264
+ "model.layers.31.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
265
+ "model.layers.31.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
266
+ "model.layers.31.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00002.bin",
267
+ "model.layers.31.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
268
+ "model.layers.4.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
269
+ "model.layers.4.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
270
+ "model.layers.4.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
271
+ "model.layers.4.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
272
+ "model.layers.4.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
273
+ "model.layers.4.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
274
+ "model.layers.4.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
275
+ "model.layers.4.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
276
+ "model.layers.4.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
277
+ "model.layers.4.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
278
+ "model.layers.5.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
279
+ "model.layers.5.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
280
+ "model.layers.5.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
281
+ "model.layers.5.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
282
+ "model.layers.5.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
283
+ "model.layers.5.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
284
+ "model.layers.5.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
285
+ "model.layers.5.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
286
+ "model.layers.5.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
287
+ "model.layers.5.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
288
+ "model.layers.6.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
289
+ "model.layers.6.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
290
+ "model.layers.6.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
291
+ "model.layers.6.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
292
+ "model.layers.6.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
293
+ "model.layers.6.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
294
+ "model.layers.6.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
295
+ "model.layers.6.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
296
+ "model.layers.6.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
297
+ "model.layers.6.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
298
+ "model.layers.7.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
299
+ "model.layers.7.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
300
+ "model.layers.7.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
301
+ "model.layers.7.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
302
+ "model.layers.7.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
303
+ "model.layers.7.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
304
+ "model.layers.7.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
305
+ "model.layers.7.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
306
+ "model.layers.7.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
307
+ "model.layers.7.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
308
+ "model.layers.8.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
309
+ "model.layers.8.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
310
+ "model.layers.8.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
311
+ "model.layers.8.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
312
+ "model.layers.8.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
313
+ "model.layers.8.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
314
+ "model.layers.8.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
315
+ "model.layers.8.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
316
+ "model.layers.8.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
317
+ "model.layers.8.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
318
+ "model.layers.9.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
319
+ "model.layers.9.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
320
+ "model.layers.9.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
321
+ "model.layers.9.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
322
+ "model.layers.9.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
323
+ "model.layers.9.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
324
+ "model.layers.9.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
325
+ "model.layers.9.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
326
+ "model.layers.9.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
327
+ "model.layers.9.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
328
+ "model.norm.weight": "pytorch_model-00002-of-00002.bin"
329
+ }
330
+ }
runs/Jul19_14-52-29_715436/1689749887.7189374/events.out.tfevents.1689749887.715436.72469.1 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fdb3cad54708ca4ea5586145e005df66d6c84489cff128cf1c816fe6f416512a
3
+ size 6251
runs/Jul19_14-52-29_715436/events.out.tfevents.1689749887.715436.72469.0 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8815ad6acd0286a0dc57ad5d7f01253581be85c195ac1dae505c28e353513812
3
+ size 4225
runs/Jul19_14-59-01_715436/1689750342.6405456/events.out.tfevents.1689750342.715436.75291.1 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:824f48312c8b4ec9a8cbfc3cc0e029653beb01dfe6d6cf578f4e7aaf0b3c8fae
3
+ size 6251
runs/Jul19_14-59-01_715436/events.out.tfevents.1689750342.715436.75291.0 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a275337bac363e0497d15ec03d8b4957b4a761f3045808c76fa101552f6a70b4
3
+ size 4995
runs/Jul19_15-22-48_715436/1689751771.9245906/events.out.tfevents.1689751771.715436.80001.1 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c67b1bcfb983c36a142d0234c432c10bba6e2156585bb778fcfbed1f6c67d2e4
3
+ size 6251
runs/Jul19_15-22-48_715436/events.out.tfevents.1689751771.715436.80001.0 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0b264be3936e7ff1192446687c427473497e783f5777a6fde381d01ebccfc7e9
3
+ size 42475
runs/Jul20_03-05-51_715436/1689793875.322509/events.out.tfevents.1689793875.715436.71505.1 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:86bf4a00156db71e497fd9ab4779bf97c0dfa3bb64e9311574ea725b353ea87e
3
+ size 6251
runs/Jul20_03-05-51_715436/events.out.tfevents.1689793875.715436.71505.0 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b5b12266ab3267dc906c4e0b6fecd8c43ece594b0e7956348d9b3eccac786c22
3
+ size 112320
runs/Jul20_03-05-51_715436/events.out.tfevents.1689902211.715436.71505.2 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2dfa5cf9724eb82d20e7b1fac4d2384bf340bd2525972bb89b296e130344c4f0
3
+ size 411
special_tokens_map.json ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": true,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": true,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "unk_token": {
17
+ "content": "<unk>",
18
+ "lstrip": false,
19
+ "normalized": true,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ }
23
+ }
tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bd5ab2c18ed07a14f3aa55518dcf08bbee4fe86c9423e86ba61f60a82ab31fa7
3
+ size 1077901
tokenizer_config.json ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "bos_token": {
5
+ "__type": "AddedToken",
6
+ "content": "<s>",
7
+ "lstrip": false,
8
+ "normalized": true,
9
+ "rstrip": false,
10
+ "single_word": false
11
+ },
12
+ "clean_up_tokenization_spaces": false,
13
+ "eos_token": {
14
+ "__type": "AddedToken",
15
+ "content": "</s>",
16
+ "lstrip": false,
17
+ "normalized": true,
18
+ "rstrip": false,
19
+ "single_word": false
20
+ },
21
+ "model_max_length": 1000000000000000019884624838656,
22
+ "pad_token": null,
23
+ "sp_model_kwargs": {},
24
+ "tokenizer_class": "LlamaTokenizer",
25
+ "trust_remote_code": true,
26
+ "unk_token": {
27
+ "__type": "AddedToken",
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": true,
31
+ "rstrip": false,
32
+ "single_word": false
33
+ },
34
+ "use_fast": false
35
+ }
train_results.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 1.0,
3
+ "train_loss": 3.7094925158997714,
4
+ "train_runtime": 108243.5499,
5
+ "train_samples": 311198,
6
+ "train_samples_per_second": 2.875,
7
+ "train_steps_per_second": 0.045
8
+ }
trainer_state.json ADDED
@@ -0,0 +1,3820 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 0.9998971722365039,
5
+ "global_step": 4862,
6
+ "is_hyper_param_search": false,
7
+ "is_local_process_zero": true,
8
+ "is_world_process_zero": true,
9
+ "log_history": [
10
+ {
11
+ "epoch": 0.0,
12
+ "learning_rate": 0,
13
+ "loss": 11.981,
14
+ "step": 1
15
+ },
16
+ {
17
+ "epoch": 0.0,
18
+ "learning_rate": 3.9970117109141705e-05,
19
+ "loss": 12.0789,
20
+ "step": 10
21
+ },
22
+ {
23
+ "epoch": 0.0,
24
+ "learning_rate": 9.331893267009234e-05,
25
+ "loss": 10.7133,
26
+ "step": 20
27
+ },
28
+ {
29
+ "epoch": 0.01,
30
+ "learning_rate": 0.00011407670594843083,
31
+ "loss": 8.7339,
32
+ "step": 30
33
+ },
34
+ {
35
+ "epoch": 0.01,
36
+ "learning_rate": 0.00012721122651399258,
37
+ "loss": 8.301,
38
+ "step": 40
39
+ },
40
+ {
41
+ "epoch": 0.01,
42
+ "learning_rate": 0.00013684136855727938,
43
+ "loss": 8.1964,
44
+ "step": 50
45
+ },
46
+ {
47
+ "epoch": 0.01,
48
+ "eval_accuracy": 0.10310832025117739,
49
+ "eval_loss": 8.203125,
50
+ "eval_runtime": 6.5764,
51
+ "eval_samples_per_second": 5.322,
52
+ "eval_steps_per_second": 0.304,
53
+ "step": 50
54
+ },
55
+ {
56
+ "epoch": 0.01,
57
+ "learning_rate": 0.00014444862339428802,
58
+ "loss": 8.0553,
59
+ "step": 60
60
+ },
61
+ {
62
+ "epoch": 0.01,
63
+ "learning_rate": 0.00015073705430110066,
64
+ "loss": 7.9436,
65
+ "step": 70
66
+ },
67
+ {
68
+ "epoch": 0.02,
69
+ "learning_rate": 0.00015609707636042195,
70
+ "loss": 7.8368,
71
+ "step": 80
72
+ },
73
+ {
74
+ "epoch": 0.02,
75
+ "learning_rate": 0.00016076788727202945,
76
+ "loss": 7.7333,
77
+ "step": 90
78
+ },
79
+ {
80
+ "epoch": 0.02,
81
+ "learning_rate": 0.00016490670495758757,
82
+ "loss": 7.6139,
83
+ "step": 100
84
+ },
85
+ {
86
+ "epoch": 0.02,
87
+ "eval_accuracy": 0.12459794174079888,
88
+ "eval_loss": 7.81640625,
89
+ "eval_runtime": 6.6059,
90
+ "eval_samples_per_second": 5.298,
91
+ "eval_steps_per_second": 0.303,
92
+ "step": 100
93
+ },
94
+ {
95
+ "epoch": 0.02,
96
+ "learning_rate": 0.0001686224178807056,
97
+ "loss": 7.4892,
98
+ "step": 110
99
+ },
100
+ {
101
+ "epoch": 0.02,
102
+ "learning_rate": 0.000171993565594773,
103
+ "loss": 7.3256,
104
+ "step": 120
105
+ },
106
+ {
107
+ "epoch": 0.03,
108
+ "learning_rate": 0.00017507866443784335,
109
+ "loss": 7.1827,
110
+ "step": 130
111
+ },
112
+ {
113
+ "epoch": 0.03,
114
+ "learning_rate": 0.0001779224840062419,
115
+ "loss": 6.9698,
116
+ "step": 140
117
+ },
118
+ {
119
+ "epoch": 0.03,
120
+ "learning_rate": 0.00018056004207494319,
121
+ "loss": 6.8162,
122
+ "step": 150
123
+ },
124
+ {
125
+ "epoch": 0.03,
126
+ "eval_accuracy": 0.1567556253270539,
127
+ "eval_loss": 7.08203125,
128
+ "eval_runtime": 6.5908,
129
+ "eval_samples_per_second": 5.31,
130
+ "eval_steps_per_second": 0.303,
131
+ "step": 150
132
+ },
133
+ {
134
+ "epoch": 0.03,
135
+ "learning_rate": 0.00018301924610008189,
136
+ "loss": 6.6293,
137
+ "step": 160
138
+ },
139
+ {
140
+ "epoch": 0.03,
141
+ "learning_rate": 0.00018532269677939782,
142
+ "loss": 6.4114,
143
+ "step": 170
144
+ },
145
+ {
146
+ "epoch": 0.04,
147
+ "learning_rate": 0.00018748895370481112,
148
+ "loss": 6.2911,
149
+ "step": 180
150
+ },
151
+ {
152
+ "epoch": 0.04,
153
+ "learning_rate": 0.00018953344483335556,
154
+ "loss": 6.1047,
155
+ "step": 190
156
+ },
157
+ {
158
+ "epoch": 0.04,
159
+ "learning_rate": 0.00019146913367833817,
160
+ "loss": 5.9957,
161
+ "step": 200
162
+ },
163
+ {
164
+ "epoch": 0.04,
165
+ "eval_accuracy": 0.19811616954474098,
