globophobe commited on
Commit
8e43ed6
·
1 Parent(s): a408e28

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - AntBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: AntBulletEnv-v0
16
+ type: AntBulletEnv-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 1087.72 +/- 88.11
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **AntBulletEnv-v0**
25
+ This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-AntBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b02aca9e743f837ebf0870bcd280ea4d15d0bf4c92d3bd060b9fc54306949760
3
+ size 129231
a2c-AntBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.8.0
a2c-AntBulletEnv-v0/data ADDED
@@ -0,0 +1,107 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f5be7a433a0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f5be7a43430>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f5be7a434c0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f5be7a43550>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f5be7a435e0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f5be7a43670>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f5be7a43700>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f5be7a43790>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f5be7a43820>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f5be7a438b0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f5be7a43940>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f5be7a439d0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7f5be7a44340>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {
24
+ ":type:": "<class 'dict'>",
25
+ ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
26
+ "log_std_init": -2,
27
+ "ortho_init": false,
28
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
29
+ "optimizer_kwargs": {
30
+ "alpha": 0.99,
31
+ "eps": 1e-05,
32
+ "weight_decay": 0
33
+ }
34
+ },
35
+ "num_timesteps": 2000000,
36
+ "_total_timesteps": 2000000,
37
+ "_num_timesteps_at_start": 0,
38
+ "seed": null,
39
+ "action_noise": null,
40
+ "start_time": 1681007083780536568,
41
+ "learning_rate": 0.00096,
42
+ "tensorboard_log": null,
43
+ "lr_schedule": {
44
+ ":type:": "<class 'function'>",
45
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
46
+ },
47
+ "_last_obs": {
48
+ ":type:": "<class 'numpy.ndarray'>",
49
