globophobe
commited on
Commit
•
a290110
1
Parent(s):
79b6b46
Initial commit
Browse files- README.md +37 -0
- a2c-PandaReachDense-v2.zip +3 -0
- a2c-PandaReachDense-v2/_stable_baselines3_version +1 -0
- a2c-PandaReachDense-v2/data +95 -0
- a2c-PandaReachDense-v2/policy.optimizer.pth +3 -0
- a2c-PandaReachDense-v2/policy.pth +3 -0
- a2c-PandaReachDense-v2/pytorch_variables.pth +3 -0
- a2c-PandaReachDense-v2/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- PandaReachDense-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: PandaReachDense-v2
|
16 |
+
type: PandaReachDense-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -2.26 +/- 0.57
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **PandaReachDense-v2**
|
25 |
+
This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-PandaReachDense-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4095ce7a80b4a4191a121e7a685f0be4176db28eb54ea2ec0ec7cac0a5dac3fe
|
3 |
+
size 108058
|
a2c-PandaReachDense-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.8.0
|
a2c-PandaReachDense-v2/data
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f5be7a43af0>",
|
8 |
+
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f5be7a44500>"
|
10 |
+
},
|
11 |
+
"verbose": 1,
|
12 |
+
"policy_kwargs": {
|
13 |
+
":type:": "<class 'dict'>",
|
14 |
+
":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
|
15 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
16 |
+
"optimizer_kwargs": {
|
17 |
+
"alpha": 0.99,
|
18 |
+
"eps": 1e-05,
|
19 |
+
"weight_decay": 0
|
20 |
+
}
|
21 |
+
},
|
22 |
+
"num_timesteps": 1000000,
|
23 |
+
"_total_timesteps": 1000000,
|
24 |
+
"_num_timesteps_at_start": 0,
|
25 |
+
"seed": null,
|
26 |
+
"action_noise": null,
|
27 |
+
"start_time": 1681010865551919009,
|
28 |
+
"learning_rate": 0.0007,
|
29 |
+
"tensorboard_log": null,
|
30 |
+
"lr_schedule": {
|
31 |
+
":type:": "<class 'function'>",
|
32 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
33 |
+
},
|
34 |
+
"_last_obs": {
|
35 |
+
":type:": "<class 'collections.OrderedDict'>",
|
36 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA1IvWPopnB7zB7g0/1IvWPopnB7zB7g0/1IvWPopnB7zB7g0/1IvWPopnB7zB7g0/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAIGRRv6Ehgb8iR7A/C3tGv2LdxT8qB+g9jotQvSrK3r7xxR2/9dw3P8ZUnL9Xx5i/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADUi9Y+imcHvMHuDT8mvLq6VpdEu6PwzrzUi9Y+imcHvMHuDT8mvLq6VpdEu6PwzrzUi9Y+imcHvMHuDT8mvLq6VpdEu6PwzrzUi9Y+imcHvMHuDT8mvLq6VpdEu6PwzryUaA5LBEsGhpRoEnSUUpR1Lg==",