166
+ "eval_loss": 6.4296875,
167
+ "eval_runtime": 6.5897,
168
+ "eval_samples_per_second": 5.311,
169
+ "eval_steps_per_second": 0.304,
170
+ "step": 200
171
+ },
172
+ {
173
+ "epoch": 0.04,
174
+ "learning_rate": 0.00019330701776944063,
175
+ "loss": 5.8281,
176
+ "step": 210
177
+ },
178
+ {
179
+ "epoch": 0.05,
180
+ "learning_rate": 0.00019505650713185044,
181
+ "loss": 5.6927,
182
+ "step": 220
183
+ },
184
+ {
185
+ "epoch": 0.05,
186
+ "learning_rate": 0.00019672571585424665,
187
+ "loss": 5.5564,
188
+ "step": 230
189
+ },
190
+ {
191
+ "epoch": 0.05,
192
+ "learning_rate": 0.00019832168964685297,
193
+ "loss": 5.3813,
194
+ "step": 240
195
+ },
196
+ {
197
+ "epoch": 0.05,
198
+ "learning_rate": 0.0001998505855457085,
199
+ "loss": 5.2496,
200
+ "step": 250
201
+ },
202
+ {
203
+ "epoch": 0.05,
204
+ "eval_accuracy": 0.24055817198674342,
205
+ "eval_loss": 5.8203125,
206
+ "eval_runtime": 6.6013,
207
+ "eval_samples_per_second": 5.302,
208
+ "eval_steps_per_second": 0.303,
209
+ "step": 250
210
+ },
211
+ {
212
+ "epoch": 0.05,
213
+ "learning_rate": 0.0001996535296665223,
214
+ "loss": 5.13,
215
+ "step": 260
216
+ },
217
+ {
218
+ "epoch": 0.06,
219
+ "learning_rate": 0.0001992204417496752,
220
+ "loss": 5.0354,
221
+ "step": 270
222
+ },
223
+ {
224
+ "epoch": 0.06,
225
+ "learning_rate": 0.00019878735383282807,
226
+ "loss": 4.9021,
227
+ "step": 280
228
+ },
229
+ {
230
+ "epoch": 0.06,
231
+ "learning_rate": 0.00019835426591598097,
232
+ "loss": 4.8181,
233
+ "step": 290
234
+ },
235
+ {
236
+ "epoch": 0.06,
237
+ "learning_rate": 0.00019792117799913384,
238
+ "loss": 4.6993,
239
+ "step": 300
240
+ },
241
+ {
242
+ "epoch": 0.06,
243
+ "eval_accuracy": 0.2641758241758242,
244
+ "eval_loss": 5.41796875,
245
+ "eval_runtime": 6.6009,
246
+ "eval_samples_per_second": 5.302,
247
+ "eval_steps_per_second": 0.303,
248
+ "step": 300
249
+ },
250
+ {
251
+ "epoch": 0.06,
252
+ "learning_rate": 0.0001974880900822867,
253
+ "loss": 4.6761,
254
+ "step": 310
255
+ },
256
+ {
257
+ "epoch": 0.07,
258
+ "learning_rate": 0.00019705500216543958,
259
+ "loss": 4.5908,
260
+ "step": 320
261
+ },
262
+ {
263
+ "epoch": 0.07,
264
+ "learning_rate": 0.00019662191424859245,
265
+ "loss": 4.5301,
266
+ "step": 330
267
+ },
268
+ {
269
+ "epoch": 0.07,
270
+ "learning_rate": 0.00019618882633174535,
271
+ "loss": 4.4729,
272
+ "step": 340
273
+ },
274
+ {
275
+ "epoch": 0.07,
276
+ "learning_rate": 0.00019575573841489822,
277
+ "loss": 4.3928,
278
+ "step": 350
279
+ },
280
+ {
281
+ "epoch": 0.07,
282
+ "eval_accuracy": 0.27927437641723357,
283
+ "eval_loss": 5.14453125,
284
+ "eval_runtime": 6.6101,
285
+ "eval_samples_per_second": 5.295,
286
+ "eval_steps_per_second": 0.303,
287
+ "step": 350
288
+ },
289
+ {
290
+ "epoch": 0.07,
291
+ "learning_rate": 0.00019532265049805112,
292
+ "loss": 4.4083,
293
+ "step": 360
294
+ },
295
+ {
296
+ "epoch": 0.08,
297
+ "learning_rate": 0.000194889562581204,
298
+ "loss": 4.336,
299
+ "step": 370
300
+ },
301
+ {
302
+ "epoch": 0.08,
303
+ "learning_rate": 0.0001944564746643569,
304
+ "loss": 4.2714,
305
+ "step": 380
306
+ },
307
+ {
308
+ "epoch": 0.08,
309
+ "learning_rate": 0.00019402338674750976,
310
+ "loss": 4.2124,
311
+ "step": 390
312
+ },
313
+ {
314
+ "epoch": 0.08,
315
+ "learning_rate": 0.00019359029883066263,
316
+ "loss": 4.2395,
317
+ "step": 400
318
+ },
319
+ {
320
+ "epoch": 0.08,
321
+ "eval_accuracy": 0.2894470608756323,
322
+ "eval_loss": 4.96875,
323
+ "eval_runtime": 6.5945,
324
+ "eval_samples_per_second": 5.307,
325
+ "eval_steps_per_second": 0.303,
326
+ "step": 400
327
+ },
328
+ {
329
+ "epoch": 0.08,
330
+ "learning_rate": 0.0001931572109138155,
331
+ "loss": 4.1867,
332
+ "step": 410
333
+ },
334
+ {
335
+ "epoch": 0.09,
336
+ "learning_rate": 0.0001927241229969684,
337
+ "loss": 4.1687,
338
+ "step": 420
339
+ },
340
+ {
341
+ "epoch": 0.09,
342
+ "learning_rate": 0.00019229103508012127,
343
+ "loss": 4.1027,
344
+ "step": 430
345
+ },
346
+ {
347
+ "epoch": 0.09,
348
+ "learning_rate": 0.00019185794716327414,
349
+ "loss": 4.1233,
350
+ "step": 440
351
+ },
352
+ {
353
+ "epoch": 0.09,
354
+ "learning_rate": 0.00019142485924642704,
355
+ "loss": 4.0781,
356
+ "step": 450
357
+ },
358
+ {
359
+ "epoch": 0.09,
360
+ "eval_accuracy": 0.29638932496075354,
361
+ "eval_loss": 4.8515625,
362
+ "eval_runtime": 6.5996,
363
+ "eval_samples_per_second": 5.303,
364
+ "eval_steps_per_second": 0.303,
365
+ "step": 450
366
+ },
367
+ {
368
+ "epoch": 0.09,
369
+ "learning_rate": 0.0001909917713295799,
370
+ "loss": 4.0855,
371
+ "step": 460
372
+ },
373
+ {
374
+ "epoch": 0.1,
375
+ "learning_rate": 0.0001905586834127328,
376
+ "loss": 4.0859,
377
+ "step": 470
378
+ },
379
+ {
380
+ "epoch": 0.1,
381
+ "learning_rate": 0.00019012559549588568,
382
+ "loss": 4.0124,
383
+ "step": 480
384
+ },
385
+ {
386
+ "epoch": 0.1,
387
+ "learning_rate": 0.00018969250757903855,
388
+ "loss": 4.0151,
389
+ "step": 490
390
+ },
391
+ {
392
+ "epoch": 0.1,
393
+ "learning_rate": 0.00018925941966219142,
394
+ "loss": 4.0409,
395
+ "step": 500
396
+ },
397
+ {
398
+ "epoch": 0.1,
399
+ "eval_accuracy": 0.30181057038199893,
400
+ "eval_loss": 4.76953125,
401
+ "eval_runtime": 6.6117,
402
+ "eval_samples_per_second": 5.294,
403
+ "eval_steps_per_second": 0.302,
404
+ "step": 500
405
+ },
406
+ {
407
+ "epoch": 0.1,
408
+ "learning_rate": 0.00018882633174534431,
409
+ "loss": 3.9912,
410
+ "step": 510
411
+ },
412
+ {
413
+ "epoch": 0.11,
414
+ "learning_rate": 0.00018839324382849718,
415
+ "loss": 3.9383,
416
+ "step": 520
417
+ },
418
+ {
419
+ "epoch": 0.11,
420
+ "learning_rate": 0.00018796015591165008,
421
+ "loss": 3.9764,
422
+ "step": 530
423
+ },
424
+ {
425
+ "epoch": 0.11,
426
+ "learning_rate": 0.00018752706799480295,
427
+ "loss": 3.9809,
428
+ "step": 540
429
+ },
430
+ {
431
+ "epoch": 0.11,
432
+ "learning_rate": 0.00018709398007795585,
433
+ "loss": 3.9178,
434
+ "step": 550
435
+ },
436
+ {
437
+ "epoch": 0.11,
438
+ "eval_accuracy": 0.30575963718820864,
439
+ "eval_loss": 4.703125,
440
+ "eval_runtime": 6.6265,
441
+ "eval_samples_per_second": 5.282,
442
+ "eval_steps_per_second": 0.302,
443
+ "step": 550
444
+ },
445
+ {
446
+ "epoch": 0.12,
447
+ "learning_rate": 0.00018666089216110872,
448
+ "loss": 3.9073,
449
+ "step": 560
450
+ },
451
+ {
452
+ "epoch": 0.12,
453
+ "learning_rate": 0.0001862278042442616,
454
+ "loss": 3.9459,
455
+ "step": 570
456
+ },
457
+ {
458
+ "epoch": 0.12,
459
+ "learning_rate": 0.00018579471632741446,
460
+ "loss": 3.9535,
461
+ "step": 580
462
+ },
463
+ {
464
+ "epoch": 0.12,
465
+ "learning_rate": 0.00018536162841056733,
466
+ "loss": 3.8982,
467
+ "step": 590
468
+ },
469
+ {
470
+ "epoch": 0.12,
471
+ "learning_rate": 0.00018492854049372023,
472
+ "loss": 3.834,
473
+ "step": 600
474
+ },
475
+ {
476
+ "epoch": 0.12,
477
+ "eval_accuracy": 0.3082574568288854,
478
+ "eval_loss": 4.65625,
479
+ "eval_runtime": 6.6135,
480
+ "eval_samples_per_second": 5.292,
481
+ "eval_steps_per_second": 0.302,
482
+ "step": 600
483
+ },
484
+ {
485
+ "epoch": 0.13,
486
+ "learning_rate": 0.0001844954525768731,
487
+ "loss": 3.8759,
488
+ "step": 610
489
+ },
490
+ {
491
+ "epoch": 0.13,
492
+ "learning_rate": 0.000184062364660026,
493
+ "loss": 3.8835,
494
+ "step": 620
495
+ },
496
+ {
497
+ "epoch": 0.13,
498
+ "learning_rate": 0.00018362927674317887,
499
+ "loss": 3.9003,
500
+ "step": 630
501
+ },
502
+ {
503
+ "epoch": 0.13,
504
+ "learning_rate": 0.00018319618882633177,
505
+ "loss": 3.8538,
506
+ "step": 640
507
+ },
508
+ {
509
+ "epoch": 0.13,
510
+ "learning_rate": 0.00018276310090948464,
511
+ "loss": 3.8316,
512
+ "step": 650
513
+ },
514
+ {
515
+ "epoch": 0.13,
516
+ "eval_accuracy": 0.30981336124193265,
517
+ "eval_loss": 4.625,
518
+ "eval_runtime": 6.6039,
519
+ "eval_samples_per_second": 5.3,
520
+ "eval_steps_per_second": 0.303,
521
+ "step": 650
522
+ },
523
+ {
524
+ "epoch": 0.14,
525
+ "learning_rate": 0.00018233001299263754,
526
+ "loss": 3.9085,
527
+ "step": 660
528
+ },
529
+ {
530
+ "epoch": 0.14,
531
+ "learning_rate": 0.00018189692507579038,
532
+ "loss": 3.7825,
533
+ "step": 670
534
+ },
535
+ {
536
+ "epoch": 0.14,
537
+ "learning_rate": 0.00018146383715894328,
538
+ "loss": 3.824,
539
+ "step": 680
540
+ },
541
+ {
542
+ "epoch": 0.14,
543
+ "learning_rate": 0.00018103074924209615,
544
+ "loss": 3.8457,
545
+ "step": 690
546
+ },
547
+ {
548
+ "epoch": 0.14,
549
+ "learning_rate": 0.00018059766132524902,
550
+ "loss": 3.8197,
551
+ "step": 700
552
+ },
553
+ {
554
+ "epoch": 0.14,
555
+ "eval_accuracy": 0.3116902145473574,
556
+ "eval_loss": 4.59765625,
557
+ "eval_runtime": 6.6155,
558
+ "eval_samples_per_second": 5.291,
559
+ "eval_steps_per_second": 0.302,
560
+ "step": 700
561
+ },
562
+ {
563
+ "epoch": 0.15,
564
+ "learning_rate": 0.00018016457340840192,
565
+ "loss": 3.79,
566
+ "step": 710
567
+ },
568
+ {
569
+ "epoch": 0.15,
570
+ "learning_rate": 0.00017973148549155479,
571
+ "loss": 3.7907,
572
+ "step": 720
573
+ },
574
+ {
575
+ "epoch": 0.15,
576
+ "learning_rate": 0.00017929839757470768,
577
+ "loss": 3.7797,
578
+ "step": 730
579
+ },
580
+ {
581
+ "epoch": 0.15,
582
+ "learning_rate": 0.00017886530965786055,
583
+ "loss": 3.7533,
584
+ "step": 740
585
+ },
586
+ {
587
+ "epoch": 0.15,
588
+ "learning_rate": 0.00017843222174101345,
589
+ "loss": 3.7464,
590
+ "step": 750
591
+ },
592
+ {
593
+ "epoch": 0.15,
594
+ "eval_accuracy": 0.31469038897610324,
595
+ "eval_loss": 4.5625,
596
+ "eval_runtime": 6.5988,
597
+ "eval_samples_per_second": 5.304,
598
+ "eval_steps_per_second": 0.303,
599
+ "step": 750
600
+ },
601
+ {
602
+ "epoch": 0.16,
603
+ "learning_rate": 0.00017799913382416632,
604
+ "loss": 3.7347,
605
+ "step": 760
606
+ },
607
+ {
608
+ "epoch": 0.16,
609
+ "learning_rate": 0.0001775660459073192,
610
+ "loss": 3.7917,
611
+ "step": 770
612
+ },
613
+ {
614
+ "epoch": 0.16,
615
+ "learning_rate": 0.00017713295799047206,
616
+ "loss": 3.8106,
617
+ "step": 780
618
+ },
619
+ {
620
+ "epoch": 0.16,
621
+ "learning_rate": 0.00017669987007362496,
622
+ "loss": 3.7289,
623
+ "step": 790
624
+ },
625
+ {
626
+ "epoch": 0.16,
627
+ "learning_rate": 0.00017626678215677783,
628
+ "loss": 3.767,
629
+ "step": 800
630
+ },
631
+ {
632
+ "epoch": 0.16,
633
+ "eval_accuracy": 0.3163718820861678,
634
+ "eval_loss": 4.5390625,
635
+ "eval_runtime": 6.604,
636
+ "eval_samples_per_second": 5.3,
637
+ "eval_steps_per_second": 0.303,
638
+ "step": 800
639
+ },
640
+ {
641
+ "epoch": 0.17,
642
+ "learning_rate": 0.00017583369423993073,
643
+ "loss": 3.7362,
644
+ "step": 810
645
+ },
646
+ {
647
+ "epoch": 0.17,
648
+ "learning_rate": 0.0001754006063230836,
649
+ "loss": 3.7474,
650
+ "step": 820
651
+ },
652
+ {
653
+ "epoch": 0.17,
654
+ "learning_rate": 0.00017496751840623647,
655
+ "loss": 3.7485,
656
+ "step": 830
657
+ },
658
+ {
659
+ "epoch": 0.17,
660
+ "learning_rate": 0.00017453443048938937,
661
+ "loss": 3.7341,
662
+ "step": 840
663
+ },
664
+ {
665
+ "epoch": 0.17,
666
+ "learning_rate": 0.00017410134257254224,
667
+ "loss": 3.7511,
668
+ "step": 850
669
+ },
670
+ {
671
+ "epoch": 0.17,
672
+ "eval_accuracy": 0.3172649572649573,
673
+ "eval_loss": 4.515625,
674
+ "eval_runtime": 6.6093,
675
+ "eval_samples_per_second": 5.296,
676
+ "eval_steps_per_second": 0.303,
677
+ "step": 850
678
+ },
679
+ {
680
+ "epoch": 0.18,
681
+ "learning_rate": 0.0001736682546556951,
682
+ "loss": 3.6862,
683
+ "step": 860
684
+ },
685
+ {
686
+ "epoch": 0.18,
687
+ "learning_rate": 0.00017323516673884798,
688
+ "loss": 3.6411,
689
+ "step": 870
690
+ },
691
+ {
692
+ "epoch": 0.18,
693
+ "learning_rate": 0.00017280207882200088,
694
+ "loss": 3.7181,
695
+ "step": 880
696
+ },
697
+ {
698
+ "epoch": 0.18,
699
+ "learning_rate": 0.00017236899090515375,
700
+ "loss": 3.6471,
701
+ "step": 890
702
+ },
703
+ {
704
+ "epoch": 0.19,
705
+ "learning_rate": 0.00017193590298830665,
706
+ "loss": 3.7166,
707
+ "step": 900
708
+ },
709
+ {
710
+ "epoch": 0.19,