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAPo9Cr8WPzQ/Cw+bPonEEL+0BSa+0aa5PjhIdTyJozK/dRoGPtweBz9X0go/j9dOPgpy6b6PtJk+bQBIP9BtI7+IDY0/CsMLPt8AyD5c9p8+tvKnPx/ztL1HlAe/5lbRPrlJbj+f7OQ+lCzePi6vmL8/kx7AYikEQIsjDcC+B6C/WJBxvsevVj1cfrY7R9A1P1wT5L/yIlG7sleKv6xN3bx+HHE+Cfg8up08Xj9UuuU8NIOBv5yjxLr9qFk/Y+vSPJIvpb8Asks574xyv4Kwk7y5SW4/n+zkPpQs3j7fnFY/0FXYPVb3lb+kxoe8v60+v6H0Rb7611PAoKuKv03IJT2BIeS+p3tJQFErub7zbvI/BqTDP4XpHL+eeFg/gvbrvsb9Gr+qG5I/46blvrTaGcAobcO9gS52QLezyT9l+0E/p4OJv5YjD8CULN4+35xWP3cUkb4Opso/jwpcvwNRTr5KAF2/mWqAPgZq57ul4qS/qw56Pm1ALD/NVJU/zFMBv+Ebjr8ixIW/x08jP2qCIb9x/dQ+CgjivrqZUj9bqpk+s8OzPyLvZLke2oy/WT12vLlJbj+f7OQ+lCzePi6vmL+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
50
+ },
51
+ "_last_episode_starts": {
52
+ ":type:": "<class 'numpy.ndarray'>",
53
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
54
+ },
55
+ "_last_original_obs": {
56
+ ":type:": "<class 'numpy.ndarray'>",
57
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAABXv0K2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA4zeivQAAAADBA96/AAAAABzIob0AAAAAoGbqPwAAAABiXq+8AAAAAJSQ8j8AAAAA94XWPQAAAACMgvW/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAs6LYNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgH3i37sAAAAAp5XsvwAAAACruZo8AAAAAOir5D8AAAAAV6kLPgAAAABs//I/AAAAAMyKAr4AAAAAUQPtvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKHDMrcAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAcmpQ9AAAAAJsz378AAAAAljPQvQAAAACX4+I/AAAAAAFtCb4AAAAAP7TgPwAAAAALBRI+AAAAAIsa978AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAeko42AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAcNVdvQAAAADKQvy/AAAAAE/asTwAAAAA+tLuPwAAAACZjj09AAAAAOSY5T8AAAAAuHyAvQAAAAA/nNm/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
58
+ },
59
+ "_episode_num": 0,
60
+ "use_sde": true,
61
+ "sde_sample_freq": -1,
62
+ "_current_progress_remaining": 0.0,
63
+ "_stats_window_size": 100,
64
+ "ep_info_buffer": {
65
+ ":type:": "<class 'collections.deque'>",
66
+ ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQIemgDzRQaeMAWyUTegDjAF0lEdAqtFaZSeiBXV9lChoBkdAfxKWTot+TmgHTegDaAhHQKrVlhky1u11fZQoaAZHQJTj7u+h4+toB03oA2gIR0Cq3FwUpNKzdX2UKGgGR0CWqCJ9RaX8aAdN6ANoCEdAqt5JY3eenXV9lChoBkdAlEk2mLtNSWgHTegDaAhHQKrfeTrVvuR1fZQoaAZHQJVSmQT238ZoB03oA2gIR0Cq5YHnMdLhdX2UKGgGR0CSDGdY4hllaAdN6ANoCEdAquuvX9R77nV9lChoBkdAlCqBFZxJd2gHTegDaAhHQKrtETot+Th1fZQoaAZHQJD7pJz1bq1oB03oA2gIR0Cq7eaRISUUdX2UKGgGR0CT6gP7N0NjaAdN6ANoCEdAqvIMPrfLtHV9lChoBkdAlYZGHgxagWgHTegDaAhHQKr4LDzAeq91fZQoaAZHQJQz7/CIk7hoB03oA2gIR0Cq+dvRRdhRdX2UKGgGR0CUb/LE1l5GaAdN6ANoCEdAqvr7kQwsXnV9lChoBkdAk7bPn4fwJGgHTegDaAhHQKsBQh11W811fZQoaAZHQJev+CPIXCVoB03oA2gIR0CrCA/KQq7RdX2UKGgGR0CVHpwQDmr9aAdN6ANoCEdAqwlbGtITXnV9lChoBkdAmnJsmfGuLmgHTegDaAhHQKsKJIXCTEB1fZQoaAZHQJbkkySFGodoB03oA2gIR0CrDlfRNRFadX2UKGgGR0CWzVuZCv5haAdN6ANoCEdAqxSbENvwVnV9lChoBkdAlnUemWMS9WgHTegDaAhHQKsV92r4nF51fZQoaAZHQJE41PRArx1oB03oA2gIR0CrFsedTYNBdX2UKGgGR0CV4eBkqc3EaAdN6ANoCEdAqxzhZB9kSXV9lChoBkdAkWtJB5X2d2gHTegDaAhHQKsk0DbJwKl1fZQoaAZHQJOP6zOX3QFoB03oA2gIR0CrJipqynk1dX2UKGgGR0CUFptPpIMCaAdN6ANoCEdAqyb3Lkjop3V9lChoBkdAl7I/pY9xImgHTegDaAhHQKsrH4M4LkV1fZQoaAZHQJT1BDBuXNVoB03oA2gIR0CrMVZvUBn0dX2UKGgGR0CU0Zq5LAYYaAdN6ANoCEdAqzKof4h2XHV9lChoBkdAl7EOkLx7RmgHTegDaAhHQKszdtBv73x1fZQoaAZHQJfeLEWIoE1oB03oA2gIR0CrOJszl90BdX2UKGgGR0CQIr6H0se5aAdN6ANoCEdAq0FrufEn9nV9lChoBkdAj8bnHvMKTmgHTegDaAhHQKtCw9Pk7wN1fZQoaAZHQJVdeVjZteloB03oA2gIR0CrQ5NpM6BAdX2UKGgGR0CUdcYtg8bJaAdN6ANoCEdAq0fKuGKyfXV9lChoBkdAkVVXzcynDWgHTegDaAhHQKtOIOLBKth1fZQoaAZHQJD6VH+ZPVNoB03oA2gIR0CrT4ZooNNKdX2UKGgGR0CRK/JokAxSaAdN6ANoCEdAq1Ba1E3KjnV9lChoBkdAkZn4ClrM1WgHTegDaAhHQKtU8OtGNJh1fZQoaAZHQJCcYiILw4NoB03oA2gIR0CrXpr+YMOPdX2UKGgGR0COAuqslsxgaAdN6ANoCEdAq1/6DsdDIHV9lChoBkdAkE1MZ1mrbWgHTegDaAhHQKtgwjnFHax1fZQoaAZHQIxRsjiXIENoB03oA2gIR0CrZPPWxyGSdX2UKGgGR0CQI9mpVCHAaAdN6ANoCEdAq2su+sYEXHV9lChoBkdAipw+l9BrvmgHTegDaAhHQKtsiVY6nzh1fZQoaAZHQI/RjASFoL5oB03oA2gIR0CrbVjQiRnwdX2UKGgGR0CT2MVQhwERaAdN6ANoCEdAq3Gsfs/puHV9lChoBkdAkyao9HMEBGgHTegDaAhHQKt6W1a4c3l1fZQoaAZHQJKIHpV0cOtoB03oA2gIR0CrfGnfuTibdX2UKGgGR0CR0pvhqCYkaAdN6ANoCEdAq31ocYIjW3V9lChoBkdAklC2DL8rJGgHTegDaAhHQKuBfwvxpcp1fZQoaAZHQJCnaDpTuOVoB03oA2gIR0Crh7d/SYw7dX2UKGgGR0CR+uAnUlRhaAdN6ANoCEdAq4kM4//vOXV9lChoBkdAkyZdIkJKJ2gHTegDaAhHQKuJ4AOJ+Dx1fZQoaAZHQJSTOt7rs0JoB03oA2gIR0CrjhOFQEZBdX2UKGgGR0CUYdpH7P6baAdN6ANoCEdAq5XBY1YQrnV9lChoBkdAklnYBRyfc2gHTegDaAhHQKuX1e0G/vh1fZQoaAZHQJMyzT6SDAdoB03oA2gIR0CrmQwPiDNAdX2UKGgGR0CWewGzKLbYaAdN6ANoCEdAq54bNY8uBnV9lChoBkdAkoej0Yj0MGgHTegDaAhHQKukclE7W/d1fZQoaAZHQJQFdjnV5KRoB03oA2gIR0CrpdRg7YChdX2UKGgGR0CUTh4XXRPXaAdN6ANoCEdAq6aogkka/HV9lChoBkdAkq9UQXhwVGgHTegDaAhHQKuq6XtShrZ1fZQoaAZHQJSTyIgvDgtoB03oA2gIR0Crsh/BFd9ldX2UKGgGR0CS8P6Mir1eaAdN6ANoCEdAq7QV89fTkXV9lChoBkdAkObCZa3ZwmgHTegDaAhHQKu1UJ1JUYN1fZQoaAZHQJAZJ6MR6GBoB03oA2gIR0CruxWPLgXNdX2UKGgGR0CRmmk5IYm+aAdN6ANoCEdAq8FTHwPRRnV9lChoBkdAk7rR+fAbhmgHTegDaAhHQKvCp04BFNN1fZQoaAZHQJKZ1MBZIQRoB03oA2gIR0Crw39P+GXYdX2UKGgGR0CRXgZpSJj2aAdN6ANoCEdAq8elwxWT5nV9lChoBkdAk70+fVZs9GgHTegDaAhHQKvN5bQkX1t1fZQoaAZHQIVNisGPgeloB03oA2gIR0Crz92MS9M9dX2UKGgGR0CSiXJbMX7+aAdN6ANoCEdAq