|
37 |
+
"achieved_goal": "[[ 0.41903555 -0.00826443 0.55442435]\n [ 0.41903555 -0.00826443 0.55442435]\n [ 0.41903555 -0.00826443 0.55442435]\n [ 0.41903555 -0.00826443 0.55442435]]",
|
38 |
+
"desired_goal": "[[-0.81793404 -1.0088388 1.3771708 ]\n [-0.775315 1.5458186 0.11329491]\n [-0.05091434 -0.43513614 -0.6163016 ]\n [ 0.7182153 -1.2213371 -1.1935834 ]]",
|
39 |
+
"observation": "[[ 0.41903555 -0.00826443 0.55442435 -0.00142467 -0.00299974 -0.02526123]\n [ 0.41903555 -0.00826443 0.55442435 -0.00142467 -0.00299974 -0.02526123]\n [ 0.41903555 -0.00826443 0.55442435 -0.00142467 -0.00299974 -0.02526123]\n [ 0.41903555 -0.00826443 0.55442435 -0.00142467 -0.00299974 -0.02526123]]"
|
40 |
+
},
|
41 |
+
"_last_episode_starts": {
|
42 |
+
":type:": "<class 'numpy.ndarray'>",
|
43 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
44 |
+
},
|
45 |
+
"_last_original_obs": {
|
46 |
+
":type:": "<class 'collections.OrderedDict'>",
|
47 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAM8iUPel+BL72ndc9WiKEvJprFT6a9rs9u7MRPnCG7L3pcMA9iNLIPfQFDz7LYlU+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
48 |
+
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
49 |
+
"desired_goal": "[[ 0.07264747 -0.12939037 0.10528176]\n [-0.01612966 0.14591828 0.09177895]\n [ 0.14228718 -0.11549079 0.09396536]\n [ 0.09805781 0.13967115 0.20838468]]",
|
50 |
+
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
51 |
+
},
|
52 |
+
"_episode_num": 0,
|
53 |
+
"use_sde": false,
|
54 |
+
"sde_sample_freq": -1,
|
55 |
+
"_current_progress_remaining": 0.0,
|
56 |
+
"_stats_window_size": 100,
|
57 |
+
"ep_info_buffer": {
|
58 |
+
":type:": "<class 'collections.deque'>",
|
59 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI7u2W5IBd9r+UhpRSlIwBbJRLMowBdJRHQKek6JDVpbl1fZQoaAZoCWgPQwgwZktWRXj7v5SGlFKUaBVLMmgWR0CnpKvUKArhdX2UKGgGaAloD0MITl/P1yz3AsCUhpRSlGgVSzJoFkdAp6RwzabnYHV9lChoBmgJaA9DCJ93Y0FhcALAlIaUUpRoFUsyaBZHQKekMhyKekJ1fZQoaAZoCWgPQwhjtfl/1ZH5v5SGlFKUaBVLMmgWR0Cnprje0ojOdX2UKGgGaAloD0MIZ3+g3Lav/7+UhpRSlGgVSzJoFkdAp6Z8adc0L3V9lChoBmgJaA9DCDSitDf4wvS/lIaUUpRoFUsyaBZHQKemQY9gWrR1fZQoaAZoCWgPQwiYhXZOs2ALwJSGlFKUaBVLMmgWR0CnpgMvIwM6dX2UKGgGaAloD0MI38Mlx52S/b+UhpRSlGgVSzJoFkdAp6jEAq/dqXV9lChoBmgJaA9DCDFFuTR+4QPAlIaUUpRoFUsyaBZHQKeoiLxZuAJ1fZQoaAZoCWgPQwgp6zcT0wX8v5SGlFKUaBVLMmgWR0CnqE3nyNGWdX2UKGgGaAloD0MImrLTD+piAMCUhpRSlGgVSzJoFkdAp6gPBtUGV3V9lChoBmgJaA9DCASpFDsax/u/lIaUUpRoFUsyaBZHQKeqpPsRg7Z1fZQoaAZoCWgPQwje5SK+E3MEwJSGlFKUaBVLMmgWR0Cnqmh19v0idX2UKGgGaAloD0MIpDUGnRA69L+UhpRSlGgVSzJoFkdAp6otqYZ2p3V9lChoBmgJaA9DCFjFG5lHvve/lIaUUpRoFUsyaBZHQKep70nw5Np1fZQoaAZoCWgPQwgOETenkoEGwJSGlFKUaBVLMmgWR0CnrCknCwbEdX2UKGgGaAloD0MI2INJ8fEpA8CUhpRSlGgVSzJoFkdAp6vrv9cbBHV9lChoBmgJaA9DCBTpfk5BvgnAlIaUUpRoFUsyaBZHQKersB5ooNN1fZQoaAZoCWgPQwi5UPnX8gr5v5SGlFKUaBVLMmgWR0Cnq3DTrmhedX2UKGgGaAloD0MIUtUEUfdhB8CUhpRSlGgVSzJoFkdAp61kg8r7O3V9lChoBmgJaA9DCFX2XRH8TwjAlIaUUpRoFUsyaBZHQKetJvaURnR1fZQoaAZoCWgPQwj+gXLbvmcAwJSGlFKUaBVLMmgWR0CnrOunuRcNdX2UKGgGaAloD0MI/iYUIuAwB8CUhpRSlGgVSzJoFkdAp6ysNH6MznV9lChoBmgJaA9DCMyYgjXOBgbAlIaUUpRoFUsyaBZHQKeufs5XEIh1fZQoaAZoCWgPQwhHdM+6RgsDwJSGlFKUaBVLMmgWR0CnrkF2FFlTdX2UKGgGaAloD0MIEQGHUKXmAsCUhpRSlGgVSzJoFkdAp64FvS+g13V9lChoBmgJaA9DCDAqqRPQhPm/lIaUUpRoFUsyaBZHQKetxnBciW51fZQoaAZoCWgPQwjecYqO5JIAwJSGlFKUaBVLMmgWR0Cnr4y+g13udX2UKGgGaAloD0MI3L3cJ0ehAsCUhpRSlGgVSzJoFkdAp69PNLUTc3V9lChoBmgJaA9DCI55HXHIZgHAlIaUUpRoFUsyaBZHQKevE25xzaN1fZQoaAZoCWgPQwjw+PauQT8DwJSGlFKUaBVLMmgWR0CnrtP4M4LkdX2UKGgGaAloD0MIc77Ye/FFAsCUhpRSlGgVSzJoFkdAp7CifUWl/HV9lChoBmgJaA9DCI47pYP1f/e/lIaUUpRoFUsyaBZHQKewZPYWcjJ1fZQoaAZoCWgPQwgyHxDoTNr5v5SGlFKUaBVLMmgWR0CnsCkDp1RtdX2UKGgGaAloD0MIwXCuYYYG/L+UhpRSlGgVSzJoFkdAp6/pi1Aqu3V9lChoBmgJaA9DCDS/mgME8/S/lIaUUpRoFUsyaBZHQKexwQiA2AJ1fZQoaAZoCWgPQwhRhNTt7OsGwJSGlFKUaBVLMmgWR0CnsYOxrzoVdX2UKGgGaAloD0MIeqcC7nn+9b+UhpRSlGgVSzJoFkdAp7FICfYjB3V9lChoBmgJaA9DCB/Xhopx/vm/lIaUUpRoFUsyaBZHQKexCMAmzB11fZQoaAZoCWgPQwin5nKDoc4CwJSGlFKUaBVLMmgWR0Cnstt4A0bcdX2UKGgGaAloD0MISs/0EmO5AMCUhpRSlGgVSzJoFkdAp7KeDFqBVnV9lChoBmgJaA9DCGDHf4EgQPi/lIaUUpRoFUsyaBZHQKeyYhf0Eox1fZQoaAZoCWgPQwg1C7Q7pBj9v5SGlFKUaBVLMmgWR0CnsiKUu+RHdX2UKGgGaAloD0MIdY9srpqn+L+UhpRSlGgVSzJoFkdAp7Pq9du50HV9lChoBmgJaA9DCPXb14FzRvu/lIaUUpRoFUsyaBZHQKezrYHxBmh1fZQoaAZoCWgPQwjcZ5WZ0hoHwJSGlFKUaBVLMmgWR0Cns3Hww0wbdX2UKGgGaAloD0MIyorh6gDI+b+UhpRSlGgVSzJoFkdAp7MyZDzAe3V9lChoBmgJaA9DCDo/xXHgNQTAlIaUUpRoFUsyaBZHQKe09lg+hXd1fZQoaAZoCWgPQwjc1EDzOfcFwJSGlFKUaBVLMmgWR0CntLi66J66dX2UKGgGaAloD0MIKNap8j1jCMCUhpRSlGgVSzJoFkdAp7R80Ltu1nV9lChoBmgJaA9DCGozTkNUofu/lIaUUpRoFUsyaBZHQKe0PTtsvZh1fZQoaAZoCWgPQwgzcEBLV3D3v5SGlFKUaBVLMmgWR0Cntf41gpjMdX2UKGgGaAloD0MIasGLvoK0BsCUhpRSlGgVSzJoFkdAp7XAw9JSSHV9lChoBmgJaA9DCBDmdi/3Sf+/lIaUUpRoFUsyaBZHQKe1hQqqfe11fZQoaAZoCWgPQwiWCb/Uz/sCwJSGlFKUaBVLMmgWR0CntUWJ79hrdX2UKGgGaAloD0MIH4ZWJ2eICMCUhpRSlGgVSzJoFkdAp7cuLxZuAXV9lChoBmgJaA9DCIY8ghsp2/a/lIaUUpRoFUsyaBZHQKe28W8AaNx1fZQoaAZoCWgPQwipMLYQ5KD9v5SGlFKUaBVLMmgWR0CntrW6bvw3dX2UKGgGaAloD0MIWBr4UQ17+r+UhpRSlGgVSzJoFkdAp7Z2KQ7tA3V9lChoBmgJaA9DCPwApDZxcve/lIaUUpRoFUsyaBZHQKe4QWszVMF1fZQoaAZoCWgPQwhyUS0iiikEwJSGlFKUaBVLMmgWR0CnuAP9UCJXdX2UKGgGaAloD0MIFQK5xJFHAcCUhpRSlGgVSzJoFkdAp7fIhIOH33V9lChoBmgJaA9DCOm68IPzSQLAlIaUUpRoFUsyaBZHQKe3ibDuSfV1fZQoaAZoCWgPQwhdiNUfYdj3v5SGlFKUaBVLMmgWR0CnuWlr2xptdX2UKGgGaAloD0MIdQRws3hx+L+UhpRSlGgVSzJoFkdAp7ksK1G9YnV9lChoBmgJaA9DCPTDCOHRhvy/lIaUUpRoFUsyaBZHQKe48JHiFTN1fZQoaAZoCWgPQwg0Spf+JWn4v5SGlFKUaBVLMmgWR0CnuLE9dNWVdX2UKGgGaAloD0MI9ihcj8L1+r+UhpRSlGgVSzJoFkdAp7qn2kBS1nV9lChoBmgJaA9DCKhSswdaYQHAlIaUUpRoFUsyaBZHQKe6am3OObR1fZQoaAZoCWgPQwgAyt+9o0b1v5SGlFKUaBVLMmgWR0Cnui6Ae7tidX2UKGgGaAloD0MIXqCkwAJYBMCUhpRSlGgVSzJoFkdAp7nu9eyAx3V9lChoBmgJaA9DCCWuY1xx8fS/lIaUUpRoFUsyaBZHQKe7wM2FWXF1fZQoaAZoCWgPQwgZ48PsZbsBwJSGlFKUaBVLMmgWR0Cnu4Nucc2jdX2UKGgGaAloD0MIB3jSwmVV/b+UhpRSlGgVSzJoFkdAp7tHxhDw6XV9lChoBmgJaA9DCBcrajANIwbAlIaUUpRoFUsyaBZHQKe7CHgP3BZ1fZQoaAZoCWgPQwgpBHKJIw8AwJSGlFKUaBVLMmgWR0CnvNMTewcHdX2UKGgGaAloD0MI0UGXcOjt+L+UhpRSlGgVSzJoFkdAp7yVxuKoAHV9lChoBmgJaA9DCP7viArVzfm/lIaUUpRoFUsyaBZHQKe8Wg/1QIl1fZQoaAZoCWgPQwj/s+bHX5oFwJSGlFKUaBVLMmgWR0CnvBqF7D2rdX2UKGgGaAloD0MIRn2SO2yiAsCUhpRSlGgVSzJoFkdAp73pjjJdSnV9lChoBmgJaA9DCJ4MjpJX5/a/lIaUUpRoFUsyaBZHQKe9rAv+OwR1fZQoaAZoCWgPQwgO3ewPlDsCwJSGlFKUaBVLMmgWR0CnvXAxBVuKdX2UKGgGaAloD0MInb6er1ku/r+UhpRSlGgVSzJoFkdAp70wvrWy1XV9lChoBmgJaA9DCA0Zj1IJ7wHAlIaUUpRoFUsyaBZHQKe/CZQ53kh1fZQoaAZoCWgPQwh+AihGliwBwJSGlFKUaBVLMmgWR0CnvswZXMhYdX2UKGgGaAloD0MIA3rhzoUxA8CUhpRSlGgVSzJoFkdAp76QVEd/8XV9lChoBmgJaA9DCDwvFRvzuve/lIaUUpRoFUsyaBZHQKe+UQA+6iF1fZQoaAZoCWgPQwgp7Q2+MJn0v5SGlFKUaBVLMmgWR0CnwISa3I+4dX2UKGgGaAloD0MIrmTHRiAe/L+UhpRSlGgVSzJoFkdAp8BIZZSvT3V9lChoBmgJaA9DCKJjB5W4Dvi/lIaUUpRoFUsyaBZHQKfADW4EwFl1fZQoaAZoCWgPQwiOWfYksLkDwJSGlFKUaBVLMmgWR0Cnv87L2YfGdX2UKGgGaAloD0MIJO6x9KGL87+UhpRSlGgVSzJoFkdAp8JKp3os7XV9lChoBmgJaA9DCMO4G0Rrhfi/lIaUUpRoFUsyaBZHQKfCDgxagVZ1fZQoaAZoCWgPQwhmL9tOW2P8v5SGlFKUaBVLMmgWR0CnwdNCqp97dX2UKGgGaAloD0MImYQLeQQ3/r+UhpRSlGgVSzJoFkdAp8GVFtsN2HV9lChoBmgJaA9DCNGuQspPCgHAlIaUUpRoFUsyaBZHQKfEGSt/4It1fZQoaAZoCWgPQwg9J71vfG0DwJSGlFKUaBVLMmgWR0Cnw9x/NJOGdX2UKGgGaAloD0MIMGghAaML9r+UhpRSlGgVSzJoFkdAp8Ohle4TbnV9lChoBmgJaA9DCLH7juGxH/6/lIaUUpRoFUsyaBZHQKfDYu5jH4p1ZS4="