711
+ "eval_accuracy": 0.3188278388278388,
712
+ "eval_loss": 4.4921875,
713
+ "eval_runtime": 6.6113,
714
+ "eval_samples_per_second": 5.294,
715
+ "eval_steps_per_second": 0.303,
716
+ "step": 900
717
+ },
718
+ {
719
+ "epoch": 0.19,
720
+ "learning_rate": 0.00017150281507145952,
721
+ "loss": 3.6869,
722
+ "step": 910
723
+ },
724
+ {
725
+ "epoch": 0.19,
726
+ "learning_rate": 0.00017106972715461241,
727
+ "loss": 3.6728,
728
+ "step": 920
729
+ },
730
+ {
731
+ "epoch": 0.19,
732
+ "learning_rate": 0.00017063663923776528,
733
+ "loss": 3.7705,
734
+ "step": 930
735
+ },
736
+ {
737
+ "epoch": 0.19,
738
+ "learning_rate": 0.00017020355132091815,
739
+ "loss": 3.6728,
740
+ "step": 940
741
+ },
742
+ {
743
+ "epoch": 0.2,
744
+ "learning_rate": 0.00016977046340407103,
745
+ "loss": 3.6908,
746
+ "step": 950
747
+ },
748
+ {
749
+ "epoch": 0.2,
750
+ "eval_accuracy": 0.3190441304727019,
751
+ "eval_loss": 4.48046875,
752
+ "eval_runtime": 6.5961,
753
+ "eval_samples_per_second": 5.306,
754
+ "eval_steps_per_second": 0.303,
755
+ "step": 950
756
+ },
757
+ {
758
+ "epoch": 0.2,
759
+ "learning_rate": 0.0001693373754872239,
760
+ "loss": 3.5988,
761
+ "step": 960
762
+ },
763
+ {
764
+ "epoch": 0.2,
765
+ "learning_rate": 0.0001689042875703768,
766
+ "loss": 3.6713,
767
+ "step": 970
768
+ },
769
+ {
770
+ "epoch": 0.2,
771
+ "learning_rate": 0.00016847119965352966,
772
+ "loss": 3.7165,
773
+ "step": 980
774
+ },
775
+ {
776
+ "epoch": 0.2,
777
+ "learning_rate": 0.00016803811173668256,
778
+ "loss": 3.7098,
779
+ "step": 990
780
+ },
781
+ {
782
+ "epoch": 0.21,
783
+ "learning_rate": 0.00016760502381983543,
784
+ "loss": 3.617,
785
+ "step": 1000
786
+ },
787
+ {
788
+ "epoch": 0.21,
789
+ "eval_accuracy": 0.3208442351299494,
790
+ "eval_loss": 4.46484375,
791
+ "eval_runtime": 6.5949,
792
+ "eval_samples_per_second": 5.307,
793
+ "eval_steps_per_second": 0.303,
794
+ "step": 1000
795
+ },
796
+ {
797
+ "epoch": 0.21,
798
+ "learning_rate": 0.00016717193590298833,
799
+ "loss": 3.6629,
800
+ "step": 1010
801
+ },
802
+ {
803
+ "epoch": 0.21,
804
+ "learning_rate": 0.0001667388479861412,
805
+ "loss": 3.684,
806
+ "step": 1020
807
+ },
808
+ {
809
+ "epoch": 0.21,
810
+ "learning_rate": 0.00016630576006929407,
811
+ "loss": 3.6877,
812
+ "step": 1030
813
+ },
814
+ {
815
+ "epoch": 0.21,
816
+ "learning_rate": 0.00016587267215244694,
817
+ "loss": 3.6274,
818
+ "step": 1040
819
+ },
820
+ {
821
+ "epoch": 0.22,
822
+ "learning_rate": 0.00016543958423559984,
823
+ "loss": 3.6734,
824
+ "step": 1050
825
+ },
826
+ {
827
+ "epoch": 0.22,
828
+ "eval_accuracy": 0.3213535670678528,
829
+ "eval_loss": 4.453125,
830
+ "eval_runtime": 6.5974,
831
+ "eval_samples_per_second": 5.305,
832
+ "eval_steps_per_second": 0.303,
833
+ "step": 1050
834
+ },
835
+ {
836
+ "epoch": 0.22,
837
+ "learning_rate": 0.0001650064963187527,
838
+ "loss": 3.6895,
839
+ "step": 1060
840
+ },
841
+ {
842
+ "epoch": 0.22,
843
+ "learning_rate": 0.0001645734084019056,
844
+ "loss": 3.6662,
845
+ "step": 1070
846
+ },
847
+ {
848
+ "epoch": 0.22,
849
+ "learning_rate": 0.00016414032048505848,
850
+ "loss": 3.6152,
851
+ "step": 1080
852
+ },
853
+ {
854
+ "epoch": 0.22,
855
+ "learning_rate": 0.00016370723256821135,
856
+ "loss": 3.6531,
857
+ "step": 1090
858
+ },
859
+ {
860
+ "epoch": 0.23,
861
+ "learning_rate": 0.00016327414465136425,
862
+ "loss": 3.6916,
863
+ "step": 1100
864
+ },
865
+ {
866
+ "epoch": 0.23,
867
+ "eval_accuracy": 0.32398395255538115,
868
+ "eval_loss": 4.43359375,
869
+ "eval_runtime": 6.5897,
870
+ "eval_samples_per_second": 5.311,
871
+ "eval_steps_per_second": 0.304,
872
+ "step": 1100
873
+ },
874
+ {
875
+ "epoch": 0.23,
876
+ "learning_rate": 0.00016284105673451712,
877
+ "loss": 3.6961,
878
+ "step": 1110
879
+ },
880
+ {
881
+ "epoch": 0.23,
882
+ "learning_rate": 0.00016240796881767,
883
+ "loss": 3.5811,
884
+ "step": 1120
885
+ },
886
+ {
887
+ "epoch": 0.23,
888
+ "learning_rate": 0.00016197488090082286,
889
+ "loss": 3.6161,
890
+ "step": 1130
891
+ },
892
+ {
893
+ "epoch": 0.23,
894
+ "learning_rate": 0.00016154179298397576,
895
+ "loss": 3.6305,
896
+ "step": 1140
897
+ },
898
+ {
899
+ "epoch": 0.24,
900
+ "learning_rate": 0.00016110870506712863,
901
+ "loss": 3.629,
902
+ "step": 1150
903
+ },
904
+ {
905
+ "epoch": 0.24,
906
+ "eval_accuracy": 0.32400488400488403,
907
+ "eval_loss": 4.421875,
908
+ "eval_runtime": 6.5985,
909
+ "eval_samples_per_second": 5.304,
910
+ "eval_steps_per_second": 0.303,
911
+ "step": 1150
912
+ },
913
+ {
914
+ "epoch": 0.24,
915
+ "learning_rate": 0.00016067561715028152,
916
+ "loss": 3.6467,
917
+ "step": 1160
918
+ },
919
+ {
920
+ "epoch": 0.24,
921
+ "learning_rate": 0.0001602425292334344,
922
+ "loss": 3.6573,
923
+ "step": 1170
924
+ },
925
+ {
926
+ "epoch": 0.24,
927
+ "learning_rate": 0.0001598094413165873,
928
+ "loss": 3.6372,
929
+ "step": 1180
930
+ },
931
+ {
932
+ "epoch": 0.24,
933
+ "learning_rate": 0.00015937635339974016,
934
+ "loss": 3.6369,
935
+ "step": 1190
936
+ },
937
+ {
938
+ "epoch": 0.25,
939
+ "learning_rate": 0.00015894326548289303,
940
+ "loss": 3.6001,
941
+ "step": 1200
942
+ },
943
+ {
944
+ "epoch": 0.25,
945
+ "eval_accuracy": 0.3247165532879819,
946
+ "eval_loss": 4.4140625,
947
+ "eval_runtime": 6.602,
948
+ "eval_samples_per_second": 5.301,
949
+ "eval_steps_per_second": 0.303,
950
+ "step": 1200
951
+ },
952
+ {
953
+ "epoch": 0.25,
954
+ "learning_rate": 0.0001585101775660459,
955
+ "loss": 3.5843,
956
+ "step": 1210
957
+ },
958
+ {
959
+ "epoch": 0.25,
960
+ "learning_rate": 0.00015807708964919877,
961
+ "loss": 3.6407,
962
+ "step": 1220
963
+ },
964
+ {
965
+ "epoch": 0.25,
966
+ "learning_rate": 0.00015764400173235167,
967
+ "loss": 3.6413,
968
+ "step": 1230
969
+ },
970
+ {
971
+ "epoch": 0.26,
972
+ "learning_rate": 0.00015721091381550454,
973
+ "loss": 3.5963,
974
+ "step": 1240
975
+ },
976
+ {
977
+ "epoch": 0.26,
978
+ "learning_rate": 0.00015677782589865744,
979
+ "loss": 3.6053,
980
+ "step": 1250
981
+ },
982
+ {
983
+ "epoch": 0.26,
984
+ "eval_accuracy": 0.32607709750566893,
985
+ "eval_loss": 4.40234375,
986
+ "eval_runtime": 6.5982,
987
+ "eval_samples_per_second": 5.304,
988
+ "eval_steps_per_second": 0.303,
989
+ "step": 1250
990
+ },
991
+ {
992
+ "epoch": 0.26,
993
+ "learning_rate": 0.0001563447379818103,
994
+ "loss": 3.6049,
995
+ "step": 1260
996
+ },
997
+ {
998
+ "epoch": 0.26,
999
+ "learning_rate": 0.0001559116500649632,
1000
+ "loss": 3.6112,
1001
+ "step": 1270
1002
+ },
1003
+ {
1004
+ "epoch": 0.26,
1005
+ "learning_rate": 0.00015547856214811608,
1006
+ "loss": 3.5872,
1007
+ "step": 1280
1008
+ },
1009
+ {
1010
+ "epoch": 0.27,
1011
+ "learning_rate": 0.00015504547423126895,
1012
+ "loss": 3.6328,
1013
+ "step": 1290
1014
+ },
1015
+ {
1016
+ "epoch": 0.27,
1017
+ "learning_rate": 0.00015461238631442182,
1018
+ "loss": 3.5803,
1019
+ "step": 1300
1020
+ },
1021
+ {
1022
+ "epoch": 0.27,
1023
+ "eval_accuracy": 0.32540729112157685,
1024
+ "eval_loss": 4.390625,
1025
+ "eval_runtime": 6.5995,
1026
+ "eval_samples_per_second": 5.303,
1027
+ "eval_steps_per_second": 0.303,
1028
+ "step": 1300
1029
+ },
1030
+ {
1031
+ "epoch": 0.27,
1032
+ "learning_rate": 0.00015417929839757472,
1033
+ "loss": 3.6153,
1034
+ "step": 1310
1035
+ },
1036
+ {
1037
+ "epoch": 0.27,
1038
+ "learning_rate": 0.0001537462104807276,
1039
+ "loss": 3.5493,
1040
+ "step": 1320
1041
+ },
1042
+ {
1043
+ "epoch": 0.27,
1044
+ "learning_rate": 0.00015331312256388049,
1045
+ "loss": 3.5854,
1046
+ "step": 1330
1047
+ },
1048
+ {
1049
+ "epoch": 0.28,
1050
+ "learning_rate": 0.00015288003464703336,
1051
+ "loss": 3.6029,
1052
+ "step": 1340
1053
+ },
1054
+ {
1055
+ "epoch": 0.28,
1056
+ "learning_rate": 0.00015244694673018623,
1057
+ "loss": 3.5886,
1058
+ "step": 1350
1059
+ },
1060
+ {
1061
+ "epoch": 0.28,
1062
+ "eval_accuracy": 0.32738880167451595,
1063
+ "eval_loss": 4.37890625,
1064
+ "eval_runtime": 6.5931,
1065
+ "eval_samples_per_second": 5.309,
1066
+ "eval_steps_per_second": 0.303,
1067
+ "step": 1350
1068
+ },
1069
+ {
1070
+ "epoch": 0.28,
1071
+ "learning_rate": 0.00015201385881333913,
1072
+ "loss": 3.5496,
1073
+ "step": 1360
1074
+ },
1075
+ {
1076
+ "epoch": 0.28,
1077
+ "learning_rate": 0.000151580770896492,
1078
+ "loss": 3.557,
1079
+ "step": 1370
1080
+ },
1081
+ {
1082
+ "epoch": 0.28,
1083
+ "learning_rate": 0.00015114768297964487,
1084
+ "loss": 3.5647,
1085
+ "step": 1380
1086
+ },
1087
+ {
1088
+ "epoch": 0.29,
1089
+ "learning_rate": 0.00015071459506279774,
1090
+ "loss": 3.5912,
1091
+ "step": 1390
1092
+ },
1093
+ {
1094
+ "epoch": 0.29,
1095
+ "learning_rate": 0.00015028150714595063,
1096
+ "loss": 3.5033,
1097
+ "step": 1400
1098
+ },
1099
+ {
1100
+ "epoch": 0.29,
1101
+ "eval_accuracy": 0.3287981859410431,
1102
+ "eval_loss": 4.3671875,
1103
+ "eval_runtime": 6.593,
1104
+ "eval_samples_per_second": 5.309,
1105
+ "eval_steps_per_second": 0.303,
1106
+ "step": 1400
1107
+ },
1108
+ {
1109
+ "epoch": 0.29,
1110
+ "learning_rate": 0.0001498484192291035,
1111
+ "loss": 3.5814,
1112
+ "step": 1410
1113
+ },
1114
+ {
1115
+ "epoch": 0.29,
1116
+ "learning_rate": 0.0001494153313122564,
1117
+ "loss": 3.5834,
1118
+ "step": 1420
1119
+ },
1120
+ {
1121
+ "epoch": 0.29,
1122
+ "learning_rate": 0.00014898224339540927,
1123
+ "loss": 3.5661,
1124
+ "step": 1430
1125
+ },
1126
+ {
1127
+ "epoch": 0.3,
1128
+ "learning_rate": 0.00014854915547856217,
1129
+ "loss": 3.5844,
1130
+ "step": 1440
1131
+ },
1132
+ {
1133
+ "epoch": 0.3,
1134
+ "learning_rate": 0.00014811606756171504,
1135
+ "loss": 3.58,
1136
+ "step": 1450
1137
+ },
1138
+ {
1139
+ "epoch": 0.3,
1140
+ "eval_accuracy": 0.3283656026513169,
1141
+ "eval_loss": 4.36328125,
1142
+ "eval_runtime": 6.6004,
1143
+ "eval_samples_per_second": 5.303,
1144
+ "eval_steps_per_second": 0.303,
1145
+ "step": 1450
1146
+ },
1147
+ {
1148
+ "epoch": 0.3,
1149
+ "learning_rate": 0.0001476829796448679,
1150
+ "loss": 3.5874,
1151
+ "step": 1460
1152
+ },
1153
+ {
1154
+ "epoch": 0.3,
1155
+ "learning_rate": 0.00014724989172802078,
1156
+ "loss": 3.5736,
1157
+ "step": 1470
1158
+ },
1159
+ {
1160
+ "epoch": 0.3,
1161
+ "learning_rate": 0.00014681680381117365,
1162
+ "loss": 3.5659,
1163
+ "step": 1480
1164
+ },
1165
+ {
1166
+ "epoch": 0.31,
1167
+ "learning_rate": 0.00014638371589432655,
1168
+ "loss": 3.5632,
1169
+ "step": 1490
1170
+ },
1171
+ {
1172
+ "epoch": 0.31,
1173
+ "learning_rate": 0.00014595062797747942,
1174
+ "loss": 3.4966,
1175
+ "step": 1500
1176
+ },
1177
+ {
1178
+ "epoch": 0.31,
1179
+ "eval_accuracy": 0.32832373975231116,
1180
+ "eval_loss": 4.3515625,
1181
+ "eval_runtime": 6.592,
1182
+ "eval_samples_per_second": 5.309,
1183
+ "eval_steps_per_second": 0.303,
1184
+ "step": 1500
1185
+ },
1186
+ {
1187
+ "epoch": 0.31,
1188
+ "learning_rate": 0.00014551754006063232,
1189
+ "loss": 3.5236,
1190
+ "step": 1510
1191
+ },
1192
+ {
1193
+ "epoch": 0.31,
1194
+ "learning_rate": 0.0001450844521437852,
1195
+ "loss": 3.5277,
1196
+ "step": 1520
1197
+ },
1198
+ {
1199
+ "epoch": 0.31,
1200
+ "learning_rate": 0.0001446513642269381,
1201
+ "loss": 3.5237,
1202
+ "step": 1530
1203
+ },
1204
+ {
1205
+ "epoch": 0.32,
1206
+ "learning_rate": 0.00014421827631009096,
1207
+ "loss": 3.5719,
1208
+ "step": 1540
1209
+ },
1210
+ {
1211
+ "epoch": 0.32,
1212
+ "learning_rate": 0.00014378518839324383,
1213
+ "loss": 3.5411,
1214
+ "step": 1550
1215
+ },
1216
+ {
1217
+ "epoch": 0.32,
1218
+ "eval_accuracy": 0.32884004884004886,
1219
+ "eval_loss": 4.3515625,
1220
+ "eval_runtime": 6.6086,
1221
+ "eval_samples_per_second": 5.296,
1222
+ "eval_steps_per_second": 0.303,
1223
+ "step": 1550
1224
+ },
1225
+ {
1226
+ "epoch": 0.32,
1227
+ "learning_rate": 0.0001433521004763967,
1228
+ "loss": 3.5287,
1229
+ "step": 1560
1230
+ },
1231
+ {
1232
+ "epoch": 0.32,
1233
+ "learning_rate": 0.0001429190125595496,
1234
+ "loss": 3.5965,
1235
+ "step": 1570
1236
+ },
1237
+ {
1238
+ "epoch": 0.32,
1239