9EEwg1WKnV9lChoBkdAkX+85fdAPmgHTegDaAhHQKvXX78ejmF1fZQoaAZHQJRRS0Sh8IBoB03oA2gIR0Cr3eQG4ZuRdX2UKGgGR0CQWtQ/oq0/aAdN6ANoCEdAq98yS9ugpXV9lChoBkdAkzPSX+l0o2gHTegDaAhHQKvf/CN0eU91fZQoaAZHQJG/M6GQCCBoB03oA2gIR0Cr5DHck+otdX2UKGgGR0CSv5ihnJ1aaAdN6ANoCEdAq+qCbBoEjnV9lChoBkdAlg9f8/D+BGgHTegDaAhHQKvr3HPu5SZ1fZQoaAZHQJaCU+mm+CdoB03oA2gIR0Cr7OKcmShbdX2UKGgGR0CVCPB8QZn+aAdN6ANoCEdAq/MaHTI/7nV9lChoBkdAkpMvTLGJemgHTegDaAhHQKv6fRO1v2p1fZQoaAZHQJIMUzoEB8xoB03oA2gIR0Cr+9gWi1zAdX2UKGgGR0CR26LrX18LaAdN6ANoCEdAq/ykWXTmXHV9lChoBkdAkgfH+ERJ3GgHTegDaAhHQKwA5Qfp2U11fZQoaAZHQJEGytzS1E5oB03oA2gIR0CsBy8QZn+RdX2UKGgGR0CSF5BP9DQaaAdN6ANoCEdArAiLm0VrRHV9lChoBkdAk9GorWiDd2gHTegDaAhHQKwJVz06HTJ1fZQoaAZHQJBAvEBKcutoB03oA2gIR0CsDuVuJk5IdX2UKGgGR0COTC+t8uzyaAdN6ANoCEdArBdL9uP3jHV9lChoBkdAkDmLlq8DjmgHTegDaAhHQKwYo/gR9PV1fZQoaAZHQJED9mg8KXxoB03oA2gIR0CsGXOrQw9JdX2UKGgGR0CQt/di2DxtaAdN6ANoCEdArB2iOHWSU3V9lChoBkdAi1ITgVGkOGgHTegDaAhHQKwj7ozN2Tx1fZQoaAZHQIdS06o2n89oB03oA2gIR0CsJUcKG+K1dX2UKGgGR0COJYZ4wAU+aAdN6ANoCEdArCYh8x9G7XV9lChoBkdAjX0vB7/n4mgHTegDaAhHQKwrA9K28Zl1fZQoaAZHQIwo/YFqzqtoB03oA2gIR0CsND1Iy0rtdX2UKGgGR0CLny1jy4FzaAdN6ANoCEdArDWXq1PWQXVlLg=="
67
+ },
68
+ "ep_success_buffer": {
69
+ ":type:": "<class 'collections.deque'>",
70
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
71
+ },
72
+ "_n_updates": 62500,
73
+ "n_steps": 8,
74
+ "gamma": 0.99,
75
+ "gae_lambda": 0.9,
76
+ "ent_coef": 0.0,
77
+ "vf_coef": 0.4,
78
+ "max_grad_norm": 0.5,
79
+ "normalize_advantage": false,
80
+ "observation_space": {
81
+ ":type:": "<class 'gym.spaces.box.Box'>",
82
+ ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
83
+ "dtype": "float32",
84
+ "_shape": [
85
+ 28
86
+ ],
87
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
88
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
89
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
90
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
91
+ "_np_random": null
92
+ },
93
+ "action_space": {
94
+ ":type:": "<class 'gym.spaces.box.Box'>",
95
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
96
+ "dtype": "float32",
97
+ "_shape": [
98
+ 8
99
+ ],
100
+ "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
101
+ "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
102
+ "bounded_below": "[ True True True True True True True True]",
103
+ "bounded_above": "[ True True True True True True True True]",
104
+ "_np_random": null
105
+ },
106
+ "n_envs": 4
107
+ }