|
60 |
+
},
|
61 |
+
"ep_success_buffer": {
|
62 |
+
":type:": "<class 'collections.deque'>",
|
63 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
64 |
+
},
|
65 |
+
"_n_updates": 50000,
|
66 |
+
"n_steps": 5,
|
67 |
+
"gamma": 0.99,
|
68 |
+
"gae_lambda": 1.0,
|
69 |
+
"ent_coef": 0.0,
|
70 |
+
"vf_coef": 0.5,
|
71 |
+
"max_grad_norm": 0.5,
|
72 |
+
"normalize_advantage": false,
|
73 |
+
"observation_space": {
|
74 |
+
":type:": "<class 'gym.spaces.dict.Dict'>",
|
75 |
+
":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
|
76 |
+
"spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
|
77 |
+
"_shape": null,
|
78 |
+
"dtype": null,
|
79 |
+
"_np_random": null
|
80 |
+
},
|
81 |
+
"action_space": {
|
82 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
83 |
+
":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
|
84 |
+
"dtype": "float32",
|
85 |
+
"_shape": [
|
86 |
+
3
|
87 |
+
],
|
88 |
+
"low": "[-1. -1. -1.]",
|
89 |
+
"high": "[1. 1. 1.]",
|
90 |
+
"bounded_below": "[ True True True]",
|
91 |
+
"bounded_above": "[ True True True]",
|
92 |
+
"_np_random": null
|
93 |
+
},
|
94 |
+
"n_envs": 4
|
95 |
+
}
|
a2c-PandaReachDense-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3424afedac879825e35dd56564b284de552f6196d53d8fcecc1c4550f2b2e7ac
|
3 |
+
size 44734
|
a2c-PandaReachDense-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2ee8444b43f5fa0b3df336ac1612745ad4760d5e6b53ce52ec1217b8889da81c
|
3 |
+
size 46014
|
a2c-PandaReachDense-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-PandaReachDense-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.9.16
|
3 |
+
- Stable-Baselines3: 1.8.0
|
4 |
+
- PyTorch: 2.0.0+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f5be7a43af0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f5be7a44500>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1681010865551919009, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA1IvWPopnB7zB7g0/1IvWPopnB7zB7g0/1IvWPopnB7zB7g0/1IvWPopnB7zB7g0/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAIGRRv6Ehgb8iR7A/C3tGv2LdxT8qB+g9jotQvSrK3r7xxR2/9dw3P8ZUnL9Xx5i/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADUi9Y+imcHvMHuDT8mvLq6VpdEu6PwzrzUi9Y+imcHvMHuDT8mvLq6VpdEu6PwzrzUi9Y+imcHvMHuDT8mvLq6VpdEu6PwzrzUi9Y+imcHvMHuDT8mvLq6VpdEu6PwzryUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.41903555 -0.00826443 0.55442435]\n [ 0.41903555 -0.00826443 0.55442435]\n [ 0.41903555 -0.00826443 0.55442435]\n [ 0.41903555 -0.00826443 0.55442435]]", "desired_goal": "[[-0.81793404 -1.0088388 1.3771708 ]\n [-0.775315 1.5458186 0.11329491]\n [-0.05091434 -0.43513614 -0.6163016 ]\n [ 0.7182153 -1.2213371 -1.1935834 ]]", "observation": "[[ 0.41903555 -0.00826443 0.55442435 -0.00142467 -0.00299974 -0.02526123]\n [ 0.41903555 -0.00826443 0.55442435 -0.00142467 -0.00299974 -0.02526123]\n [ 0.41903555 -0.00826443 0.55442435 -0.00142467 -0.00299974 -0.02526123]\n [ 0.41903555 -0.00826443 0.55442435 -0.00142467 -0.00299974 -0.02526123]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAM8iUPel+BL72ndc9WiKEvJprFT6a9rs9u7MRPnCG7L3pcMA9iNLIPfQFDz7LYlU+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.07264747 -0.12939037 0.10528176]\n [-0.01612966 0.14591828 0.09177895]\n [ 0.14228718 -0.11549079 0.09396536]\n [ 0.09805781 0.13967115 0.20838468]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI7u2W5IBd9r+UhpRSlIwBbJRLMowBdJRHQKek6JDVpbl1fZQoaAZoCWgPQwgwZktWRXj7v5SGlFKUaBVLMmgWR0CnpKvUKArhdX2UKGgGaAloD0MITl/P1yz3AsCUhpRSlGgVSzJoFkdAp6RwzabnYHV9lChoBmgJaA9DCJ93Y0FhcALAlIaUUpRoFUsyaBZHQKekMhyKekJ1fZQoaAZoCWgPQwhjtfl/1ZH5v5SGlFKUaBVLMmgWR0Cnprje0ojOdX2UKGgGaAloD0MIZ3+g3Lav/7+UhpRSlGgVSzJoFkdAp6Z8adc0L3V9lChoBmgJaA9DCDSitDf4wvS/lIaUUpRoFUsyaBZHQKemQY9gWrR1fZQoaAZoCWgPQwiYhXZOs2ALwJSGlFKUaBVLMmgWR0CnpgMvIwM6dX2UKGgGaAloD0MI38Mlx52S/b+UhpRSlGgVSzJoFkdAp6jEAq/dqXV9lChoBmgJaA9DCDFFuTR+4QPAlIaUUpRoFUsyaBZHQKeoiLxZuAJ1fZQoaAZoCWgPQwgp6zcT0wX8v5SGlFKUaBVLMmgWR0CnqE3nyNGWdX2UKGgGaAloD0MImrLTD+piAMCUhpRSlGgVSzJoFkdAp6gPBtUGV3V9lChoBmgJaA9DCASpFDsax/u/lIaUUpRoFUsyaBZHQKeqpPsRg7Z1fZQoaAZoCWgPQwje5SK+E3MEwJSGlFKUaBVLMmgWR0Cnqmh19v0idX2UKGgGaAloD0MIpDUGnRA69L+UhpRSlGgVSzJoFkdAp6otqYZ2p3V9lChoBmgJaA9DCFjFG5lHvve/lIaUUpRoFUsyaBZHQKep70nw5Np1fZQoaAZoCWgPQwgOETenkoEGwJSGlFKUaBVLMmgWR0CnrCknCwbEdX2UKGgGaAloD0MI2INJ8fEpA8CUhpRSlGgVSzJoFkdAp6vrv9cbBHV9lChoBmgJaA9DCBTpfk5BvgnAlIaUUpRoFUsyaBZHQKersB5ooNN1fZQoaAZoCWgPQwi5UPnX8gr5v5SGlFKUaBVLMmgWR0Cnq3DTrmhedX2UKGgGaAloD0MIUtUEUfdhB8CUhpRSlGgVSzJoFkdAp61kg8r7O3V9lChoBmgJaA9DCFX2XRH8TwjAlIaUUpRoFUsyaBZHQKetJvaURnR1fZQoaAZoCWgPQwj+gXLbvmcAwJSGlFKUaBVLMmgWR0CnrOunuRcNdX2UKGgGaAloD0MI/iYUIuAwB8CUhpRSlGgVSzJoFkdAp6ysNH6MznV9lChoBmgJaA9DCMyYgjXOBgbAlIaUUpRoFUsyaBZHQKeufs5XEIh1fZQoaAZoCWgPQwhHdM+6RgsDwJSGlFKUaBVLMmgWR0CnrkF2FFlTdX2UKGgGaAloD0MIEQGHUKXmAsCUhpRSlGgVSzJoFkdAp64FvS+g13V9lChoBmgJaA9DCDAqqRPQhPm/lIaUUpRoFUsyaBZHQKetxnBciW51fZQoaAZoCWgPQwjecYqO5JIAwJSGlFKUaBVLMmgWR0Cnr4y+g13udX2UKGgGaAloD0MI3L3cJ0ehAsCUhpRSlGgVSzJoFkdAp69PNLUTc3V9lChoBmgJaA9DCI55HXHIZgHAlIaUUpRoFUsyaBZHQKevE25xzaN1fZQoaAZoCWgPQwjw+PauQT8DwJSGlFKUaBVLMmgWR0CnrtP4M4LkdX2UKGgGaAloD0MIc77Ye/FFAsCUhpRSlGgVSzJoFkdAp7CifUWl/HV9lChoBmgJaA9DCI47pYP1f/e/lIaUUpRoFUsyaBZHQKewZPYWcjJ1fZQoaAZoCWgPQwgyHxDoTNr5v5SGlFKUaBVLMmgWR0CnsCkDp1RtdX2UKGgGaAloD0MIwXCuYYYG/L+UhpRSlGgVSzJoFkdAp6/pi1Aqu3V9lChoBmgJaA9DCDS/mgME8/S/lIaUUpRoFUsyaBZHQKexwQiA2AJ1fZQoaAZoCWgPQwhRhNTt7OsGwJSGlFKUaBVLMmgWR0CnsYOxrzoVdX2UKGgGaAloD0MIeqcC7nn+9b+UhpRSlGgVSzJoFkdAp7FICfYjB3V9lChoBmgJaA9DCB/Xhopx/vm/lIaUUpRoFUsyaBZHQKexCMAmzB11fZQoaAZoCWgPQwin5nKDoc4CwJSGlFKUaBVLMmgWR0Cnstt4A0bcdX2UKGgGaAloD0MISs/0EmO5AMCUhpRSlGgVSzJoFkdAp7KeDFqBVnV9lChoBmgJaA9DCGDHf4EgQPi/lIaUUpRoFUsyaBZHQKeyYhf0Eox1fZQoaAZoCWgPQwg1C7Q7pBj9v5SGlFKUaBVLMmgWR0CnsiKUu+RHdX2UKGgGaAloD0MIdY9srpqn+L+UhpRSlGgVSzJoFkdAp7Pq9du50HV9lChoBmgJaA9DCPXb14FzRvu/lIaUUpRoFUsyaBZHQKezrYHxBmh1fZQoaAZoCWgPQwjcZ5WZ0hoHwJSGlFKUaBVLMmgWR0Cns3Hww0wbdX2UKGgGaAloD0MIyorh6gDI+b+UhpRSlGgVSzJoFkdAp7MyZDzAe3V9lChoBmgJaA9DCDo/xXHgNQTAlIaUUpRoFUsyaBZHQKe09lg+hXd1fZQoaAZoCWgPQwjc1EDzOfcFwJSGlFKUaBVLMmgWR0CntLi66J66dX2UKGgGaAloD0MIKNap8j1jCMCUhpRSlGgVSzJoFkdAp7R80Ltu1nV9lChoBmgJaA9DCGozTkNUofu/lIaUUpRoFUsyaBZHQKe0PTtsvZh1fZQoaAZoCWgPQwgzcEBLV3D3v5SGlFKUaBVLMmgWR0Cntf41gpjMdX2UKGgGaAloD0MIasGLvoK0BsCUhpRSlGgVSzJoFkdAp7XAw9JSSHV9lChoBmgJaA9DCBDmdi/3Sf+/lIaUUpRoFUsyaBZHQKe1hQqqfe11fZQoaAZoCWgPQwiWCb/Uz/sCwJSGlFKUaBVLMmgWR0CntUWJ79hrdX2UKGgGaAloD0MIH4ZWJ2eICMCUhpRSlGgVSzJoFkdAp7cuLxZuAXV9lChoBmgJaA9DCIY8ghsp2/a/lIaUUpRoFUsyaBZHQKe28W8AaNx1fZQoaAZoCWgPQwipMLYQ5KD9v5SGlFKUaBVLMmgWR0CntrW6bvw3dX2UKGgGaAloD0MIWBr4UQ17+r+UhpRSlGgVSzJoFkdAp7Z2KQ7tA3V9lChoBmgJaA9DCPwApDZxcve/lIaUUpRoFUsyaBZHQKe4QWszVMF1fZQoaAZoCWgPQwhyUS0iiikEwJSGlFKUaBVLMmgWR0CnuAP9UCJXdX2UKGgGaAloD0MIFQK5xJFHAcCUhpRSlGgVSzJoFkdAp7fIhIOH33V9lChoBmgJaA9DCOm68IPzSQLAlIaUUpRoFUsyaBZHQKe3ibDuSfV1fZQoaAZoCWgPQwhdiNUfYdj3v5SGlFKUaBVLMmgWR0CnuWlr2xptdX2UKGgGaAloD0MIdQRws3hx+L+UhpRSlGgVSzJoFkdAp7ksK1G9YnV9lChoBmgJaA9DCPTDCOHRhvy/lIaUUpRoFUsyaBZHQKe48JHiFTN1fZQoaAZoCWgPQwg0Spf+JWn4v5SGlFKUaBVLMmgWR0CnuLE9dNWVdX2UKGgGaAloD0MI9ihcj8L1+r+UhpRSlGgVSzJoFkdAp7qn2kBS1nV9lChoBmgJaA9DCKhSswdaYQHAlIaUUpRoFUsyaBZHQKe6am3OObR1fZQoaAZoCWgPQwgAyt+9o0b1v5SGlFKUaBVLMmgWR0Cnui6Ae7tidX2UKGgGaAloD0MIXqCkwAJYBMCUhpRSlGgVSzJoFkdAp7nu9eyAx3V9lChoBmgJaA9DCCWuY1xx8fS/lIaUUpRoFUsyaBZHQKe7wM2FWXF1fZQoaAZoCWgPQwgZ48PsZbsBwJSGlFKUaBVLMmgWR0Cnu4Nucc2jdX2UKGgGaAloD0MIB3jSwmVV/b+UhpRSlGgVSzJoFkdAp7tHxhDw6XV9lChoBmgJaA9DCBcrajANIwbAlIaUUpRoFUsyaBZHQKe7CHgP3BZ1fZQoaAZoCWgPQwgpBHKJIw8AwJSGlFKUaBVLMmgWR0CnvNMTewcHdX2UKGgGaAloD0MI0UGXcOjt+L+UhpRSlGgVSzJoFkdAp7yVxuKoAHV9lChoBmgJaA9DCP7viArVzfm/lIaUUpRoFUsyaBZHQKe8Wg/1QIl1fZQoaAZoCWgPQwj/s+bHX5oFwJSGlFKUaBVLMmgWR0CnvBqF7D2rdX2UKGgGaAloD0MIRn2SO2yiAsCUhpRSlGgVSzJoFkdAp73pjjJdSnV9lChoBmgJaA9DCJ4MjpJX5/a/lIaUUpRoFUsyaBZHQKe9rAv+OwR1fZQoaAZoCWgPQwgO3ewPlDsCwJSGlFKUaBVLMmgWR0CnvXAxBVuKdX2UKGgGaAloD0MInb6er1ku/r+UhpRSlGgVSzJoFkdAp70wvrWy1XV9lChoBmgJaA9DCA0Zj1IJ7wHAlIaUUpRoFUsyaBZHQKe/CZQ53kh1fZQoaAZoCWgPQwh+AihGliwBwJSGlFKUaBVLMmgWR0CnvswZXMhYdX2UKGgGaAloD0MIA3rhzoUxA8CUhpRSlGgVSzJoFkdAp76QVEd/8XV9lChoBmgJaA9DCDwvFRvzuve/lIaUUpRoFUsyaBZHQKe+UQA+6iF1fZQoaAZoCWgPQwgp7Q2+MJn0v5SGlFKUaBVLMmgWR0CnwISa3I+4dX2UKGgGaAloD0MIrmTHRiAe/L+UhpRSlGgVSzJoFkdAp8BIZZSvT3V9lChoBmgJaA9DCKJjB5W4Dvi/lIaUUpRoFUsyaBZHQKfADW4EwFl1fZQoaAZoCWgPQwiOWfYksLkDwJSGlFKUaBVLMmgWR0Cnv87L2YfGdX2UKGgGaAloD0MIJO6x9KGL87+UhpRSlGgVSzJoFkdAp8JKp3os7XV9lChoBmgJaA9DCMO4G0Rrhfi/lIaUUpRoFUsyaBZHQKfCDgxagVZ1fZQoaAZoCWgPQwhmL9tOW2P8v5SGlFKUaBVLMmgWR0CnwdNCqp97dX2UKGgGaAloD0MImYQLeQQ3/r+UhpRSlGgVSzJoFkdAp8GVFtsN2HV9lChoBmgJaA9DCNGuQspPCgHAlIaUUpRoFUsyaBZHQKfEGSt/4It1fZQoaAZoCWgPQwg9J71vfG0DwJSGlFKUaBVLMmgWR0Cnw9x/NJOGdX2UKGgGaAloD0MIMGghAaML9r+UhpRSlGgVSzJoFkdAp8Ohle4TbnV9lChoBmgJaA9DCLH7juGxH/6/lIaUUpRoFUsyaBZHQKfDYu5jH4p1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
Binary file (715 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -2.2597661692649127, "std_reward": 0.5715425634681658, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-04-09T04:18:47.942560"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:57ca085270b9dbec2c7d9ab2c7c655ad9ff7d336374e27cde2117de7339e0ea5
|
3 |
+
size 2381
|