+ "learning_rate": 0.00014248592464270247,
1240
+ "loss": 3.5435,
1241
+ "step": 1580
1242
+ },
1243
+ {
1244
+ "epoch": 0.33,
1245
+ "learning_rate": 0.00014205283672585536,
1246
+ "loss": 3.5536,
1247
+ "step": 1590
1248
+ },
1249
+ {
1250
+ "epoch": 0.33,
1251
+ "learning_rate": 0.00014161974880900824,
1252
+ "loss": 3.527,
1253
+ "step": 1600
1254
+ },
1255
+ {
1256
+ "epoch": 0.33,
1257
+ "eval_accuracy": 0.33027036455607883,
1258
+ "eval_loss": 4.33984375,
1259
+ "eval_runtime": 6.5917,
1260
+ "eval_samples_per_second": 5.31,
1261
+ "eval_steps_per_second": 0.303,
1262
+ "step": 1600
1263
+ },
1264
+ {
1265
+ "epoch": 0.33,
1266
+ "learning_rate": 0.0001411866608921611,
1267
+ "loss": 3.5765,
1268
+ "step": 1610
1269
+ },
1270
+ {
1271
+ "epoch": 0.33,
1272
+ "learning_rate": 0.000140753572975314,
1273
+ "loss": 3.5882,
1274
+ "step": 1620
1275
+ },
1276
+ {
1277
+ "epoch": 0.34,
1278
+ "learning_rate": 0.00014032048505846687,
1279
+ "loss": 3.5135,
1280
+ "step": 1630
1281
+ },
1282
+ {
1283
+ "epoch": 0.34,
1284
+ "learning_rate": 0.00013988739714161974,
1285
+ "loss": 3.4924,
1286
+ "step": 1640
1287
+ },
1288
+ {
1289
+ "epoch": 0.34,
1290
+ "learning_rate": 0.00013945430922477262,
1291
+ "loss": 3.6018,
1292
+ "step": 1650
1293
+ },
1294
+ {
1295
+ "epoch": 0.34,
1296
+ "eval_accuracy": 0.3299284842141985,
1297
+ "eval_loss": 4.33203125,
1298
+ "eval_runtime": 6.5992,
1299
+ "eval_samples_per_second": 5.304,
1300
+ "eval_steps_per_second": 0.303,
1301
+ "step": 1650
1302
+ },
1303
+ {
1304
+ "epoch": 0.34,
1305
+ "learning_rate": 0.0001390212213079255,
1306
+ "loss": 3.5646,
1307
+ "step": 1660
1308
+ },
1309
+ {
1310
+ "epoch": 0.34,
1311
+ "learning_rate": 0.00013858813339107838,
1312
+ "loss": 3.5164,
1313
+ "step": 1670
1314
+ },
1315
+ {
1316
+ "epoch": 0.35,
1317
+ "learning_rate": 0.00013815504547423128,
1318
+ "loss": 3.5433,
1319
+ "step": 1680
1320
+ },
1321
+ {
1322
+ "epoch": 0.35,
1323
+ "learning_rate": 0.00013772195755738415,
1324
+ "loss": 3.4929,
1325
+ "step": 1690
1326
+ },
1327
+ {
1328
+ "epoch": 0.35,
1329
+ "learning_rate": 0.00013728886964053705,
1330
+ "loss": 3.4802,
1331
+ "step": 1700
1332
+ },
1333
+ {
1334
+ "epoch": 0.35,
1335
+ "eval_accuracy": 0.3301238444095587,
1336
+ "eval_loss": 4.32421875,
1337
+ "eval_runtime": 6.5899,
1338
+ "eval_samples_per_second": 5.311,
1339
+ "eval_steps_per_second": 0.303,
1340
+ "step": 1700
1341
+ },
1342
+ {
1343
+ "epoch": 0.35,
1344
+ "learning_rate": 0.00013685578172368992,
1345
+ "loss": 3.5211,
1346
+ "step": 1710
1347
+ },
1348
+ {
1349
+ "epoch": 0.35,
1350
+ "learning_rate": 0.00013642269380684282,
1351
+ "loss": 3.5424,
1352
+ "step": 1720
1353
+ },
1354
+ {
1355
+ "epoch": 0.36,
1356
+ "learning_rate": 0.00013598960588999566,
1357
+ "loss": 3.468,
1358
+ "step": 1730
1359
+ },
1360
+ {
1361
+ "epoch": 0.36,
1362
+ "learning_rate": 0.00013555651797314853,
1363
+ "loss": 3.5342,
1364
+ "step": 1740
1365
+ },
1366
+ {
1367
+ "epoch": 0.36,
1368
+ "learning_rate": 0.00013512343005630143,
1369
+ "loss": 3.4375,
1370
+ "step": 1750
1371
+ },
1372
+ {
1373
+ "epoch": 0.36,
1374
+ "eval_accuracy": 0.330584336298622,
1375
+ "eval_loss": 4.32421875,
1376
+ "eval_runtime": 6.5928,
1377
+ "eval_samples_per_second": 5.309,
1378
+ "eval_steps_per_second": 0.303,
1379
+ "step": 1750
1380
+ },
1381
+ {
1382
+ "epoch": 0.36,
1383
+ "learning_rate": 0.0001346903421394543,
1384
+ "loss": 3.5239,
1385
+ "step": 1760
1386
+ },
1387
+ {
1388
+ "epoch": 0.36,
1389
+ "learning_rate": 0.0001342572542226072,
1390
+ "loss": 3.5176,
1391
+ "step": 1770
1392
+ },
1393
+ {
1394
+ "epoch": 0.37,
1395
+ "learning_rate": 0.00013382416630576007,
1396
+ "loss": 3.4992,
1397
+ "step": 1780
1398
+ },
1399
+ {
1400
+ "epoch": 0.37,
1401
+ "learning_rate": 0.00013339107838891297,
1402
+ "loss": 3.457,
1403
+ "step": 1790
1404
+ },
1405
+ {
1406
+ "epoch": 0.37,
1407
+ "learning_rate": 0.00013295799047206584,
1408
+ "loss": 3.4873,
1409
+ "step": 1800
1410
+ },
1411
+ {
1412
+ "epoch": 0.37,
1413
+ "eval_accuracy": 0.33109366823652536,
1414
+ "eval_loss": 4.3203125,
1415
+ "eval_runtime": 6.6125,
1416
+ "eval_samples_per_second": 5.293,
1417
+ "eval_steps_per_second": 0.302,
1418
+ "step": 1800
1419
+ },
1420
+ {
1421
+ "epoch": 0.37,
1422
+ "learning_rate": 0.00013252490255521873,
1423
+ "loss": 3.5021,
1424
+ "step": 1810
1425
+ },
1426
+ {
1427
+ "epoch": 0.37,
1428
+ "learning_rate": 0.0001320918146383716,
1429
+ "loss": 3.4871,
1430
+ "step": 1820
1431
+ },
1432
+ {
1433
+ "epoch": 0.38,
1434
+ "learning_rate": 0.00013165872672152448,
1435
+ "loss": 3.47,
1436
+ "step": 1830
1437
+ },
1438
+ {
1439
+ "epoch": 0.38,
1440
+ "learning_rate": 0.00013122563880467735,
1441
+ "loss": 3.4462,
1442
+ "step": 1840
1443
+ },
1444
+ {
1445
+ "epoch": 0.38,
1446
+ "learning_rate": 0.00013079255088783024,
1447
+ "loss": 3.435,
1448
+ "step": 1850
1449
+ },
1450
+ {
1451
+ "epoch": 0.38,
1452
+ "eval_accuracy": 0.3309401709401709,
1453
+ "eval_loss": 4.3125,
1454
+ "eval_runtime": 6.5916,
1455
+ "eval_samples_per_second": 5.31,
1456
+ "eval_steps_per_second": 0.303,
1457
+ "step": 1850
1458
+ },
1459
+ {
1460
+ "epoch": 0.38,
1461
+ "learning_rate": 0.00013035946297098311,
1462
+ "loss": 3.4994,
1463
+ "step": 1860
1464
+ },
1465
+ {
1466
+ "epoch": 0.38,
1467
+ "learning_rate": 0.00012992637505413598,
1468
+ "loss": 3.5665,
1469
+ "step": 1870
1470
+ },
1471
+ {
1472
+ "epoch": 0.39,
1473
+ "learning_rate": 0.00012949328713728888,
1474
+ "loss": 3.5552,
1475
+ "step": 1880
1476
+ },
1477
+ {
1478
+ "epoch": 0.39,
1479
+ "learning_rate": 0.00012906019922044175,
1480
+ "loss": 3.5092,
1481
+ "step": 1890
1482
+ },
1483
+ {
1484
+ "epoch": 0.39,
1485
+ "learning_rate": 0.00012862711130359465,
1486
+ "loss": 3.4335,
1487
+ "step": 1900
1488
+ },
1489
+ {
1490
+ "epoch": 0.39,
1491
+ "eval_accuracy": 0.3317634746206175,
1492
+ "eval_loss": 4.3046875,
1493
+ "eval_runtime": 6.6183,
1494
+ "eval_samples_per_second": 5.288,
1495
+ "eval_steps_per_second": 0.302,
1496
+ "step": 1900
1497
+ },
1498
+ {
1499
+ "epoch": 0.39,
1500
+ "learning_rate": 0.00012819402338674752,
1501
+ "loss": 3.5154,
1502
+ "step": 1910
1503
+ },
1504
+ {
1505
+ "epoch": 0.39,
1506
+ "learning_rate": 0.0001277609354699004,
1507
+ "loss": 3.5207,
1508
+ "step": 1920
1509
+ },
1510
+ {
1511
+ "epoch": 0.4,
1512
+ "learning_rate": 0.00012732784755305326,
1513
+ "loss": 3.4869,
1514
+ "step": 1930
1515
+ },
1516
+ {
1517
+ "epoch": 0.4,
1518
+ "learning_rate": 0.00012689475963620616,
1519
+ "loss": 3.4773,
1520
+ "step": 1940
1521
+ },
1522
+ {
1523
+ "epoch": 0.4,
1524
+ "learning_rate": 0.00012646167171935903,
1525
+ "loss": 3.4595,
1526
+ "step": 1950
1527
+ },
1528
+ {
1529
+ "epoch": 0.4,
1530
+ "eval_accuracy": 0.3325239839525554,
1531
+ "eval_loss": 4.296875,
1532
+ "eval_runtime": 6.5968,
1533
+ "eval_samples_per_second": 5.306,
1534
+ "eval_steps_per_second": 0.303,
1535
+ "step": 1950
1536
+ },
1537
+ {
1538
+ "epoch": 0.4,
1539
+ "learning_rate": 0.00012602858380251193,
1540
+ "loss": 3.5035,
1541
+ "step": 1960
1542
+ },
1543
+ {
1544
+ "epoch": 0.41,
1545
+ "learning_rate": 0.0001255954958856648,
1546
+ "loss": 3.4692,
1547
+ "step": 1970
1548
+ },
1549
+ {
1550
+ "epoch": 0.41,
1551
+ "learning_rate": 0.0001251624079688177,
1552
+ "loss": 3.4712,
1553
+ "step": 1980
1554
+ },
1555
+ {
1556
+ "epoch": 0.41,
1557
+ "learning_rate": 0.00012472932005197057,
1558
+ "loss": 3.4558,
1559
+ "step": 1990
1560
+ },
1561
+ {
1562
+ "epoch": 0.41,
1563
+ "learning_rate": 0.00012429623213512344,
1564
+ "loss": 3.4937,
1565
+ "step": 2000
1566
+ },
1567
+ {
1568
+ "epoch": 0.41,
1569
+ "eval_accuracy": 0.3319448805163091,
1570
+ "eval_loss": 4.29296875,
1571
+ "eval_runtime": 6.5908,
1572
+ "eval_samples_per_second": 5.31,
1573
+ "eval_steps_per_second": 0.303,
1574
+ "step": 2000
1575
+ },
1576
+ {
1577
+ "epoch": 0.41,
1578
+ "learning_rate": 0.0001238631442182763,
1579
+ "loss": 3.5093,
1580
+ "step": 2010
1581
+ },
1582
+ {
1583
+ "epoch": 0.42,
1584
+ "learning_rate": 0.00012343005630142918,
1585
+ "loss": 3.4941,
1586
+ "step": 2020
1587
+ },
1588
+ {
1589
+ "epoch": 0.42,
1590
+ "learning_rate": 0.00012299696838458208,
1591
+ "loss": 3.4706,
1592
+ "step": 2030
1593
+ },
1594
+ {
1595
+ "epoch": 0.42,
1596
+ "learning_rate": 0.00012256388046773495,
1597
+ "loss": 3.5106,
1598
+ "step": 2040
1599
+ },
1600
+ {
1601
+ "epoch": 0.42,
1602
+ "learning_rate": 0.00012213079255088784,
1603
+ "loss": 3.4959,
1604
+ "step": 2050
1605
+ },
1606
+ {
1607
+ "epoch": 0.42,
1608
+ "eval_accuracy": 0.3324123495552067,
1609
+ "eval_loss": 4.28515625,
1610
+ "eval_runtime": 6.6003,
1611
+ "eval_samples_per_second": 5.303,
1612
+ "eval_steps_per_second": 0.303,
1613
+ "step": 2050
1614
+ },
1615
+ {
1616
+ "epoch": 0.42,
1617
+ "learning_rate": 0.00012169770463404072,
1618
+ "loss": 3.5218,
1619
+ "step": 2060
1620
+ },
1621
+ {
1622
+ "epoch": 0.43,
1623
+ "learning_rate": 0.0001212646167171936,
1624
+ "loss": 3.4813,
1625
+ "step": 2070
1626
+ },
1627
+ {
1628
+ "epoch": 0.43,
1629
+ "learning_rate": 0.00012083152880034647,
1630
+ "loss": 3.5107,
1631
+ "step": 2080
1632
+ },
1633
+ {
1634
+ "epoch": 0.43,
1635
+ "learning_rate": 0.00012039844088349937,
1636
+ "loss": 3.4568,
1637
+ "step": 2090
1638
+ },
1639
+ {
1640
+ "epoch": 0.43,
1641
+ "learning_rate": 0.00011996535296665224,
1642
+ "loss": 3.4987,
1643
+ "step": 2100
1644
+ },
1645
+ {
1646
+ "epoch": 0.43,
1647
+ "eval_accuracy": 0.3331658817373103,
1648
+ "eval_loss": 4.28515625,
1649
+ "eval_runtime": 6.6107,
1650
+ "eval_samples_per_second": 5.294,
1651
+ "eval_steps_per_second": 0.303,
1652
+ "step": 2100
1653
+ },
1654
+ {
1655
+ "epoch": 0.43,
1656
+ "learning_rate": 0.00011957557384148984,
1657
+ "loss": 3.458,
1658
+ "step": 2110
1659
+ },
1660
+ {
1661
+ "epoch": 0.44,
1662
+ "learning_rate": 0.0001191424859246427,
1663
+ "loss": 3.4656,
1664
+ "step": 2120
1665
+ },
1666
+ {
1667
+ "epoch": 0.44,
1668
+ "learning_rate": 0.00011870939800779559,
1669
+ "loss": 3.4505,
1670
+ "step": 2130
1671
+ },
1672
+ {
1673
+ "epoch": 0.44,
1674
+ "learning_rate": 0.00011827631009094846,
1675
+ "loss": 3.4182,
1676
+ "step": 2140
1677
+ },
1678
+ {
1679
+ "epoch": 0.44,
1680
+ "learning_rate": 0.00011784322217410136,
1681
+ "loss": 3.4001,
1682
+ "step": 2150
1683
+ },
1684
+ {
1685
+ "epoch": 0.44,
1686
+ "eval_accuracy": 0.3336403279260422,
1687
+ "eval_loss": 4.28515625,
1688
+ "eval_runtime": 6.5938,
1689
+ "eval_samples_per_second": 5.308,
1690
+ "eval_steps_per_second": 0.303,
1691
+ "step": 2150
1692
+ },
1693
+ {
1694
+ "epoch": 0.44,
1695
+ "learning_rate": 0.00011741013425725423,
1696
+ "loss": 3.4289,
1697
+ "step": 2160
1698
+ },
1699
+ {
1700
+ "epoch": 0.45,
1701
+ "learning_rate": 0.00011697704634040711,
1702
+ "loss": 3.4228,
1703
+ "step": 2170
1704
+ },
1705
+ {
1706
+ "epoch": 0.45,
1707
+ "learning_rate": 0.00011654395842355998,
1708
+ "loss": 3.4066,
1709
+ "step": 2180
1710
+ },
1711
+ {
1712
+ "epoch": 0.45,
1713
+ "learning_rate": 0.00011611087050671288,
1714
+ "loss": 3.4823,
1715
+ "step": 2190
1716
+ },
1717
+ {
1718
+ "epoch": 0.45,
1719
+ "learning_rate": 0.00011567778258986575,
1720
+ "loss": 3.4497,
1721
+ "step": 2200
1722
+ },
1723
+ {
1724
+ "epoch": 0.45,
1725
+ "eval_accuracy": 0.3340380254665969,
1726
+ "eval_loss": 4.28125,
1727
+ "eval_runtime": 6.606,
1728
+ "eval_samples_per_second": 5.298,
1729
+ "eval_steps_per_second": 0.303,
1730
+ "step": 2200
1731
+ },
1732
+ {
1733
+ "epoch": 0.45,
1734
+ "learning_rate": 0.00011524469467301864,
1735
+ "loss": 3.4737,
1736
+ "step": 2210
1737
+ },
1738
+ {
1739
+ "epoch": 0.46,
1740
+ "learning_rate": 0.0001148116067561715,
1741
+ "loss": 3.4564,
1742
+ "step": 2220
1743
+ },
1744
+ {
1745
+ "epoch": 0.46,
1746
+ "learning_rate": 0.00011437851883932438,
1747
+ "loss": 3.4865,
1748
+ "step": 2230
1749
+ },
1750
+ {
1751
+ "epoch": 0.46,
1752
+ "learning_rate": 0.00011394543092247727,
1753
+ "loss": 3.4496,
1754
+ "step": 2240
1755
+ },
1756
+ {
1757