a2c-AntBulletEnv-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5f2bc583ddb8074a319d8f5a92f4a31f6b9003acbc0bd6572329154133444ab7
3
+ size 56190
a2c-AntBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4fc327f4ce1a3e00b0553d294b0e9f19b5f0b594a128860d6a1e8c8b57a45470
3
+ size 56894
a2c-AntBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-AntBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.9.16
3
+ - Stable-Baselines3: 1.8.0
4
+ - PyTorch: 2.0.0+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f5be7a433a0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f5be7a43430>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f5be7a434c0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f5be7a43550>", "_build": "<function ActorCriticPolicy._build at 0x7f5be7a435e0>", "forward": "<function ActorCriticPolicy.forward at 0x7f5be7a43670>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f5be7a43700>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f5be7a43790>", "_predict": "<function ActorCriticPolicy._predict at 0x7f5be7a43820>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f5be7a438b0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f5be7a43940>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f5be7a439d0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f5be7a44340>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1681007083780536568, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAPo9Cr8WPzQ/Cw+bPonEEL+0BSa+0aa5PjhIdTyJozK/dRoGPtweBz9X0go/j9dOPgpy6b6PtJk+bQBIP9BtI7+IDY0/CsMLPt8AyD5c9p8+tvKnPx/ztL1HlAe/5lbRPrlJbj+f7OQ+lCzePi6vmL8/kx7AYikEQIsjDcC+B6C/WJBxvsevVj1cfrY7R9A1P1wT5L/yIlG7sleKv6xN3bx+HHE+Cfg8up08Xj9UuuU8NIOBv5yjxLr9qFk/Y+vSPJIvpb8Asks574xyv4Kwk7y5SW4/n+zkPpQs3j7fnFY/0FXYPVb3lb+kxoe8v60+v6H0Rb7611PAoKuKv03IJT2BIeS+p3tJQFErub7zbvI/BqTDP4XpHL+eeFg/gvbrvsb9Gr+qG5I/46blvrTaGcAobcO9gS52QLezyT9l+0E/p4OJv5YjD8CULN4+35xWP3cUkb4Opso/jwpcvwNRTr5KAF2/mWqAPgZq57ul4qS/qw56Pm1ALD/NVJU/zFMBv+Ebjr8ixIW/x08jP2qCIb9x/dQ+CgjivrqZUj9bqpk+s8OzPyLvZLke2oy/WT12vLlJbj+f7OQ+lCzePi6vmL+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAABXv0K2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA4zeivQAAAADBA96/AAAAABzIob0AAAAAoGbqPwAAAABiXq+8AAAAAJSQ8j8AAAAA94XWPQAAAACMgvW/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAs6LYNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgH3i37sAAAAAp5XsvwAAAACruZo8AAAAAOir5D8AAAAAV6kLPgAAAABs//I/AAAAAMyKAr4AAAAAUQPtvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKHDMrcAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAcmpQ9AAAAAJsz378AAAAAljPQvQAAAACX4+I/AAAAAAFtCb4AAAAAP7TgPwAAAAALBRI+AAAAAIsa978AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAeko42AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAcNVdvQAAAADKQvy/AAAAAE/asTwAAAAA+tLuPwAAAACZjj09AAAAAOSY5T8AAAAAuHyAvQAAAAA/nNm/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQIemgDzRQaeMAWyUTegDjAF0lEdAqtFaZSeiBXV9lChoBkdAfxKWTot+TmgHTegDaAhHQKrVlhky1u11fZQoaAZHQJTj7u+h4+toB03oA2gIR0Cq3FwUpNKzdX2UKGgGR0CWqCJ9RaX8aAdN6ANoCEdAqt5JY3eenXV9lChoBkdAlEk2mLtNSWgHTegDaAhHQKrfeTrVvuR1fZQoaAZHQJVSmQT238ZoB03oA2gIR0Cq5YHnMdLhdX2UKGgGR0CSDGdY4hllaAdN6ANoCEdAquuvX9R77nV9lChoBkdAlCqBFZxJd2gHTegDaAhHQKrtETot+Th1fZQoaAZHQJD7pJz1bq1oB03oA2gIR0Cq7eaRISUUdX2UKGgGR0CT6gP7N0NjaAdN6ANoCEdAqvIMPrfLtHV9lChoBkdAlYZGHgxagWgHTegDaAhHQKr4LDzAeq91fZQoaAZHQJQz7/CIk7hoB03oA2gIR0Cq+dvRRdhRdX2UKGgGR0CUb/LE1l5GaAdN6ANoCEdAqvr7kQwsXnV9lChoBkdAk7bPn4fwJGgHTegDaAhHQKsBQh11W811fZQoaAZHQJev+CPIXCVoB03oA2gIR0CrCA/KQq7RdX2UKGgGR0CVHpwQDmr9aAdN6ANoCEdAqwlbGtITXnV9lChoBkdAmnJsmfGuLmgHTegDaAhHQKsKJIXCTEB1fZQoaAZHQJbkkySFGodoB03oA2gIR0CrDlfRNRFadX2UKGgGR0CWzVuZCv5haAdN6ANoCEdAqxSbENvwVnV9lChoBkdAlnUemWMS9WgHTegDaAhHQKsV92r4nF51fZQoaAZHQJE41PRArx1oB03oA2gIR0CrFsedTYNBdX2UKGgGR0CV4eBkqc3EaAdN6ANoCEdAqxzhZB9kSXV9lChoBkdAkWtJB5X2d2gHTegDaAhHQKsk0DbJwKl1fZQoaAZHQJOP6zOX3QFoB03oA2gIR0CrJipqynk1dX2UKGgGR0CUFptPpIMCaAdN6ANoCEdAqyb3Lkjop3V9lChoBkdAl7I/pY9xImgHTegDaAhHQKsrH4M4LkV1fZQoaAZHQJT1BDBuXNVoB03oA2gIR0CrMVZvUBn0dX2UKGgGR0CU0Zq5LAYYaAdN6ANoCEdAqzKof4h2XHV9lChoBkdAl7EOkLx7RmgHTegDaAhHQKszdtBv73x1fZQoaAZHQJfeLEWIoE1oB03oA2gIR0CrOJszl90BdX2UKGgGR0CQIr6H0se5aAdN6ANoCEdAq0FrufEn9nV9lChoBkdAj8bnHvMKTmgHTegDaAhHQKtCw9Pk7wN1fZQoaAZHQJVdeVjZteloB03oA2gIR0CrQ5NpM6BAdX2UKGgGR0CUdcYtg8bJaAdN6ANoCEdAq0fKuGKyfXV9lChoBkdAkVVXzcynDWgHTegDaAhHQKtOIOLBKth1fZQoaAZHQJD6VH+ZPVNoB03oA2gIR0CrT4ZooNNKdX2UKGgGR0CRK/JokAxSaAdN6ANoCEdAq1Ba1E3KjnV9lChoBkdAkZn4ClrM1WgHTegDaAhHQKtU8OtGNJh1fZQoaAZHQJCcYiILw4NoB03oA2gIR0CrXpr+YMOPdX2UKGgGR0COAuqslsxgaAdN6ANoCEdAq1/6DsdDIHV9lChoBkdAkE1MZ1mrbWgHTegDaAhHQKtgwjnFHax1fZQoaAZHQIxRsjiXIENoB03oA2gIR0CrZPPWxyGSdX2UKGgGR0CQI9mpVCHAaAdN6ANoCEdAq2su+sYEXHV9lChoBkdAipw+l9BrvmgHTegDaAhHQKtsiVY6nzh1fZQoaAZHQI/RjASFoL5oB03oA2gIR0CrbVjQiRnwdX2UKGgGR0CT2MVQhwERaAdN6ANoCEdAq3Gsfs/puHV9lChoBkdAkyao9HMEBGgHTegDaAhHQKt6W1a4c3l1fZQoaAZHQJKIHpV0cOtoB03oA2gIR0CrfGnfuTibdX2UKGgGR0CR0pvhqCYkaAdN6ANoCEdAq31ocYIjW3V9lChoBkdAklC2DL8rJGgHTegDaAhHQKuBfwvxpcp1fZQoaAZHQJCnaDpTuOVoB03oA2gIR0Crh7d/SYw7dX2UKGgGR0CR+uAnUlRhaAdN6ANoCEdAq4kM4//vOXV9lChoBkdAkyZdIkJKJ2gHTegDaAhHQKuJ4AOJ+Dx1fZQoaAZHQJSTOt7rs0JoB03oA2gIR0CrjhOFQEZBdX2UKGgGR0CUYdpH7P6baAdN6ANoCEdAq5XBY1YQrnV9lChoBkdAklnYBRyfc2gHTegDaAhHQKuX1e0G/vh1fZQoaAZHQJMyzT6SDAdoB03oA2gIR0CrmQwPiDNAdX2UKGgGR0CWewGzKLbYaAdN6ANoCEdAq54bNY8uBnV9lChoBkdAkoej0Yj0MGgHTegDaAhHQKukclE7W/d1fZQoaAZHQJQFdjnV5KRoB03oA2gIR0CrpdRg7YChdX2UKGgGR0CUTh4XXRPXaAdN6ANoCEdAq6aogkka/HV9lChoBkdAkq9UQXhwVGgHTegDaAhHQKuq6XtShrZ1fZQoaAZHQJSTyIgvDgtoB03oA2gIR0Crsh/BFd9ldX2UKGgGR0CS8P6Mir1eaAdN6ANoCEdAq7QV89fTkXV9lChoBkdAkObCZa3ZwmgHTegDaAhHQKu1UJ1JUYN1fZQoaAZHQJAZJ6MR6GBoB03oA2gIR0CruxWPLgXNdX2UKGgGR0CRmmk5IYm+aAdN6ANoCEdAq8FTHwPRRnV9lChoBkdAk7rR+fAbhmgHTegDaAhHQKvCp04BFNN1fZQoaAZHQJKZ1MBZIQRoB03oA2gIR0Crw39P+GXYdX2UKGgGR0CRXgZpSJj2aAdN6ANoCEdAq8elwxWT5nV9lChoBkdAk70+fVZs9GgHTegDaAhHQKvN5bQkX1t1fZQoaAZHQIVNisGPgeloB03oA2gIR0Crz92MS9M9dX2UKGgGR0CSiXJbMX7+aAdN6ANoCEdAq9EEwg1WKnV9lChoBkdAkX+85fdAPmgHTegDaAhHQKvXX78ejmF1fZQoaAZHQJRRS0Sh8IBoB03oA2gIR0Cr3eQG4ZuRdX2UKGgGR0CQWtQ/oq0/aAdN6ANoCEdAq98yS9ugpXV9lChoBkdAkzPSX+l0o2gHTegDaAhHQKvf/CN0eU91fZQoaAZHQJG/M6GQCCBoB03oA2gIR0Cr5DHck+otdX2UKGgGR0CSv5ihnJ1aaAdN6ANoCEdAq+qCbBoEjnV9lChoBkdAlg9f8/D+BGgHTegDaAhHQKvr3HPu5SZ1fZQoaAZHQJaCU+mm+CdoB03oA2gIR0Cr7OKcmShbdX2UKGgGR0CVCPB8QZn+aAdN6ANoCEdAq/MaHTI/7nV9lChoBkdAkpMvTLGJemgHTegDaAhHQKv6fRO1v2p1fZQoaAZHQJIMUzoEB8xoB03oA2gIR0Cr+9gWi1zAdX2UKGgGR0CR26LrX18LaAdN6ANoCEdAq/ykWXTmXHV9lChoBkdAkgfH+ERJ3GgHTegDaAhHQKwA5Qfp2U11fZQoaAZHQJEGytzS1E5oB03oA2gIR0CsBy8QZn+RdX2UKGgGR0CSF5BP9DQaaAdN6ANoCEdArAiLm0VrRHV9lChoBkdAk9GorWiDd2gHTegDaAhHQKwJVz06HTJ1fZQoaAZHQJBAvEBKcutoB03oA2gIR0CsDuVuJk5IdX2UKGgGR0COTC+t8uzyaAdN6ANoCEdArBdL9uP3jHV9lChoBkdAkDmLlq8DjmgHTegDaAhHQKwYo/gR9PV1fZQoaAZHQJED9mg8KXxoB03oA2gIR0CsGXOrQw9JdX2UKGgGR0CQt/di2DxtaAdN6ANoCEdArB2iOHWSU3V9lChoBkdAi1ITgVGkOGgHTegDaAhHQKwj7ozN2Tx1fZQoaAZHQIdS06o2n89oB03oA2gIR0CsJUcKG+K1dX2UKGgGR0COJYZ4wAU+aAdN6ANoCEdArCYh8x9G7XV9lChoBkdAjX0vB7/n4mgHTegDaAhHQKwrA9K28Zl1fZQoaAZHQIwo/YFqzqtoB03oA2gIR0CsND1Iy0rtdX2UKGgGR0CLny1jy4FzaAdN6ANoCEdArDWXq1PWQXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (927 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 1087.7214991292917, "std_reward": 88.11343243717522, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-04-09T03:25:47.484303"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4e8b42ed5bd8af309b596282857b11525b9c4b7feba7bf15ffdb48d561b37fa3
3
+ size 2170