|
|
|
from huggingface_hub.constants import HF_HUB_CACHE |
|
from transformers import T5EncoderModel, T5TokenizerFast, CLIPTokenizer, CLIPTextModel |
|
import torch |
|
import torch._dynamo |
|
import gc |
|
import os |
|
from diffusers import FluxPipeline, AutoencoderKL, AutoencoderTiny |
|
from PIL.Image import Image |
|
from pipelines.models import TextToImageRequest |
|
from torch import Generator |
|
from diffusers import FluxTransformer2DModel, DiffusionPipeline |
|
from torchao.quantization import quantize_, int8_weight_only, fpx_weight_only |
|
|
|
os.environ['PYTORCH_CUDA_ALLOC_CONF']="expandable_segments:True" |
|
os.environ["TOKENIZERS_PARALLELISM"] = "True" |
|
torch._dynamo.config.suppress_errors = True |
|
torch.backends.cudnn.benchmark = True |
|
torch.backends.cuda.matmul.allow_tf32 = True |
|
torch.cuda.set_per_process_memory_fraction(0.95) |
|
Pipeline = None |
|
ids = "black-forest-labs/FLUX.1-schnell" |
|
Revision = "741f7c3ce8b383c54771c7003378a50191e9efe9" |
|
def empty_cache(): |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
torch.cuda.reset_max_memory_allocated() |
|
torch.cuda.reset_peak_memory_stats() |
|
|
|
def load_pipeline() -> Pipeline: |
|
empty_cache() |
|
vae = AutoencoderTiny.from_pretrained("golaststep/48os02",revision="d5ac01fc2925814df64541276f38024109981d22", torch_dtype=torch.bfloat16,) |
|
text_encoder_2 = T5EncoderModel.from_pretrained("golaststep/49os01", revision = "bd4b4458b877119e3673f36176a7e57ac63fe750", torch_dtype=torch.bfloat16).to(memory_format=torch.channels_last) |
|
path = os.path.join(HF_HUB_CACHE, "models--golaststep--50os00/snapshots/5d1d7a4d4b183344ab1a01f8fe7b9de22109c01d") |
|
transformer = FluxTransformer2DModel.from_pretrained(path, torch_dtype=torch.bfloat16, use_safetensors=False).to(memory_format=torch.channels_last) |
|
pipeline = DiffusionPipeline.from_pretrained(ids, revision=Revision, vae=vae, transformer=transformer, text_encoder_2=text_encoder_2, torch_dtype=torch.bfloat16,) |
|
pipeline.to("cuda") |
|
pipeline.vae.enable_tiling() |
|
pipeline.vae.enable_slicing() |
|
|
|
empty_cache() |
|
for _ in range(3): |
|
pipeline(prompt="insensible, timbale, pothery, electrovital, actinogram, taxis, intracerebellar, centrodesmus", width=1024, height=1024, guidance_scale=0.0, num_inference_steps=4, max_sequence_length=256) |
|
return pipeline |
|
|
|
@torch.no_grad() |
|
def infer(request: TextToImageRequest, pipeline: Pipeline) -> Image: |
|
generator = Generator(pipeline.device).manual_seed(request.seed) |
|
empty_cache() |
|
return pipeline( |
|
request.prompt, |
|
generator=generator, |
|
guidance_scale=0.0, |
|
num_inference_steps=4, |
|
max_sequence_length=256, |
|
height=request.height, |
|
width=request.width, |
|
).images[0] |
|
|