+ "epoch": 0.46,
1758
+ "learning_rate": 0.00011351234300563015,
1759
+ "loss": 3.4068,
1760
+ "step": 2250
1761
+ },
1762
+ {
1763
+ "epoch": 0.46,
1764
+ "eval_accuracy": 0.33329147043432755,
1765
+ "eval_loss": 4.27734375,
1766
+ "eval_runtime": 6.6133,
1767
+ "eval_samples_per_second": 5.292,
1768
+ "eval_steps_per_second": 0.302,
1769
+ "step": 2250
1770
+ },
1771
+ {
1772
+ "epoch": 0.46,
1773
+ "learning_rate": 0.00011307925508878303,
1774
+ "loss": 3.4337,
1775
+ "step": 2260
1776
+ },
1777
+ {
1778
+ "epoch": 0.47,
1779
+ "learning_rate": 0.0001126461671719359,
1780
+ "loss": 3.4338,
1781
+ "step": 2270
1782
+ },
1783
+ {
1784
+ "epoch": 0.47,
1785
+ "learning_rate": 0.0001122130792550888,
1786
+ "loss": 3.4241,
1787
+ "step": 2280
1788
+ },
1789
+ {
1790
+ "epoch": 0.47,
1791
+ "learning_rate": 0.00011177999133824167,
1792
+ "loss": 3.497,
1793
+ "step": 2290
1794
+ },
1795
+ {
1796
+ "epoch": 0.47,
1797
+ "learning_rate": 0.00011134690342139455,
1798
+ "loss": 3.4634,
1799
+ "step": 2300
1800
+ },
1801
+ {
1802
+ "epoch": 0.47,
1803
+ "eval_accuracy": 0.3339822082679226,
1804
+ "eval_loss": 4.2734375,
1805
+ "eval_runtime": 6.5925,
1806
+ "eval_samples_per_second": 5.309,
1807
+ "eval_steps_per_second": 0.303,
1808
+ "step": 2300
1809
+ },
1810
+ {
1811
+ "epoch": 0.48,
1812
+ "learning_rate": 0.00011091381550454742,
1813
+ "loss": 3.4245,
1814
+ "step": 2310
1815
+ },
1816
+ {
1817
+ "epoch": 0.48,
1818
+ "learning_rate": 0.00011048072758770032,
1819
+ "loss": 3.4465,
1820
+ "step": 2320
1821
+ },
1822
+ {
1823
+ "epoch": 0.48,
1824
+ "learning_rate": 0.00011004763967085319,
1825
+ "loss": 3.498,
1826
+ "step": 2330
1827
+ },
1828
+ {
1829
+ "epoch": 0.48,
1830
+ "learning_rate": 0.00010961455175400607,
1831
+ "loss": 3.3637,
1832
+ "step": 2340
1833
+ },
1834
+ {
1835
+ "epoch": 0.48,
1836
+ "learning_rate": 0.00010918146383715895,
1837
+ "loss": 3.4324,
1838
+ "step": 2350
1839
+ },
1840
+ {
1841
+ "epoch": 0.48,
1842
+ "eval_accuracy": 0.333849642421071,
1843
+ "eval_loss": 4.27734375,
1844
+ "eval_runtime": 6.5996,
1845
+ "eval_samples_per_second": 5.303,
1846
+ "eval_steps_per_second": 0.303,
1847
+ "step": 2350
1848
+ },
1849
+ {
1850
+ "epoch": 0.49,
1851
+ "learning_rate": 0.00010874837592031182,
1852
+ "loss": 3.3816,
1853
+ "step": 2360
1854
+ },
1855
+ {
1856
+ "epoch": 0.49,
1857
+ "learning_rate": 0.00010831528800346471,
1858
+ "loss": 3.4245,
1859
+ "step": 2370
1860
+ },
1861
+ {
1862
+ "epoch": 0.49,
1863
+ "learning_rate": 0.00010788220008661758,
1864
+ "loss": 3.4567,
1865
+ "step": 2380
1866
+ },
1867
+ {
1868
+ "epoch": 0.49,
1869
+ "learning_rate": 0.00010744911216977047,
1870
+ "loss": 3.4122,
1871
+ "step": 2390
1872
+ },
1873
+ {
1874
+ "epoch": 0.49,
1875
+ "learning_rate": 0.00010701602425292334,
1876
+ "loss": 3.4039,
1877
+ "step": 2400
1878
+ },
1879
+ {
1880
+ "epoch": 0.49,
1881
+ "eval_accuracy": 0.3344147915576487,
1882
+ "eval_loss": 4.265625,
1883
+ "eval_runtime": 6.5992,
1884
+ "eval_samples_per_second": 5.304,
1885
+ "eval_steps_per_second": 0.303,
1886
+ "step": 2400
1887
+ },
1888
+ {
1889
+ "epoch": 0.5,
1890
+ "learning_rate": 0.00010658293633607624,
1891
+ "loss": 3.4124,
1892
+ "step": 2410
1893
+ },
1894
+ {
1895
+ "epoch": 0.5,
1896
+ "learning_rate": 0.00010614984841922911,
1897
+ "loss": 3.4309,
1898
+ "step": 2420
1899
+ },
1900
+ {
1901
+ "epoch": 0.5,
1902
+ "learning_rate": 0.00010571676050238199,
1903
+ "loss": 3.4464,
1904
+ "step": 2430
1905
+ },
1906
+ {
1907
+ "epoch": 0.5,
1908
+ "learning_rate": 0.00010528367258553486,
1909
+ "loss": 3.4136,
1910
+ "step": 2440
1911
+ },
1912
+ {
1913
+ "epoch": 0.5,
1914
+ "learning_rate": 0.00010485058466868776,
1915
+ "loss": 3.4502,
1916
+ "step": 2450
1917
+ },
1918
+ {
1919
+ "epoch": 0.5,
1920
+ "eval_accuracy": 0.33453340310483165,
1921
+ "eval_loss": 4.265625,
1922
+ "eval_runtime": 6.7512,
1923
+ "eval_samples_per_second": 5.184,
1924
+ "eval_steps_per_second": 0.296,
1925
+ "step": 2450
1926
+ },
1927
+ {
1928
+ "epoch": 0.51,
1929
+ "learning_rate": 0.00010441749675184063,
1930
+ "loss": 3.4062,
1931
+ "step": 2460
1932
+ },
1933
+ {
1934
+ "epoch": 0.51,
1935
+ "learning_rate": 0.00010398440883499351,
1936
+ "loss": 3.3951,
1937
+ "step": 2470
1938
+ },
1939
+ {
1940
+ "epoch": 0.51,
1941
+ "learning_rate": 0.00010355132091814638,
1942
+ "loss": 3.4322,
1943
+ "step": 2480
1944
+ },
1945
+ {
1946
+ "epoch": 0.51,
1947
+ "learning_rate": 0.00010311823300129926,
1948
+ "loss": 3.4107,
1949
+ "step": 2490
1950
+ },
1951
+ {
1952
+ "epoch": 0.51,
1953
+ "learning_rate": 0.00010268514508445215,
1954
+ "loss": 3.4104,
1955
+ "step": 2500
1956
+ },
1957
+ {
1958
+ "epoch": 0.51,
1959
+ "eval_accuracy": 0.33495900924472355,
1960
+ "eval_loss": 4.2578125,
1961
+ "eval_runtime": 6.5889,
1962
+ "eval_samples_per_second": 5.312,
1963
+ "eval_steps_per_second": 0.304,
1964
+ "step": 2500
1965
+ },
1966
+ {
1967
+ "epoch": 0.52,
1968
+ "learning_rate": 0.00010225205716760502,
1969
+ "loss": 3.4181,
1970
+ "step": 2510
1971
+ },
1972
+ {
1973
+ "epoch": 0.52,
1974
+ "learning_rate": 0.00010181896925075791,
1975
+ "loss": 3.3979,
1976
+ "step": 2520
1977
+ },
1978
+ {
1979
+ "epoch": 0.52,
1980
+ "learning_rate": 0.00010138588133391078,
1981
+ "loss": 3.3911,
1982
+ "step": 2530
1983
+ },
1984
+ {
1985
+ "epoch": 0.52,
1986
+ "learning_rate": 0.00010095279341706368,
1987
+ "loss": 3.4303,
1988
+ "step": 2540
1989
+ },
1990
+ {
1991
+ "epoch": 0.52,
1992
+ "learning_rate": 0.00010051970550021655,
1993
+ "loss": 3.5251,
1994
+ "step": 2550
1995
+ },
1996
+ {
1997
+ "epoch": 0.52,
1998
+ "eval_accuracy": 0.33599860457003317,
1999
+ "eval_loss": 4.2578125,
2000
+ "eval_runtime": 6.5946,
2001
+ "eval_samples_per_second": 5.307,
2002
+ "eval_steps_per_second": 0.303,
2003
+ "step": 2550
2004
+ },
2005
+ {
2006
+ "epoch": 0.53,
2007
+ "learning_rate": 0.00010008661758336943,
2008
+ "loss": 3.4337,
2009
+ "step": 2560
2010
+ },
2011
+ {
2012
+ "epoch": 0.53,
2013
+ "learning_rate": 9.96535296665223e-05,
2014
+ "loss": 3.3906,
2015
+ "step": 2570
2016
+ },
2017
+ {
2018
+ "epoch": 0.53,
2019
+ "learning_rate": 9.922044174967519e-05,
2020
+ "loss": 3.4714,
2021
+ "step": 2580
2022
+ },
2023
+ {
2024
+ "epoch": 0.53,
2025
+ "learning_rate": 9.878735383282807e-05,
2026
+ "loss": 3.4061,
2027
+ "step": 2590
2028
+ },
2029
+ {
2030
+ "epoch": 0.53,
2031
+ "learning_rate": 9.835426591598095e-05,
2032
+ "loss": 3.4176,
2033
+ "step": 2600
2034
+ },
2035
+ {
2036
+ "epoch": 0.53,
2037
+ "eval_accuracy": 0.3363404849119135,
2038
+ "eval_loss": 4.25,
2039
+ "eval_runtime": 6.594,
2040
+ "eval_samples_per_second": 5.308,
2041
+ "eval_steps_per_second": 0.303,
2042
+ "step": 2600
2043
+ },
2044
+ {
2045
+ "epoch": 0.54,
2046
+ "learning_rate": 9.792117799913382e-05,
2047
+ "loss": 3.37,
2048
+ "step": 2610
2049
+ },
2050
+ {
2051
+ "epoch": 0.54,
2052
+ "learning_rate": 9.748809008228671e-05,
2053
+ "loss": 3.3931,
2054
+ "step": 2620
2055
+ },
2056
+ {
2057
+ "epoch": 0.54,
2058
+ "learning_rate": 9.705500216543959e-05,
2059
+ "loss": 3.4052,
2060
+ "step": 2630
2061
+ },
2062
+ {
2063
+ "epoch": 0.54,
2064
+ "learning_rate": 9.662191424859248e-05,
2065
+ "loss": 3.4269,
2066
+ "step": 2640
2067
+ },
2068
+ {
2069
+ "epoch": 0.54,
2070
+ "learning_rate": 9.618882633174535e-05,
2071
+ "loss": 3.3795,
2072
+ "step": 2650
2073
+ },
2074
+ {
2075
+ "epoch": 0.54,
2076
+ "eval_accuracy": 0.3354404325832897,
2077
+ "eval_loss": 4.25,
2078
+ "eval_runtime": 6.6039,
2079
+ "eval_samples_per_second": 5.3,
2080
+ "eval_steps_per_second": 0.303,
2081
+ "step": 2650
2082
+ },
2083
+ {
2084
+ "epoch": 0.55,
2085
+ "learning_rate": 9.575573841489823e-05,
2086
+ "loss": 3.4064,
2087
+ "step": 2660
2088
+ },
2089
+ {
2090
+ "epoch": 0.55,
2091
+ "learning_rate": 9.532265049805112e-05,
2092
+ "loss": 3.4207,
2093
+ "step": 2670
2094
+ },
2095
+ {
2096
+ "epoch": 0.55,
2097
+ "learning_rate": 9.488956258120399e-05,
2098
+ "loss": 3.4353,
2099
+ "step": 2680
2100
+ },
2101
+ {
2102
+ "epoch": 0.55,
2103
+ "learning_rate": 9.445647466435687e-05,
2104
+ "loss": 3.4497,
2105
+ "step": 2690
2106
+ },
2107
+ {
2108
+ "epoch": 0.56,
2109
+ "learning_rate": 9.402338674750974e-05,
2110
+ "loss": 3.3656,
2111
+ "step": 2700
2112
+ },
2113
+ {
2114
+ "epoch": 0.56,
2115
+ "eval_accuracy": 0.33636839351125064,
2116
+ "eval_loss": 4.25,
2117
+ "eval_runtime": 6.5948,
2118
+ "eval_samples_per_second": 5.307,
2119
+ "eval_steps_per_second": 0.303,
2120
+ "step": 2700
2121
+ },
2122
+ {
2123
+ "epoch": 0.56,
2124
+ "learning_rate": 9.359029883066262e-05,
2125
+ "loss": 3.3736,
2126
+ "step": 2710
2127
+ },
2128
+ {
2129
+ "epoch": 0.56,
2130
+ "learning_rate": 9.315721091381551e-05,
2131
+ "loss": 3.4236,
2132
+ "step": 2720
2133
+ },
2134
+ {
2135
+ "epoch": 0.56,
2136
+ "learning_rate": 9.272412299696839e-05,
2137
+ "loss": 3.4234,
2138
+ "step": 2730
2139
+ },
2140
+ {
2141
+ "epoch": 0.56,
2142
+ "learning_rate": 9.229103508012126e-05,
2143
+ "loss": 3.3849,
2144
+ "step": 2740
2145
+ },
2146
+ {
2147
+ "epoch": 0.57,
2148
+ "learning_rate": 9.185794716327415e-05,
2149
+ "loss": 3.3938,
2150
+ "step": 2750
2151
+ },
2152
+ {
2153
+ "epoch": 0.57,
2154
+ "eval_accuracy": 0.33627769056340484,
2155
+ "eval_loss": 4.24609375,
2156
+ "eval_runtime": 6.5953,
2157
+ "eval_samples_per_second": 5.307,
2158
+ "eval_steps_per_second": 0.303,
2159
+ "step": 2750
2160
+ },
2161
+ {
2162
+ "epoch": 0.57,
2163
+ "learning_rate": 9.142485924642703e-05,
2164
+ "loss": 3.375,
2165
+ "step": 2760
2166
+ },
2167
+ {
2168
+ "epoch": 0.57,
2169
+ "learning_rate": 9.099177132957992e-05,
2170
+ "loss": 3.4365,
2171
+ "step": 2770
2172
+ },
2173
+ {
2174
+ "epoch": 0.57,
2175
+ "learning_rate": 9.055868341273279e-05,
2176
+ "loss": 3.4068,
2177
+ "step": 2780
2178
+ },
2179
+ {
2180
+ "epoch": 0.57,
2181
+ "learning_rate": 9.012559549588567e-05,
2182
+ "loss": 3.4333,
2183
+ "step": 2790
2184
+ },
2185
+ {
2186
+ "epoch": 0.58,
2187
+ "learning_rate": 8.969250757903855e-05,
2188
+ "loss": 3.3757,
2189
+ "step": 2800
2190
+ },
2191
+ {
2192
+ "epoch": 0.58,
2193
+ "eval_accuracy": 0.33639630211058785,
2194
+ "eval_loss": 4.24609375,
2195
+ "eval_runtime": 6.5987,
2196
+ "eval_samples_per_second": 5.304,
2197
+ "eval_steps_per_second": 0.303,
2198
+ "step": 2800
2199
+ },
2200
+ {
2201
+ "epoch": 0.58,
2202
+ "learning_rate": 8.925941966219143e-05,
2203
+ "loss": 3.4111,
2204
+ "step": 2810
2205
+ },
2206
+ {
2207
+ "epoch": 0.58,
2208
+ "learning_rate": 8.882633174534431e-05,
2209
+ "loss": 3.4143,
2210
+ "step": 2820
2211
+ },
2212
+ {
2213
+ "epoch": 0.58,
2214
+ "learning_rate": 8.839324382849718e-05,
2215
+ "loss": 3.4307,
2216
+ "step": 2830
2217
+ },
2218
+ {
2219
+ "epoch": 0.58,
2220
+ "learning_rate": 8.796015591165006e-05,
2221
+ "loss": 3.3366,
2222
+ "step": 2840
2223
+ },
2224
+ {
2225
+ "epoch": 0.59,
2226
+ "learning_rate": 8.752706799480295e-05,
2227
+ "loss": 3.407,
2228
+ "step": 2850
2229
+ },
2230
+ {
2231
+ "epoch": 0.59,
2232
+ "eval_accuracy": 0.33731728588871446,
2233
+ "eval_loss": 4.234375,
2234
+ "eval_runtime": 6.6038,
2235
+ "eval_samples_per_second": 5.3,
2236
+ "eval_steps_per_second": 0.303,
2237
+ "step": 2850
2238
+ },
2239
+ {
2240
+ "epoch": 0.59,
2241
+ "learning_rate": 8.709398007795583e-05,
2242
+ "loss": 3.3506,
2243
+ "step": 2860
2244
+ },
2245
+ {
2246
+ "epoch": 0.59,
2247
+ "learning_rate": 8.66608921611087e-05,
2248
+ "loss": 3.429,
2249
+ "step": 2870
2250
+ },
2251
+ {
2252
+ "epoch": 0.59,
2253
+ "learning_rate": 8.622780424426159e-05,
2254
+ "loss": 3.338,
2255
+ "step": 2880
2256
+ },
2257
+ {
2258
+ "epoch": 0.59,
2259
+ "learning_rate": 8.579471632741447e-05,
2260
+ "loss": 3.4252,
2261
+ "step": 2890
2262
+ },
2263
+ {
2264
+ "epoch": 0.6,
2265
+ "learning_rate": 8.536162841056736e-05,
2266
+ "loss": 3.3986,
2267
+ "step": 2900
2268
+ },
2269
+ {
2270
+ "epoch": 0.6,
2271
+ "eval_accuracy": 0.33657770800627945,
2272
+ "eval_loss": 4.23828125,
2273
+ "eval_runtime": 6.5874,
2274
