globophobe
commited on
Commit
·
8e43ed6
1
Parent(s):
a408e28
Initial commit
Browse files- README.md +37 -0
- a2c-AntBulletEnv-v0.zip +3 -0
- a2c-AntBulletEnv-v0/_stable_baselines3_version +1 -0
- a2c-AntBulletEnv-v0/data +107 -0
- a2c-AntBulletEnv-v0/policy.optimizer.pth +3 -0
- a2c-AntBulletEnv-v0/policy.pth +3 -0
- a2c-AntBulletEnv-v0/pytorch_variables.pth +3 -0
- a2c-AntBulletEnv-v0/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- AntBulletEnv-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: AntBulletEnv-v0
|
16 |
+
type: AntBulletEnv-v0
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 1087.72 +/- 88.11
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **AntBulletEnv-v0**
|
25 |
+
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-AntBulletEnv-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b02aca9e743f837ebf0870bcd280ea4d15d0bf4c92d3bd060b9fc54306949760
|
3 |
+
size 129231
|
a2c-AntBulletEnv-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.8.0
|
a2c-AntBulletEnv-v0/data
ADDED
@@ -0,0 +1,107 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f5be7a433a0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f5be7a43430>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f5be7a434c0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f5be7a43550>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f5be7a435e0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f5be7a43670>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f5be7a43700>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f5be7a43790>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f5be7a43820>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f5be7a438b0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f5be7a43940>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f5be7a439d0>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f5be7a44340>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {
|
24 |
+
":type:": "<class 'dict'>",
|
25 |
+
":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
26 |
+
"log_std_init": -2,
|
27 |
+
"ortho_init": false,
|
28 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
29 |
+
"optimizer_kwargs": {
|
30 |
+
"alpha": 0.99,
|
31 |
+
"eps": 1e-05,
|
32 |
+
"weight_decay": 0
|
33 |
+
}
|
34 |
+
},
|
35 |
+
"num_timesteps": 2000000,
|
36 |
+
"_total_timesteps": 2000000,
|
37 |
+
"_num_timesteps_at_start": 0,
|
38 |
+
"seed": null,
|
39 |
+
"action_noise": null,
|
40 |
+
"start_time": 1681007083780536568,
|
41 |
+
"learning_rate": 0.00096,
|
42 |
+
"tensorboard_log": null,
|
43 |
+
"lr_schedule": {
|
44 |
+
":type:": "<class 'function'>",
|
45 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
46 |
+
},
|
47 |
+
"_last_obs": {
|
48 |
+
":type:": "<class 'numpy.ndarray'>",
|
49 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAPo9Cr8WPzQ/Cw+bPonEEL+0BSa+0aa5PjhIdTyJozK/dRoGPtweBz9X0go/j9dOPgpy6b6PtJk+bQBIP9BtI7+IDY0/CsMLPt8AyD5c9p8+tvKnPx/ztL1HlAe/5lbRPrlJbj+f7OQ+lCzePi6vmL8/kx7AYikEQIsjDcC+B6C/WJBxvsevVj1cfrY7R9A1P1wT5L/yIlG7sleKv6xN3bx+HHE+Cfg8up08Xj9UuuU8NIOBv5yjxLr9qFk/Y+vSPJIvpb8Asks574xyv4Kwk7y5SW4/n+zkPpQs3j7fnFY/0FXYPVb3lb+kxoe8v60+v6H0Rb7611PAoKuKv03IJT2BIeS+p3tJQFErub7zbvI/BqTDP4XpHL+eeFg/gvbrvsb9Gr+qG5I/46blvrTaGcAobcO9gS52QLezyT9l+0E/p4OJv5YjD8CULN4+35xWP3cUkb4Opso/jwpcvwNRTr5KAF2/mWqAPgZq57ul4qS/qw56Pm1ALD/NVJU/zFMBv+Ebjr8ixIW/x08jP2qCIb9x/dQ+CgjivrqZUj9bqpk+s8OzPyLvZLke2oy/WT12vLlJbj+f7OQ+lCzePi6vmL+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
