Initial commit with folder contents
Browse files- pyproject.toml +35 -0
- src/main.py +59 -0
- src/pipeline.py +70 -0
- uv.lock +0 -0
pyproject.toml
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[build-system]
|
2 |
+
requires = ["setuptools >= 75.0"]
|
3 |
+
build-backend = "setuptools.build_meta"
|
4 |
+
|
5 |
+
[project]
|
6 |
+
name = "flux-schnell-edge-inference"
|
7 |
+
description = "An edge-maxxing model submission for the 4090 Flux contest"
|
8 |
+
requires-python = ">=3.10,<3.13"
|
9 |
+
version = "7"
|
10 |
+
dependencies = [
|
11 |
+
"diffusers==0.31.0",
|
12 |
+
"transformers==4.46.2",
|
13 |
+
"accelerate==1.1.0",
|
14 |
+
"omegaconf==2.3.0",
|
15 |
+
"torch==2.5.1",
|
16 |
+
"protobuf==5.28.3",
|
17 |
+
"sentencepiece==0.2.0",
|
18 |
+
"edge-maxxing-pipelines @ git+https://github.com/womboai/edge-maxxing@7c760ac54f6052803dadb3ade8ebfc9679a94589#subdirectory=pipelines",
|
19 |
+
"torchao",
|
20 |
+
"huggingface-hub==0.25.2",
|
21 |
+
"oneflow",
|
22 |
+
"setuptools>=75.2.0",
|
23 |
+
"onediff",
|
24 |
+
"onediffx"
|
25 |
+
]
|
26 |
+
|
27 |
+
[tool.edge-maxxing]
|
28 |
+
models = ["black-forest-labs/FLUX.1-schnell", "madebyollin/taef1"]
|
29 |
+
|
30 |
+
[tool.uv.sources]
|
31 |
+
oneflow = { url = "https://github.com/siliconflow/oneflow_releases/releases/download/community_cu118/oneflow-0.9.1.dev20240802%2Bcu118-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" }
|
32 |
+
|
33 |
+
|
34 |
+
[project.scripts]
|
35 |
+
start_inference = "main:main"
|
src/main.py
ADDED
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import atexit
|
2 |
+
from io import BytesIO
|
3 |
+
from multiprocessing.connection import Listener
|
4 |
+
from os import chmod, remove
|
5 |
+
from os.path import abspath, exists
|
6 |
+
from pathlib import Path
|
7 |
+
|
8 |
+
import torch
|
9 |
+
|
10 |
+
from PIL.JpegImagePlugin import JpegImageFile
|
11 |
+
from pipelines.models import TextToImageRequest
|
12 |
+
|
13 |
+
from pipeline import load_pipeline, infer
|
14 |
+
|
15 |
+
SOCKET = abspath(Path(__file__).parent.parent / "inferences.sock")
|
16 |
+
|
17 |
+
|
18 |
+
def at_exit():
|
19 |
+
torch.cuda.empty_cache()
|
20 |
+
|
21 |
+
|
22 |
+
def main():
|
23 |
+
atexit.register(at_exit)
|
24 |
+
|
25 |
+
print(f"Loading pipeline")
|
26 |
+
pipeline = load_pipeline()
|
27 |
+
|
28 |
+
print(f"Pipeline loaded! , creating socket at '{SOCKET}'")
|
29 |
+
|
30 |
+
if exists(SOCKET):
|
31 |
+
remove(SOCKET)
|
32 |
+
|
33 |
+
with Listener(SOCKET) as listener:
|
34 |
+
chmod(SOCKET, 0o777)
|
35 |
+
|
36 |
+
print(f"Awaiting connections")
|
37 |
+
with listener.accept() as connection:
|
38 |
+
print(f"Connected")
|
39 |
+
|
40 |
+
while True:
|
41 |
+
try:
|
42 |
+
request = TextToImageRequest.model_validate_json(connection.recv_bytes().decode("utf-8"))
|
43 |
+
except EOFError:
|
44 |
+
print(f"Inference socket exiting")
|
45 |
+
|
46 |
+
return
|
47 |
+
|
48 |
+
image = infer(request, pipeline)
|
49 |
+
|
50 |
+
data = BytesIO()
|
51 |
+
image.save(data, format=JpegImageFile.format)
|