+ "eval_samples_per_second": 5.313,
2275
+ "eval_steps_per_second": 0.304,
2276
+ "step": 2900
2277
+ },
2278
+ {
2279
+ "epoch": 0.6,
2280
+ "learning_rate": 8.492854049372023e-05,
2281
+ "loss": 3.4023,
2282
+ "step": 2910
2283
+ },
2284
+ {
2285
+ "epoch": 0.6,
2286
+ "learning_rate": 8.449545257687311e-05,
2287
+ "loss": 3.3919,
2288
+ "step": 2920
2289
+ },
2290
+ {
2291
+ "epoch": 0.6,
2292
+ "learning_rate": 8.4062364660026e-05,
2293
+ "loss": 3.3691,
2294
+ "step": 2930
2295
+ },
2296
+ {
2297
+ "epoch": 0.6,
2298
+ "learning_rate": 8.362927674317888e-05,
2299
+ "loss": 3.4017,
2300
+ "step": 2940
2301
+ },
2302
+ {
2303
+ "epoch": 0.61,
2304
+ "learning_rate": 8.319618882633175e-05,
2305
+ "loss": 3.4311,
2306
+ "step": 2950
2307
+ },
2308
+ {
2309
+ "epoch": 0.61,
2310
+ "eval_accuracy": 0.3370940170940171,
2311
+ "eval_loss": 4.234375,
2312
+ "eval_runtime": 6.5922,
2313
+ "eval_samples_per_second": 5.309,
2314
+ "eval_steps_per_second": 0.303,
2315
+ "step": 2950
2316
+ },
2317
+ {
2318
+ "epoch": 0.61,
2319
+ "learning_rate": 8.276310090948462e-05,
2320
+ "loss": 3.4224,
2321
+ "step": 2960
2322
+ },
2323
+ {
2324
+ "epoch": 0.61,
2325
+ "learning_rate": 8.23300129926375e-05,
2326
+ "loss": 3.3781,
2327
+ "step": 2970
2328
+ },
2329
+ {
2330
+ "epoch": 0.61,
2331
+ "learning_rate": 8.189692507579039e-05,
2332
+ "loss": 3.383,
2333
+ "step": 2980
2334
+ },
2335
+ {
2336
+ "epoch": 0.61,
2337
+ "learning_rate": 8.146383715894327e-05,
2338
+ "loss": 3.4332,
2339
+ "step": 2990
2340
+ },
2341
+ {
2342
+ "epoch": 0.62,
2343
+ "learning_rate": 8.103074924209616e-05,
2344
+ "loss": 3.3716,
2345
+ "step": 3000
2346
+ },
2347
+ {
2348
+ "epoch": 0.62,
2349
+ "eval_accuracy": 0.33713587999302286,
2350
+ "eval_loss": 4.234375,
2351
+ "eval_runtime": 6.5875,
2352
+ "eval_samples_per_second": 5.313,
2353
+ "eval_steps_per_second": 0.304,
2354
+ "step": 3000
2355
+ },
2356
+ {
2357
+ "epoch": 0.62,
2358
+ "learning_rate": 8.059766132524903e-05,
2359
+ "loss": 3.4123,
2360
+ "step": 3010
2361
+ },
2362
+ {
2363
+ "epoch": 0.62,
2364
+ "learning_rate": 8.016457340840191e-05,
2365
+ "loss": 3.4181,
2366
+ "step": 3020
2367
+ },
2368
+ {
2369
+ "epoch": 0.62,
2370
+ "learning_rate": 7.97314854915548e-05,
2371
+ "loss": 3.3851,
2372
+ "step": 3030
2373
+ },
2374
+ {
2375
+ "epoch": 0.63,
2376
+ "learning_rate": 7.929839757470768e-05,
2377
+ "loss": 3.4224,
2378
+ "step": 3040
2379
+ },
2380
+ {
2381
+ "epoch": 0.63,
2382
+ "learning_rate": 7.886530965786055e-05,
2383
+ "loss": 3.3831,
2384
+ "step": 3050
2385
+ },
2386
+ {
2387
+ "epoch": 0.63,
2388
+ "eval_accuracy": 0.33774986917844063,
2389
+ "eval_loss": 4.23046875,
2390
+ "eval_runtime": 6.5895,
2391
+ "eval_samples_per_second": 5.311,
2392
+ "eval_steps_per_second": 0.304,
2393
+ "step": 3050
2394
+ },
2395
+ {
2396
+ "epoch": 0.63,
2397
+ "learning_rate": 7.843222174101343e-05,
2398
+ "loss": 3.3965,
2399
+ "step": 3060
2400
+ },
2401
+ {
2402
+ "epoch": 0.63,
2403
+ "learning_rate": 7.799913382416632e-05,
2404
+ "loss": 3.4016,
2405
+ "step": 3070
2406
+ },
2407
+ {
2408
+ "epoch": 0.63,
2409
+ "learning_rate": 7.756604590731919e-05,
2410
+ "loss": 3.4047,
2411
+ "step": 3080
2412
+ },
2413
+ {
2414
+ "epoch": 0.64,
2415
+ "learning_rate": 7.713295799047207e-05,
2416
+ "loss": 3.3618,
2417
+ "step": 3090
2418
+ },
2419
+ {
2420
+ "epoch": 0.64,
2421
+ "learning_rate": 7.669987007362494e-05,
2422
+ "loss": 3.375,
2423
+ "step": 3100
2424
+ },
2425
+ {
2426
+ "epoch": 0.64,
2427
+ "eval_accuracy": 0.3377638234781092,
2428
+ "eval_loss": 4.23046875,
2429
+ "eval_runtime": 6.5887,
2430
+ "eval_samples_per_second": 5.312,
2431
+ "eval_steps_per_second": 0.304,
2432
+ "step": 3100
2433
+ },
2434
+ {
2435
+ "epoch": 0.64,
2436
+ "learning_rate": 7.626678215677783e-05,
2437
+ "loss": 3.3899,
2438
+ "step": 3110
2439
+ },
2440
+ {
2441
+ "epoch": 0.64,
2442
+ "learning_rate": 7.583369423993071e-05,
2443
+ "loss": 3.3723,
2444
+ "step": 3120
2445
+ },
2446
+ {
2447
+ "epoch": 0.64,
2448
+ "learning_rate": 7.54006063230836e-05,
2449
+ "loss": 3.381,
2450
+ "step": 3130
2451
+ },
2452
+ {
2453
+ "epoch": 0.65,
2454
+ "learning_rate": 7.496751840623647e-05,
2455
+ "loss": 3.3558,
2456
+ "step": 3140
2457
+ },
2458
+ {
2459
+ "epoch": 0.65,
2460
+ "learning_rate": 7.453443048938935e-05,
2461
+ "loss": 3.3677,
2462
+ "step": 3150
2463
+ },
2464
+ {
2465
+ "epoch": 0.65,
2466
+ "eval_accuracy": 0.33846851561137276,
2467
+ "eval_loss": 4.21875,
2468
+ "eval_runtime": 6.5962,
2469
+ "eval_samples_per_second": 5.306,
2470
+ "eval_steps_per_second": 0.303,
2471
+ "step": 3150
2472
+ },
2473
+ {
2474
+ "epoch": 0.65,
2475
+ "learning_rate": 7.410134257254223e-05,
2476
+ "loss": 3.3414,
2477
+ "step": 3160
2478
+ },
2479
+ {
2480
+ "epoch": 0.65,
2481
+ "learning_rate": 7.366825465569512e-05,
2482
+ "loss": 3.4144,
2483
+ "step": 3170
2484
+ },
2485
+ {
2486
+ "epoch": 0.65,
2487
+ "learning_rate": 7.323516673884799e-05,
2488
+ "loss": 3.3503,
2489
+ "step": 3180
2490
+ },
2491
+ {
2492
+ "epoch": 0.66,
2493
+ "learning_rate": 7.280207882200087e-05,
2494
+ "loss": 3.3716,
2495
+ "step": 3190
2496
+ },
2497
+ {
2498
+ "epoch": 0.66,
2499
+ "learning_rate": 7.236899090515376e-05,
2500
+ "loss": 3.3968,
2501
+ "step": 3200
2502
+ },
2503
+ {
2504
+ "epoch": 0.66,
2505
+ "eval_accuracy": 0.3386220129077272,
2506
+ "eval_loss": 4.22265625,
2507
+ "eval_runtime": 6.5929,
2508
+ "eval_samples_per_second": 5.309,
2509
+ "eval_steps_per_second": 0.303,
2510
+ "step": 3200
2511
+ },
2512
+ {
2513
+ "epoch": 0.66,
2514
+ "learning_rate": 7.193590298830663e-05,
2515
+ "loss": 3.3485,
2516
+ "step": 3210
2517
+ },
2518
+ {
2519
+ "epoch": 0.66,
2520
+ "learning_rate": 7.150281507145951e-05,
2521
+ "loss": 3.4172,
2522
+ "step": 3220
2523
+ },
2524
+ {
2525
+ "epoch": 0.66,
2526
+ "learning_rate": 7.106972715461238e-05,
2527
+ "loss": 3.3727,
2528
+ "step": 3230
2529
+ },
2530
+ {
2531
+ "epoch": 0.67,
2532
+ "learning_rate": 7.063663923776527e-05,
2533
+ "loss": 3.3616,
2534
+ "step": 3240
2535
+ },
2536
+ {
2537
+ "epoch": 0.67,
2538
+ "learning_rate": 7.020355132091815e-05,
2539
+ "loss": 3.4069,
2540
+ "step": 3250
2541
+ },
2542
+ {
2543
+ "epoch": 0.67,
2544
+ "eval_accuracy": 0.3380429094714809,
2545
+ "eval_loss": 4.21875,
2546
+ "eval_runtime": 6.5865,
2547
+ "eval_samples_per_second": 5.314,
2548
+ "eval_steps_per_second": 0.304,
2549
+ "step": 3250
2550
+ },
2551
+ {
2552
+ "epoch": 0.67,
2553
+ "learning_rate": 6.977046340407103e-05,
2554
+ "loss": 3.3583,
2555
+ "step": 3260
2556
+ },
2557
+ {
2558
+ "epoch": 0.67,
2559
+ "learning_rate": 6.93373754872239e-05,
2560
+ "loss": 3.3753,
2561
+ "step": 3270
2562
+ },
2563
+ {
2564
+ "epoch": 0.67,
2565
+ "learning_rate": 6.890428757037679e-05,
2566
+ "loss": 3.3443,
2567
+ "step": 3280
2568
+ },
2569
+ {
2570
+ "epoch": 0.68,
2571
+ "learning_rate": 6.847119965352967e-05,
2572
+ "loss": 3.3682,
2573
+ "step": 3290
2574
+ },
2575
+ {
2576
+ "epoch": 0.68,
2577
+ "learning_rate": 6.803811173668256e-05,
2578
+ "loss": 3.4192,
2579
+ "step": 3300
2580
+ },
2581
+ {
2582
+ "epoch": 0.68,
2583
+ "eval_accuracy": 0.33877551020408164,
2584
+ "eval_loss": 4.21484375,
2585
+ "eval_runtime": 6.6033,
2586
+ "eval_samples_per_second": 5.3,
2587
+ "eval_steps_per_second": 0.303,
2588
+ "step": 3300
2589
+ },
2590
+ {
2591
+ "epoch": 0.68,
2592
+ "learning_rate": 6.760502381983543e-05,
2593
+ "loss": 3.3657,
2594
+ "step": 3310
2595
+ },
2596
+ {
2597
+ "epoch": 0.68,
2598
+ "learning_rate": 6.717193590298831e-05,
2599
+ "loss": 3.3773,
2600
+ "step": 3320
2601
+ },
2602
+ {
2603
+ "epoch": 0.68,
2604
+ "learning_rate": 6.67388479861412e-05,
2605
+ "loss": 3.3604,
2606
+ "step": 3330
2607
+ },
2608
+ {
2609
+ "epoch": 0.69,
2610
+ "learning_rate": 6.630576006929407e-05,
2611
+ "loss": 3.404,
2612
+ "step": 3340
2613
+ },
2614
+ {
2615
+ "epoch": 0.69,
2616
+ "learning_rate": 6.587267215244695e-05,
2617
+ "loss": 3.3881,
2618
+ "step": 3350
2619
+ },
2620
+ {
2621
+ "epoch": 0.69,
2622
+ "eval_accuracy": 0.33830804116518404,
2623
+ "eval_loss": 4.21484375,
2624
+ "eval_runtime": 6.6138,
2625
+ "eval_samples_per_second": 5.292,
2626
+ "eval_steps_per_second": 0.302,
2627
+ "step": 3350
2628
+ },
2629
+ {
2630
+ "epoch": 0.69,
2631
+ "learning_rate": 6.543958423559982e-05,
2632
+ "loss": 3.3855,
2633
+ "step": 3360
2634
+ },
2635
+ {
2636
+ "epoch": 0.69,
2637
+ "learning_rate": 6.50064963187527e-05,
2638
+ "loss": 3.314,
2639
+ "step": 3370
2640
+ },
2641
+ {
2642
+ "epoch": 0.7,
2643
+ "learning_rate": 6.457340840190559e-05,
2644
+ "loss": 3.4034,
2645
+ "step": 3380
2646
+ },
2647
+ {
2648
+ "epoch": 0.7,
2649
+ "learning_rate": 6.414032048505847e-05,
2650
+ "loss": 3.3969,
2651
+ "step": 3390
2652
+ },
2653
+ {
2654
+ "epoch": 0.7,
2655
+ "learning_rate": 6.370723256821134e-05,
2656
+ "loss": 3.3858,
2657
+ "step": 3400
2658
+ },
2659
+ {
2660
+ "epoch": 0.7,
2661
+ "eval_accuracy": 0.33836385836385835,
2662
+ "eval_loss": 4.2109375,
2663
+ "eval_runtime": 6.6099,
2664
+ "eval_samples_per_second": 5.295,
2665
+ "eval_steps_per_second": 0.303,
2666
+ "step": 3400
2667
+ },
2668
+ {
2669
+ "epoch": 0.7,
2670
+ "learning_rate": 6.327414465136423e-05,
2671
+ "loss": 3.388,
2672
+ "step": 3410
2673
+ },
2674
+ {
2675
+ "epoch": 0.7,
2676
+ "learning_rate": 6.284105673451711e-05,
2677
+ "loss": 3.3832,
2678
+ "step": 3420
2679
+ },
2680
+ {
2681
+ "epoch": 0.71,
2682
+ "learning_rate": 6.240796881767e-05,
2683
+ "loss": 3.3098,
2684
+ "step": 3430
2685
+ },
2686
+ {
2687
+ "epoch": 0.71,
2688
+ "learning_rate": 6.197488090082287e-05,
2689
+ "loss": 3.3794,
2690
+ "step": 3440
2691
+ },
2692
+ {
2693
+ "epoch": 0.71,
2694
+ "learning_rate": 6.154179298397575e-05,
2695
+ "loss": 3.3999,
2696
+ "step": 3450
2697
+ },
2698
+ {
2699
+ "epoch": 0.71,
2700
+ "eval_accuracy": 0.33883132740275596,
2701
+ "eval_loss": 4.2109375,
2702
+ "eval_runtime": 6.6039,
2703
+ "eval_samples_per_second": 5.3,
2704
+ "eval_steps_per_second": 0.303,
2705
+ "step": 3450
2706
+ },
2707
+ {
2708
+ "epoch": 0.71,
2709
+ "learning_rate": 6.110870506712864e-05,
2710
+ "loss": 3.3278,
2711
+ "step": 3460
2712
+ },
2713
+ {
2714
+ "epoch": 0.71,
2715
+ "learning_rate": 6.0675617150281506e-05,
2716
+ "loss": 3.3645,
2717
+ "step": 3470
2718
+ },
2719
+ {
2720
+ "epoch": 0.72,
2721
+ "learning_rate": 6.024252923343438e-05,
2722
+ "loss": 3.3563,
2723
+ "step": 3480
2724
+ },
2725
+ {
2726
+ "epoch": 0.72,
2727
+ "learning_rate": 5.985275010827198e-05,
2728
+ "loss": 3.358,
2729
+ "step": 3490
2730
+ },
2731
+ {
2732
+ "epoch": 0.72,
2733
+ "learning_rate": 5.9419662191424864e-05,
2734
+ "loss": 3.3907,
2735
+ "step": 3500
2736
+ },
2737
+ {
2738
+ "epoch": 0.72,
2739
+ "eval_accuracy": 0.33894296180010464,
2740
+ "eval_loss": 4.2109375,
2741
+ "eval_runtime": 6.6054,
2742
+ "eval_samples_per_second": 5.299,
2743
+ "eval_steps_per_second": 0.303,
2744
+ "step": 3500
2745
+ },
2746
+ {
2747
+ "epoch": 0.72,
2748
+ "learning_rate": 5.898657427457774e-05,
2749
+ "loss": 3.4023,
2750
+ "step": 3510
2751
+ },
2752
+ {
2753
+ "epoch": 0.72,
2754
+ "learning_rate": 5.8553486357730626e-05,
2755
+ "loss": 3.3519,
2756
+ "step": 3520
2757
+ },
2758
+ {
2759
+ "epoch": 0.73,
2760
+ "learning_rate": 5.81203984408835e-05,
2761
+ "loss": 3.3514,
2762
+ "step": 3530
2763
+ },
2764
+ {
2765
+ "epoch": 0.73,
2766
+ "learning_rate": 5.768731052403639e-05,
2767
+ "loss": 3.3151,
2768
+ "step": 3540
2769
+ },
2770
+ {
2771
+ "epoch": 0.73,
2772
+ "learning_rate": 5.7254222607189265e-05,
2773
+ "loss": 3.3929,
2774
+ "step": 3550
2775
+ },
2776
+ {
2777
+ "epoch": 0.73,
2778
+ "eval_accuracy": 0.33893598465027036,
2779
+ "eval_loss": 4.2109375,
2780
+ "eval_runtime": 6.5935,
2781
+ "eval_samples_per_second": 5.308,
2782
+ "eval_steps_per_second": 0.303,
2783
+ "step": 3550
2784
+ },
2785
+ {
2786
+ "epoch": 0.73,
2787
+ "learning_rate": 5.6821134690342135e-05,
2788
+ "loss": 3.3983,
2789
+ "step": 3560
2790
+ },
2791
+ {
2792
+ "epoch": 0.73,
2793
+ "learning_rate": 5.638804677349502e-05,
2794
+ "loss": 3.3281,
2795
+ "step": 3570
2796
+ },
2797
+ {
2798
+ "epoch": 0.74,
2799
+ "learning_rate": 5.59549588566479e-05,
2800
+ "loss": 3.3654,
2801
+ "step": 3580
2802
+ },
2803
+ {
2804
+ "epoch": 0.74,
2805
+ "learning_rate": 5.552187093980078e-05,
2806
+ "loss": 3.379,
2807
+ "step": 3590
2808
+ },
2809
+ {
2810
+ "epoch": 0.74,
2811
+ "learning_rate": 5.508878302295366e-05,
2812
+ "loss": 3.3738,
2813
+ "step": 3600
2814
+ },
2815
+ {
2816
+ "epoch": 0.74,
2817
+ "eval_accuracy": 0.33964067678353393,
2818
+ "eval_loss": 4.20703125,
2819
+ "eval_runtime": 6.6063,
2820
+ "eval_samples_per_second": 5.298,
2821
+ "eval_steps_per_second": 0.303,
2822
+ "step": 3600
2823
+ },
2824
+ {
2825
+ "epoch": 0.74,
2826
+ "learning_rate": 5.465569510610654e-05,
2827
+ "loss": 3.3727,
2828
+ "step": 3610
2829
+ },
2830
+ {
2831
+ "epoch": 0.74,
2832
+ "learning_rate": 5.426591598094414e-05,
2833
+ "loss": 3.3401,
2834
+ "step": 3620
2835
+ },
2836
+ {
2837
+ "epoch": 0.75,
2838
+ "learning_rate": 5.3832828064097017e-05,
2839
+ "loss": 3.3583,
2840
+ "step": 3630
2841
+ },
2842
+ {
2843
+ "epoch": 0.75,
2844
+ "learning_rate": 5.33997401472499e-05,
2845
+ "loss": 3.3868,
2846
+ "step": 3640
2847
+ },
2848
+ {
2849
+ "epoch": 0.75,
2850
+ "learning_rate": 5.296665223040277e-05,
2851
+ "loss": 3.3839,
2852
+ "step": 3650
2853
+ },
2854
+ {
2855
+ "epoch": 0.75,
2856
+ "eval_accuracy": 0.3392918192918193,
2857
+ "eval_loss": 4.20703125,
2858
+ "eval_runtime": 6.5952,
2859
+ "eval_samples_per_second": 5.307,
2860
+ "eval_steps_per_second": 0.303,
2861
+ "step": 3650
2862
+ },
2863
+ {
2864
+ "epoch": 0.75,
2865
+ "learning_rate": 5.253356431355565e-05,
2866
+ "loss": 3.3713,
2867
+ "step": 3660
2868
+ },
2869
+ {
2870
+ "epoch": 0.75,
2871
+ "learning_rate": 5.210047639670853e-05,
2872
+ "loss": 3.3649,
2873
+ "step": 3670
2874
+ },
2875
+ {
2876
+ "epoch": 0.76,
2877
+ "learning_rate": 5.166738847986141e-05,
2878
+ "loss": 3.3836,
2879
+ "step": 3680
2880
+ },
2881
+ {
2882
+ "epoch": 0.76,
2883
+ "learning_rate": 5.1234300563014294e-05,
2884
+ "loss": 3.3227,
2885
+ "step": 3690
2886
+ },
2887
+ {
2888
+ "epoch": 0.76,
2889
+ "learning_rate": 5.080121264616717e-05,
2890
+ "loss": 3.3854,
2891
+ "step": 3700
2892
+ },
2893
+ {
2894
+ "epoch": 0.76,
2895
+ "eval_accuracy": 0.3399546485260771,
2896
+ "eval_loss": 4.20703125,
2897
+ "eval_runtime": 6.6101,
2898
+ "eval_samples_per_second": 5.295,
2899
+ "eval_steps_per_second": 0.303,
2900
+ "step": 3700
2901
+ },
2902
+ {
2903
+ "epoch": 0.76,
2904
+ "learning_rate": 5.0368124729320056e-05,
2905
+ "loss": 3.3536,
2906
+ "step": 3710
2907
+ },
2908
+ {
2909
+ "epoch": 0.77,
2910
+ "learning_rate": 4.993503681247293e-05,
2911
+ "loss": 3.3943,
2912
+ "step": 3720
2913
+ },
2914
+ {
2915
+ "epoch": 0.77,
2916
+ "learning_rate": 4.950194889562582e-05,
2917
+ "loss": 3.3705,
2918
+ "step": 3730
2919
+ },
2920
+ {
2921
+ "epoch": 0.77,
2922
+ "learning_rate": 4.9068860978778694e-05,
2923
+ "loss": 3.3525,
2924
+ "step": 3740
2925
+ },
2926
+ {
2927
+ "epoch": 0.77,
2928
+ "learning_rate": 4.863577306193157e-05,
2929
+ "loss": 3.297,
2930
+ "step": 3750
2931
+ },
2932
+ {
2933
+ "epoch": 0.77,
2934
+ "eval_accuracy": 0.339236002093145,
2935
+ "eval_loss": 4.20703125,
2936
+ "eval_runtime": 6.5942,
2937
+ "eval_samples_per_second": 5.308,
2938
+ "eval_steps_per_second": 0.303,
2939
+ "step": 3750
2940
+ },
2941
+ {
2942
+ "epoch": 0.77,
2943
+ "learning_rate": 4.8202685145084456e-05,
2944
+ "loss": 3.3305,
2945
+ "step": 3760
2946
+ },
2947
+ {
2948
+ "epoch": 0.78,
2949
+ "learning_rate": 4.776959722823733e-05,
2950
+ "loss": 3.3789,
2951
+ "step": 3770
2952
+ },
2953
+ {
2954
+ "epoch": 0.78,
2955
+ "learning_rate": 4.733650931139022e-05,
2956
+ "loss": 3.4127,
2957
+ "step": 3780
2958
+ },
2959
+ {
2960
+ "epoch": 0.78,
2961
+ "learning_rate": 4.6903421394543095e-05,
2962
+ "loss": 3.3234,
2963
+ "step": 3790
2964
+ },
2965
+ {
2966
+ "epoch": 0.78,
2967
+ "learning_rate": 4.647033347769598e-05,
2968
+ "loss": 3.2951,
2969
+ "step": 3800
2970
+ },
2971
+ {
2972
+ "epoch": 0.78,
2973
+ "eval_accuracy": 0.3394732251875109,
2974
+ "eval_loss": 4.203125,
2975
+ "eval_runtime": 6.5899,
2976
+ "eval_samples_per_second": 5.311,
2977
+ "eval_steps_per_second": 0.303,
2978
+ "step": 3800
2979
+ },
2980
+ {
2981
+ "epoch": 0.78,
2982
+ "learning_rate": 4.603724556084885e-05,
2983
+ "loss": 3.3538,
2984
+ "step": 3810
2985
+ },
2986
+ {
2987
+ "epoch": 0.79,
2988
+ "learning_rate": 4.5604157644001733e-05,
2989
+ "loss": 3.4101,
2990
+ "step": 3820
2991
+ },
2992
+ {
2993
+ "epoch": 0.79,
2994
+ "learning_rate": 4.517106972715461e-05,
2995
+ "loss": 3.3232,
2996
+ "step": 3830
2997
+ },
2998
+ {
2999
+ "epoch": 0.79,
3000
+ "learning_rate": 4.4737981810307495e-05,
3001
+ "loss": 3.3519,
3002
+ "step": 3840
3003
+ },
3004
+ {
3005
+ "epoch": 0.79,
3006
+ "learning_rate": 4.430489389346037e-05,
3007
+ "loss": 3.3587,
3008
+ "step": 3850
3009
+ },
3010
+ {
3011
+ "epoch": 0.79,
3012
+ "eval_accuracy": 0.3401709401709402,
3013
+ "eval_loss": 4.19921875,
3014
+ "eval_runtime": 6.5915,
3015
+ "eval_samples_per_second": 5.31,
3016
+ "eval_steps_per_second": 0.303,
3017
+ "step": 3850
3018
+ },
3019
+ {
3020
+ "epoch": 0.79,
3021
+ "learning_rate": 4.3871805976613256e-05,
3022
+ "loss": 3.3519,
3023
+ "step": 3860
3024
+ },
3025
+ {
3026
+ "epoch": 0.8,
3027
+ "learning_rate": 4.3438718059766134e-05,
3028
+ "loss": 3.3635,
3029
+ "step": 3870
3030
+ },
3031
+ {
3032
+ "epoch": 0.8,
3033
+ "learning_rate": 4.300563014291901e-05,
3034
+ "loss": 3.4013,
3035
+ "step": 3880
3036
+ },
3037
+ {
3038
+ "epoch": 0.8,
3039
+ "learning_rate": 4.2572542226071895e-05,
3040
+ "loss": 3.3224,
3041
+ "step": 3890
3042
+ },
3043
+ {
3044
+ "epoch": 0.8,
3045
+ "learning_rate": 4.213945430922477e-05,
3046
+ "loss": 3.3237,
3047
+ "step": 3900
3048
+ },
3049
+ {
3050
+ "epoch": 0.8,
3051
+ "eval_accuracy": 0.33935461364032793,
3052
+ "eval_loss": 4.203125,
3053
+ "eval_runtime": 6.5894,
3054
+ "eval_samples_per_second": 5.312,
3055
+ "eval_steps_per_second": 0.304,
3056
+ "step": 3900
3057
+ },
3058
+ {
3059
+ "epoch": 0.8,
3060
+ "learning_rate": 4.170636639237766e-05,
3061
+ "loss": 3.3706,
3062
+ "step": 3910
3063
+ },
3064
+ {
3065
+ "epoch": 0.81,
3066
+ "learning_rate": 4.1273278475530534e-05,
3067
+ "loss": 3.3024,
3068
+ "step": 3920
3069
+ },
3070
+ {
3071
+ "epoch": 0.81,
3072
+ "learning_rate": 4.084019055868342e-05,
3073
+ "loss": 3.3717,
3074
+ "step": 3930
3075
+ },
3076
+ {
3077
+ "epoch": 0.81,
3078
+ "learning_rate": 4.0407102641836295e-05,
3079
+ "loss": 3.35,
3080
+ "step": 3940
3081
+ },
3082
+ {
3083
+ "epoch": 0.81,
3084
+ "learning_rate": 3.997401472498917e-05,
3085
+ "loss": 3.3136,
3086
+ "step": 3950
3087
+ },
3088
+ {
3089
+ "epoch": 0.81,
3090
+ "eval_accuracy": 0.3393267050409908,
3091
+ "eval_loss": 4.203125,
3092
+ "eval_runtime": 6.6033,
3093
+ "eval_samples_per_second": 5.3,
3094
+ "eval_steps_per_second": 0.303,
3095
+ "step": 3950
3096
+ },
3097
+ {
3098
+ "epoch": 0.81,
3099
+ "learning_rate": 3.954092680814206e-05,
3100
+ "loss": 3.3281,
3101
+ "step": 3960
3102
+ },
3103
+ {
3104
+ "epoch": 0.82,
3105
+ "learning_rate": 3.9107838891294934e-05,
3106
+ "loss": 3.2916,
3107
+ "step": 3970
3108
+ },
3109
+ {
3110
+ "epoch": 0.82,
3111
+ "learning_rate": 3.867475097444782e-05,
3112
+ "loss": 3.3578,
3113
+ "step": 3980
3114
+ },
3115
+ {
3116
+ "epoch": 0.82,
3117
+ "learning_rate": 3.8241663057600696e-05,
3118
+ "loss": 3.3789,
3119
+ "step": 3990
3120
+ },
3121
+ {
3122
+ "epoch": 0.82,
3123
+ "learning_rate": 3.780857514075358e-05,
3124
+ "loss": 3.3367,
3125
+ "step": 4000
3126
+ },
3127
+ {
3128
+ "epoch": 0.82,
3129
+ "eval_accuracy": 0.33942438513867085,
3130
+ "eval_loss": 4.203125,
3131
+ "eval_runtime": 6.5852,
3132
+ "eval_samples_per_second": 5.315,
3133
+ "eval_steps_per_second": 0.304,
3134
+ "step": 4000
3135
+ },
3136
+ {
3137
+ "epoch": 0.82,
3138
+ "learning_rate": 3.737548722390645e-05,
3139
+ "loss": 3.3325,
3140
+ "step": 4010
3141
+ },
3142
+ {
3143
+ "epoch": 0.83,
3144
+ "learning_rate": 3.6942399307059335e-05,
3145
+ "loss": 3.3414,
3146
+ "step": 4020
3147
+ },
3148
+ {
3149
+ "epoch": 0.83,
3150
+ "learning_rate": 3.650931139021221e-05,
3151
+ "loss": 3.3798,
3152
+ "step": 4030
3153
+ },
3154
+ {
3155
+ "epoch": 0.83,
3156
+ "learning_rate": 3.6076223473365096e-05,
3157
+ "loss": 3.3682,
3158
+ "step": 4040
3159
+ },
3160
+ {
3161
+ "epoch": 0.83,
3162
+ "learning_rate": 3.564313555651797e-05,
3163
+ "loss": 3.3062,
3164
+ "step": 4050
3165
+ },
3166
+ {
3167
+ "epoch": 0.83,
3168
+ "eval_accuracy": 0.3391034362462934,
3169
+ "eval_loss": 4.1953125,
3170
+ "eval_runtime": 6.5939,
3171
+ "eval_samples_per_second": 5.308,
3172
+ "eval_steps_per_second": 0.303,
3173
+ "step": 4050
3174
+ },
3175
+ {
3176
+ "epoch": 0.83,
3177
+ "learning_rate": 3.521004763967086e-05,
3178
+ "loss": 3.3194,
3179
+ "step": 4060
3180
+ },
3181
+ {
3182
+ "epoch": 0.84,
3183
+ "learning_rate": 3.4776959722823735e-05,
3184
+ "loss": 3.3226,
3185
+ "step": 4070
3186
+ },
3187
+ {
3188
+ "epoch": 0.84,
3189
+ "learning_rate": 3.434387180597661e-05,
3190
+ "loss": 3.3148,
3191
+ "step": 4080
3192
+ },
3193
+ {
3194
+ "epoch": 0.84,
3195
+ "learning_rate": 3.3910783889129496e-05,
3196
+ "loss": 3.3504,
3197
+ "step": 4090
3198
+ },
3199
+ {
3200
+ "epoch": 0.84,
3201
+ "learning_rate": 3.3477695972282374e-05,
3202
+ "loss": 3.3112,
3203
+ "step": 4100
3204
+ },
3205
+ {
3206
+ "epoch": 0.84,
3207
+ "eval_accuracy": 0.33969649398220825,
3208
+ "eval_loss": 4.19140625,
3209
+ "eval_runtime": 6.5931,
3210
+ "eval_samples_per_second": 5.309,
3211
+ "eval_steps_per_second": 0.303,
3212
+ "step": 4100
3213
+ },
3214
+ {
3215
+ "epoch": 0.85,
3216
+ "learning_rate": 3.304460805543526e-05,
3217
+ "loss": 3.3621,
3218
+ "step": 4110
3219
+ },
3220
+ {
3221
+ "epoch": 0.85,
3222
+ "learning_rate": 3.2611520138588135e-05,
3223
+ "loss": 3.3,
3224
+ "step": 4120
3225
+ },
3226
+ {
3227
+ "epoch": 0.85,
3228
+ "learning_rate": 3.217843222174102e-05,
3229
+ "loss": 3.3523,
3230
+ "step": 4130
3231
+ },
3232
+ {
3233
+ "epoch": 0.85,
3234
+ "learning_rate": 3.174534430489389e-05,
3235
+ "loss": 3.3182,
3236
+ "step": 4140
3237
+ },
3238
+ {
3239
+ "epoch": 0.85,
3240
+ "learning_rate": 3.1312256388046774e-05,
3241
+ "loss": 3.3345,
3242
+ "step": 4150
3243
+ },
3244
+ {
3245
+ "epoch": 0.85,
3246
+ "eval_accuracy": 0.33911739054596196,
3247
+ "eval_loss": 4.19140625,
3248
+ "eval_runtime": 6.5844,
3249
+ "eval_samples_per_second": 5.316,
3250
+ "eval_steps_per_second": 0.304,
3251
+ "step": 4150
3252
+ },
3253
+ {
3254
+ "epoch": 0.86,
3255
+ "learning_rate": 3.087916847119965e-05,
3256
+ "loss": 3.2978,
3257
+ "step": 4160
3258
+ },
3259
+ {
3260
+ "epoch": 0.86,
3261
+ "learning_rate": 3.0446080554352535e-05,
3262
+ "loss": 3.2932,
3263
+ "step": 4170
3264
+ },
3265
+ {
3266
+ "epoch": 0.86,
3267
+ "learning_rate": 3.0012992637505416e-05,
3268
+ "loss": 3.3311,
3269
+ "step": 4180
3270
+ },
3271
+ {
3272
+ "epoch": 0.86,
3273
+ "learning_rate": 2.9579904720658297e-05,
3274
+ "loss": 3.3432,
3275
+ "step": 4190
3276
+ },
3277
+ {
3278
+ "epoch": 0.86,
3279
+ "learning_rate": 2.9146816803811177e-05,
3280
+ "loss": 3.3542,
3281
+ "step": 4200
3282
+ },
3283
+ {
3284
+ "epoch": 0.86,
3285
+ "eval_accuracy": 0.33936856793999653,
3286
+ "eval_loss": 4.19140625,
3287
+ "eval_runtime": 6.588,
3288
+ "eval_samples_per_second": 5.313,
3289
+ "eval_steps_per_second": 0.304,
3290
+ "step": 4200
3291
+ },
3292
+ {
3293
+ "epoch": 0.87,
3294
+ "learning_rate": 2.871372888696405e-05,
3295
+ "loss": 3.341,
3296
+ "step": 4210
3297
+ },
3298
+ {
3299
+ "epoch": 0.87,
3300
+ "learning_rate": 2.8280640970116936e-05,
3301
+ "loss": 3.3403,
3302
+ "step": 4220
3303
+ },
3304
+ {
3305
+ "epoch": 0.87,
3306
+ "learning_rate": 2.7847553053269816e-05,
3307
+ "loss": 3.2958,
3308
+ "step": 4230
3309
+ },
3310
+ {
3311
+ "epoch": 0.87,
3312