52 |
+
|
53 |
+
packet = data.getvalue()
|
54 |
+
|
55 |
+
connection.send_bytes(packet)
|
56 |
+
|
57 |
+
|
58 |
+
if __name__ == '__main__':
|
59 |
+
main()
|
src/pipeline.py
ADDED
@@ -0,0 +1,70 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from diffusers import FluxPipeline, AutoencoderKL, FluxTransformer2DModel
|
3 |
+
from diffusers import AutoencoderTiny
|
4 |
+
from diffusers.image_processor import VaeImageProcessor
|
5 |
+
from transformers import T5EncoderModel, T5TokenizerFast, CLIPTokenizer, CLIPTextModel, CLIPTextConfig, T5Config
|
6 |
+
import torch
|
7 |
+
import gc
|
8 |
+
from PIL import Image
|
9 |
+
from pipelines.models import TextToImageRequest
|
10 |
+
from torch import Generator
|
11 |
+
from torchao.quantization import quantize_, int8_weight_only, int8_dynamic_activation_int8_weight
|
12 |
+
from time import perf_counter
|
13 |
+
# from onediffx import compile_pipe, load_pipe
|
14 |
+
|
15 |
+
HOME = os.environ["HOME"]
|
16 |
+
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "expandable_segments:True"
|
17 |
+
FLUX_CHECKPOINT = "black-forest-labs/FLUX.1-schnell"
|
18 |
+
# QUANTIZED_MODEL = []
|
19 |
+
QUANTIZED_MODEL = ["transformer", "text_encoder_2", "text_encoder", "vae"]
|
20 |
+
|
21 |
+
|
22 |
+
QUANT_CONFIG = int8_weight_only()
|
23 |
+
DTYPE = torch.bfloat16
|
24 |
+
NUM_STEPS = 4
|
25 |
+
|
26 |
+
def empty_cache():
|
27 |
+
gc.collect()
|
28 |
+
torch.cuda.empty_cache()
|
29 |
+
torch.cuda.reset_max_memory_allocated()
|
30 |
+
torch.cuda.reset_peak_memory_stats()
|
31 |
+
|
32 |
+
|
33 |
+
def load_pipeline() -> FluxPipeline:
|
34 |
+
empty_cache()
|
35 |
+
|
36 |
+
pipe = FluxPipeline.from_pretrained(FLUX_CHECKPOINT,
|
37 |
+
torch_dtype=DTYPE)
|
38 |
+
pipe.enable_attention_slicing()
|
39 |
+
pipe.text_encoder.to(memory_format=torch.channels_last)
|
40 |
+
pipe.text_encoder_2.to(memory_format=torch.channels_last)
|
41 |
+
pipe.transformer.to(memory_format=torch.channels_last)
|
42 |
+
pipe.vae.to(memory_format=torch.channels_last)
|
43 |
+
# pipe.vae.enable_tiling()
|
44 |
+
pipe.vae = torch.compile(pipe.vae)
|
45 |
+
|
46 |
+
pipe._exclude_from_cpu_offload = ["vae"]
|
47 |
+
|
48 |
+
pipe.enable_sequential_cpu_offload()
|
49 |
+
|
50 |
+
empty_cache()
|
51 |
+
pipe("cat", guidance_scale=0., max_sequence_length=256, num_inference_steps=4)
|
52 |
+
return pipe
|
53 |
+
|
54 |
+
@torch.inference_mode()
|
55 |
+
def infer(request: TextToImageRequest, _pipeline: FluxPipeline) -> Image:
|
56 |
+
if request.seed is None:
|
57 |
+
generator = None
|
58 |
+
else:
|
59 |
+
generator = Generator(device="cuda").manual_seed(request.seed)
|
60 |
+
|
61 |
+
empty_cache()
|
62 |
+
image = _pipeline(prompt=request.prompt,
|
63 |
+
width=request.width,
|
64 |
+
height=request.height,
|
65 |
+
guidance_scale=0.0,
|
66 |
+
generator=generator,
|
67 |
+
output_type="pil",
|
68 |
+
max_sequence_length=256,
|
69 |
+
num_inference_steps=NUM_STEPS).images[0]
|
70 |
+
return image
|
uv.lock
ADDED
The diff for this file is too large to render.
See raw diff
|
|