+ "learning_rate": 2.7414465136422697e-05,
3313
+ "loss": 3.3407,
3314
+ "step": 4240
3315
+ },
3316
+ {
3317
+ "epoch": 0.87,
3318
+ "learning_rate": 2.6981377219575578e-05,
3319
+ "loss": 3.3262,
3320
+ "step": 4250
3321
+ },
3322
+ {
3323
+ "epoch": 0.87,
3324
+ "eval_accuracy": 0.33954997383568813,
3325
+ "eval_loss": 4.19140625,
3326
+ "eval_runtime": 6.5852,
3327
+ "eval_samples_per_second": 5.315,
3328
+ "eval_steps_per_second": 0.304,
3329
+ "step": 4250
3330
+ },
3331
+ {
3332
+ "epoch": 0.88,
3333
+ "learning_rate": 2.654828930272846e-05,
3334
+ "loss": 3.2867,
3335
+ "step": 4260
3336
+ },
3337
+ {
3338
+ "epoch": 0.88,
3339
+ "learning_rate": 2.6115201385881332e-05,
3340
+ "loss": 3.3728,
3341
+ "step": 4270
3342
+ },
3343
+ {
3344
+ "epoch": 0.88,
3345
+ "learning_rate": 2.5682113469034213e-05,
3346
+ "loss": 3.3578,
3347
+ "step": 4280
3348
+ },
3349
+ {
3350
+ "epoch": 0.88,
3351
+ "learning_rate": 2.5249025552187094e-05,
3352
+ "loss": 3.3402,
3353
+ "step": 4290
3354
+ },
3355
+ {
3356
+ "epoch": 0.88,
3357
+ "learning_rate": 2.4815937635339975e-05,
3358
+ "loss": 3.3606,
3359
+ "step": 4300
3360
+ },
3361
+ {
3362
+ "epoch": 0.88,
3363
+ "eval_accuracy": 0.33983603697889414,
3364
+ "eval_loss": 4.19140625,
3365
+ "eval_runtime": 6.5958,
3366
+ "eval_samples_per_second": 5.306,
3367
+ "eval_steps_per_second": 0.303,
3368
+ "step": 4300
3369
+ },
3370
+ {
3371
+ "epoch": 0.89,
3372
+ "learning_rate": 2.4382849718492855e-05,
3373
+ "loss": 3.264,
3374
+ "step": 4310
3375
+ },
3376
+ {
3377
+ "epoch": 0.89,
3378
+ "learning_rate": 2.3949761801645733e-05,
3379
+ "loss": 3.3013,
3380
+ "step": 4320
3381
+ },
3382
+ {
3383
+ "epoch": 0.89,
3384
+ "learning_rate": 2.3516673884798617e-05,
3385
+ "loss": 3.3089,
3386
+ "step": 4330
3387
+ },
3388
+ {
3389
+ "epoch": 0.89,
3390
+ "learning_rate": 2.3083585967951497e-05,
3391
+ "loss": 3.3669,
3392
+ "step": 4340
3393
+ },
3394
+ {
3395
+ "epoch": 0.89,
3396
+ "learning_rate": 2.2650498051104375e-05,
3397
+ "loss": 3.3488,
3398
+ "step": 4350
3399
+ },
3400
+ {
3401
+ "epoch": 0.89,
3402
+ "eval_accuracy": 0.33974533403104834,
3403
+ "eval_loss": 4.19140625,
3404
+ "eval_runtime": 6.6014,
3405
+ "eval_samples_per_second": 5.302,
3406
+ "eval_steps_per_second": 0.303,
3407
+ "step": 4350
3408
+ },
3409
+ {
3410
+ "epoch": 0.9,
3411
+ "learning_rate": 2.2217410134257256e-05,
3412
+ "loss": 3.334,
3413
+ "step": 4360
3414
+ },
3415
+ {
3416
+ "epoch": 0.9,
3417
+ "learning_rate": 2.1784322217410136e-05,
3418
+ "loss": 3.3529,
3419
+ "step": 4370
3420
+ },
3421
+ {
3422
+ "epoch": 0.9,
3423
+ "learning_rate": 2.1351234300563017e-05,
3424
+ "loss": 3.3454,
3425
+ "step": 4380
3426
+ },
3427
+ {
3428
+ "epoch": 0.9,
3429
+ "learning_rate": 2.0918146383715894e-05,
3430
+ "loss": 3.3431,
3431
+ "step": 4390
3432
+ },
3433
+ {
3434
+ "epoch": 0.9,
3435
+ "learning_rate": 2.0485058466868775e-05,
3436
+ "loss": 3.3803,
3437
+ "step": 4400
3438
+ },
3439
+ {
3440
+ "epoch": 0.9,
3441
+ "eval_accuracy": 0.3396127681841968,
3442
+ "eval_loss": 4.19140625,
3443
+ "eval_runtime": 6.5917,
3444
+ "eval_samples_per_second": 5.31,
3445
+ "eval_steps_per_second": 0.303,
3446
+ "step": 4400
3447
+ },
3448
+ {
3449
+ "epoch": 0.91,
3450
+ "learning_rate": 2.0051970550021656e-05,
3451
+ "loss": 3.3095,
3452
+ "step": 4410
3453
+ },
3454
+ {
3455
+ "epoch": 0.91,
3456
+ "learning_rate": 1.9618882633174533e-05,
3457
+ "loss": 3.3219,
3458
+ "step": 4420
3459
+ },
3460
+ {
3461
+ "epoch": 0.91,
3462
+ "learning_rate": 1.9185794716327414e-05,
3463
+ "loss": 3.3788,
3464
+ "step": 4430
3465
+ },
3466
+ {
3467
+ "epoch": 0.91,
3468
+ "learning_rate": 1.8752706799480295e-05,
3469
+ "loss": 3.3435,
3470
+ "step": 4440
3471
+ },
3472
+ {
3473
+ "epoch": 0.92,
3474
+ "learning_rate": 1.8319618882633175e-05,
3475
+ "loss": 3.3122,
3476
+ "step": 4450
3477
+ },
3478
+ {
3479
+ "epoch": 0.92,
3480
+ "eval_accuracy": 0.33978021978021977,
3481
+ "eval_loss": 4.1875,
3482
+ "eval_runtime": 6.6288,
3483
+ "eval_samples_per_second": 5.28,
3484
+ "eval_steps_per_second": 0.302,
3485
+ "step": 4450
3486
+ },
3487
+ {
3488
+ "epoch": 0.92,
3489
+ "learning_rate": 1.7886530965786056e-05,
3490
+ "loss": 3.2923,
3491
+ "step": 4460
3492
+ },
3493
+ {
3494
+ "epoch": 0.92,
3495
+ "learning_rate": 1.7453443048938937e-05,
3496
+ "loss": 3.3699,
3497
+ "step": 4470
3498
+ },
3499
+ {
3500
+ "epoch": 0.92,
3501
+ "learning_rate": 1.7020355132091814e-05,
3502
+ "loss": 3.2694,
3503
+ "step": 4480
3504
+ },
3505
+ {
3506
+ "epoch": 0.92,
3507
+ "learning_rate": 1.6587267215244695e-05,
3508
+ "loss": 3.2873,
3509
+ "step": 4490
3510
+ },
3511
+ {
3512
+ "epoch": 0.93,
3513
+ "learning_rate": 1.6154179298397576e-05,
3514
+ "loss": 3.3429,
3515
+ "step": 4500
3516
+ },
3517
+ {
3518
+ "epoch": 0.93,
3519
+ "eval_accuracy": 0.3399686028257457,
3520
+ "eval_loss": 4.1875,
3521
+ "eval_runtime": 6.6063,
3522
+ "eval_samples_per_second": 5.298,
3523
+ "eval_steps_per_second": 0.303,
3524
+ "step": 4500
3525
+ },
3526
+ {
3527
+ "epoch": 0.93,
3528
+ "learning_rate": 1.5721091381550456e-05,
3529
+ "loss": 3.3116,
3530
+ "step": 4510
3531
+ },
3532
+ {
3533
+ "epoch": 0.93,
3534
+ "learning_rate": 1.5288003464703334e-05,
3535
+ "loss": 3.3643,
3536
+ "step": 4520
3537
+ },
3538
+ {
3539
+ "epoch": 0.93,
3540
+ "learning_rate": 1.4854915547856216e-05,
3541
+ "loss": 3.3477,
3542
+ "step": 4530
3543
+ },
3544
+ {
3545
+ "epoch": 0.93,
3546
+ "learning_rate": 1.4421827631009097e-05,
3547
+ "loss": 3.3393,
3548
+ "step": 4540
3549
+ },
3550
+ {
3551
+ "epoch": 0.94,
3552
+ "learning_rate": 1.3988739714161974e-05,
3553
+ "loss": 3.3114,
3554
+ "step": 4550
3555
+ },
3556
+ {
3557
+ "epoch": 0.94,
3558
+ "eval_accuracy": 0.3400593057735915,
3559
+ "eval_loss": 4.1875,
3560
+ "eval_runtime": 6.5986,
3561
+ "eval_samples_per_second": 5.304,
3562
+ "eval_steps_per_second": 0.303,
3563
+ "step": 4550
3564
+ },
3565
+ {
3566
+ "epoch": 0.94,
3567
+ "learning_rate": 1.3555651797314855e-05,
3568
+ "loss": 3.3285,
3569
+ "step": 4560
3570
+ },
3571
+ {
3572
+ "epoch": 0.94,
3573
+ "learning_rate": 1.3122563880467736e-05,
3574
+ "loss": 3.2873,
3575
+ "step": 4570
3576
+ },
3577
+ {
3578
+ "epoch": 0.94,
3579
+ "learning_rate": 1.2689475963620615e-05,
3580
+ "loss": 3.2914,
3581
+ "step": 4580
3582
+ },
3583
+ {
3584
+ "epoch": 0.94,
3585
+ "learning_rate": 1.2256388046773495e-05,
3586
+ "loss": 3.2841,
3587
+ "step": 4590
3588
+ },
3589
+ {
3590
+ "epoch": 0.95,
3591
+ "learning_rate": 1.1823300129926376e-05,
3592
+ "loss": 3.3,
3593
+ "step": 4600
3594
+ },
3595
+ {
3596
+ "epoch": 0.95,
3597
+ "eval_accuracy": 0.34005232862375717,
3598
+ "eval_loss": 4.1875,
3599
+ "eval_runtime": 6.6023,
3600
+ "eval_samples_per_second": 5.301,
3601
+ "eval_steps_per_second": 0.303,
3602
+ "step": 4600
3603
+ },
3604
+ {
3605
+ "epoch": 0.95,
3606
+ "learning_rate": 1.1390212213079255e-05,
3607
+ "loss": 3.3211,
3608
+ "step": 4610
3609
+ },
3610
+ {
3611
+ "epoch": 0.95,
3612
+ "learning_rate": 1.0957124296232136e-05,
3613
+ "loss": 3.3017,
3614
+ "step": 4620
3615
+ },
3616
+ {
3617
+ "epoch": 0.95,
3618
+ "learning_rate": 1.0524036379385017e-05,
3619
+ "loss": 3.3061,
3620
+ "step": 4630
3621
+ },
3622
+ {
3623
+ "epoch": 0.95,
3624
+ "learning_rate": 1.0090948462537896e-05,
3625
+ "loss": 3.2918,
3626
+ "step": 4640
3627
+ },
3628
+ {
3629
+ "epoch": 0.96,
3630
+ "learning_rate": 9.657860545690775e-06,
3631
+ "loss": 3.3528,
3632
+ "step": 4650
3633
+ },
3634
+ {
3635
+ "epoch": 0.96,
3636
+ "eval_accuracy": 0.3397941740798884,
3637
+ "eval_loss": 4.1875,
3638
+ "eval_runtime": 6.5894,
3639
+ "eval_samples_per_second": 5.312,
3640
+ "eval_steps_per_second": 0.304,
3641
+ "step": 4650
3642
+ },
3643
+ {
3644
+ "epoch": 0.96,
3645
+ "learning_rate": 9.224772628843655e-06,
3646
+ "loss": 3.3294,
3647
+ "step": 4660
3648
+ },
3649
+ {
3650
+ "epoch": 0.96,
3651
+ "learning_rate": 8.791684711996536e-06,
3652
+ "loss": 3.3636,
3653
+ "step": 4670
3654
+ },
3655
+ {
3656
+ "epoch": 0.96,
3657
+ "learning_rate": 8.358596795149417e-06,
3658
+ "loss": 3.371,
3659
+ "step": 4680
3660
+ },
3661
+ {
3662
+ "epoch": 0.96,
3663
+ "learning_rate": 7.925508878302296e-06,
3664
+ "loss": 3.3523,
3665
+ "step": 4690
3666
+ },
3667
+ {
3668
+ "epoch": 0.97,
3669
+ "learning_rate": 7.492420961455175e-06,
3670
+ "loss": 3.3195,
3671
+ "step": 4700
3672
+ },
3673
+ {
3674
+ "epoch": 0.97,
3675
+ "eval_accuracy": 0.3398499912785627,
3676
+ "eval_loss": 4.18359375,
3677
+ "eval_runtime": 6.5942,
3678
+ "eval_samples_per_second": 5.308,
3679
+ "eval_steps_per_second": 0.303,
3680
+ "step": 4700
3681
+ },
3682
+ {
3683
+ "epoch": 0.97,
3684
+ "learning_rate": 7.059333044608056e-06,
3685
+ "loss": 3.3231,
3686
+ "step": 4710
3687
+ },
3688
+ {
3689
+ "epoch": 0.97,
3690
+ "learning_rate": 6.6262451277609355e-06,
3691
+ "loss": 3.3434,
3692
+ "step": 4720
3693
+ },
3694
+ {
3695
+ "epoch": 0.97,
3696
+ "learning_rate": 6.193157210913815e-06,
3697
+ "loss": 3.3514,
3698
+ "step": 4730
3699
+ },
3700
+ {
3701
+ "epoch": 0.97,
3702
+ "learning_rate": 5.803378085751407e-06,
3703
+ "loss": 3.3364,
3704
+ "step": 4740
3705
+ },
3706
+ {
3707
+ "epoch": 0.98,
3708
+ "learning_rate": 5.370290168904288e-06,
3709
+ "loss": 3.3421,
3710
+ "step": 4750
3711
+ },
3712
+ {
3713
+ "epoch": 0.98,
3714
+ "eval_accuracy": 0.33989185417756845,
3715
+ "eval_loss": 4.18359375,
3716
+ "eval_runtime": 6.6163,
3717
+ "eval_samples_per_second": 5.29,
3718
+ "eval_steps_per_second": 0.302,
3719
+ "step": 4750
3720
+ },
3721
+ {
3722
+ "epoch": 0.98,
3723
+ "learning_rate": 4.937202252057168e-06,
3724
+ "loss": 3.3033,
3725
+ "step": 4760
3726
+ },
3727
+ {
3728
+ "epoch": 0.98,
3729
+ "learning_rate": 4.504114335210048e-06,
3730
+ "loss": 3.3042,
3731
+ "step": 4770
3732
+ },
3733
+ {
3734
+ "epoch": 0.98,
3735
+ "learning_rate": 4.071026418362928e-06,
3736
+ "loss": 3.3248,
3737
+ "step": 4780
3738
+ },
3739
+ {
3740
+ "epoch": 0.99,
3741
+ "learning_rate": 3.6379385015158076e-06,
3742
+ "loss": 3.334,
3743
+ "step": 4790
3744
+ },
3745
+ {
3746
+ "epoch": 0.99,
3747
+ "learning_rate": 3.204850584668688e-06,
3748
+ "loss": 3.3505,
3749
+ "step": 4800
3750
+ },
3751
+ {
3752
+ "epoch": 0.99,
3753
+ "eval_accuracy": 0.3401500087214373,
3754
+ "eval_loss": 4.18359375,
3755
+ "eval_runtime": 6.5893,
3756
+ "eval_samples_per_second": 5.312,
3757
+ "eval_steps_per_second": 0.304,
3758
+ "step": 4800
3759
+ },
3760
+ {
3761
+ "epoch": 0.99,
3762
+ "learning_rate": 2.771762667821568e-06,
3763
+ "loss": 3.3231,
3764
+ "step": 4810
3765
+ },
3766
+ {
3767
+ "epoch": 0.99,
3768
+ "learning_rate": 2.338674750974448e-06,
3769
+ "loss": 3.2872,
3770
+ "step": 4820
3771
+ },
3772
+ {
3773
+ "epoch": 0.99,
3774
+ "learning_rate": 1.9055868341273278e-06,
3775
+ "loss": 3.3428,
3776
+ "step": 4830
3777
+ },
3778
+ {
3779
+ "epoch": 1.0,
3780
+ "learning_rate": 1.472498917280208e-06,
3781
+ "loss": 3.3162,
3782
+ "step": 4840
3783
+ },
3784
+ {
3785
+ "epoch": 1.0,
3786
+ "learning_rate": 1.039411000433088e-06,
3787
+ "loss": 3.3606,
3788
+ "step": 4850
3789
+ },
3790
+ {
3791
+ "epoch": 1.0,
3792
+ "eval_accuracy": 0.33996162567591137,
3793
+ "eval_loss": 4.18359375,
3794
+ "eval_runtime": 6.5895,
3795
+ "eval_samples_per_second": 5.311,
3796
+ "eval_steps_per_second": 0.304,
3797
+ "step": 4850
3798
+ },
3799
+ {
3800
+ "epoch": 1.0,
3801
+ "learning_rate": 6.06323083585968e-07,
3802
+ "loss": 3.3077,
3803
+ "step": 4860
3804
+ },
3805
+ {
3806
+ "epoch": 1.0,
3807
+ "step": 4862,
3808
+ "total_flos": 5.1668865537665925e+19,
3809
+ "train_loss": 3.7094925158997714,
3810
+ "train_runtime": 108243.5499,
3811
+ "train_samples_per_second": 2.875,
3812
+ "train_steps_per_second": 0.045
3813
+ }
3814
+ ],
3815
+ "max_steps": 4862,
3816
+ "num_train_epochs": 1,
3817
+ "total_flos": 5.1668865537665925e+19,
3818
+ "trial_name": null,
3819
+ "trial_params": null
3820
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8882a918bcb9a315dfcc77f1a3a879de69b8b68f463ac4b04ba7f0c085598f2d
3
+ size 5115