50 |
+
},
|
51 |
+
"_last_episode_starts": {
|
52 |
+
":type:": "<class 'numpy.ndarray'>",
|
53 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
54 |
+
},
|
55 |
+
"_last_original_obs": {
|
56 |
+
":type:": "<class 'numpy.ndarray'>",
|
57 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAABXv0K2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA4zeivQAAAADBA96/AAAAABzIob0AAAAAoGbqPwAAAABiXq+8AAAAAJSQ8j8AAAAA94XWPQAAAACMgvW/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAs6LYNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgH3i37sAAAAAp5XsvwAAAACruZo8AAAAAOir5D8AAAAAV6kLPgAAAABs//I/AAAAAMyKAr4AAAAAUQPtvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKHDMrcAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAcmpQ9AAAAAJsz378AAAAAljPQvQAAAACX4+I/AAAAAAFtCb4AAAAAP7TgPwAAAAALBRI+AAAAAIsa978AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAeko42AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAcNVdvQAAAADKQvy/AAAAAE/asTwAAAAA+tLuPwAAAACZjj09AAAAAOSY5T8AAAAAuHyAvQAAAAA/nNm/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
58 |
+
},
|
59 |
+
"_episode_num": 0,
|
60 |
+
"use_sde": true,
|
61 |
+
"sde_sample_freq": -1,
|
62 |
+
"_current_progress_remaining": 0.0,
|
63 |
+
"_stats_window_size": 100,
|
64 |
+
"ep_info_buffer": {
|
65 |
+
":type:": "<class 'collections.deque'>",
|
66 |
+
":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQIemgDzRQaeMAWyUTegDjAF0lEdAqtFaZSeiBXV9lChoBkdAfxKWTot+TmgHTegDaAhHQKrVlhky1u11fZQoaAZHQJTj7u+h4+toB03oA2gIR0Cq3FwUpNKzdX2UKGgGR0CWqCJ9RaX8aAdN6ANoCEdAqt5JY3eenXV9lChoBkdAlEk2mLtNSWgHTegDaAhHQKrfeTrVvuR1fZQoaAZHQJVSmQT238ZoB03oA2gIR0Cq5YHnMdLhdX2UKGgGR0CSDGdY4hllaAdN6ANoCEdAquuvX9R77nV9lChoBkdAlCqBFZxJd2gHTegDaAhHQKrtETot+Th1fZQoaAZHQJD7pJz1bq1oB03oA2gIR0Cq7eaRISUUdX2UKGgGR0CT6gP7N0NjaAdN6ANoCEdAqvIMPrfLtHV9lChoBkdAlYZGHgxagWgHTegDaAhHQKr4LDzAeq91fZQoaAZHQJQz7/CIk7hoB03oA2gIR0Cq+dvRRdhRdX2UKGgGR0CUb/LE1l5GaAdN6ANoCEdAqvr7kQwsXnV9lChoBkdAk7bPn4fwJGgHTegDaAhHQKsBQh11W811fZQoaAZHQJev+CPIXCVoB03oA2gIR0CrCA/KQq7RdX2UKGgGR0CVHpwQDmr9aAdN6ANoCEdAqwlbGtITXnV9lChoBkdAmnJsmfGuLmgHTegDaAhHQKsKJIXCTEB1fZQoaAZHQJbkkySFGodoB03oA2gIR0CrDlfRNRFadX2UKGgGR0CWzVuZCv5haAdN6ANoCEdAqxSbENvwVnV9lChoBkdAlnUemWMS9WgHTegDaAhHQKsV92r4nF51fZQoaAZHQJE41PRArx1oB03oA2gIR0CrFsedTYNBdX2UKGgGR0CV4eBkqc3EaAdN6ANoCEdAqxzhZB9kSXV9lChoBkdAkWtJB5X2d2gHTegDaAhHQKsk0DbJwKl1fZQoaAZHQJOP6zOX3QFoB03oA2gIR0CrJipqynk1dX2UKGgGR0CUFptPpIMCaAdN6ANoCEdAqyb3Lkjop3V9lChoBkdAl7I/pY9xImgHTegDaAhHQKsrH4M4LkV1fZQoaAZHQJT1BDBuXNVoB03oA2gIR0CrMVZvUBn0dX2UKGgGR0CU0Zq5LAYYaAdN6ANoCEdAqzKof4h2XHV9lChoBkdAl7EOkLx7RmgHTegDaAhHQKszdtBv73x1fZQoaAZHQJfeLEWIoE1oB03oA2gIR0CrOJszl90BdX2UKGgGR0CQIr6H0se5aAdN6ANoCEdAq0FrufEn9nV9lChoBkdAj8bnHvMKTmgHTegDaAhHQKtCw9Pk7wN1fZQoaAZHQJVdeVjZteloB03oA2gIR0CrQ5NpM6BAdX2UKGgGR0CUdcYtg8bJaAdN6ANoCEdAq0fKuGKyfXV9lChoBkdAkVVXzcynDWgHTegDaAhHQKtOIOLBKth1fZQoaAZHQJD6VH+ZPVNoB03oA2gIR0CrT4ZooNNKdX2UKGgGR0CRK/JokAxSaAdN6ANoCEdAq1Ba1E3KjnV9lChoBkdAkZn4ClrM1WgHTegDaAhHQKtU8OtGNJh1fZQoaAZHQJCcYiILw4NoB03oA2gIR0CrXpr+YMOPdX2UKGgGR0COAuqslsxgaAdN6ANoCEdAq1/6DsdDIHV9lChoBkdAkE1MZ1mrbWgHTegDaAhHQKtgwjnFHax1fZQoaAZHQIxRsjiXIENoB03oA2gIR0CrZPPWxyGSdX2UKGgGR0CQI9mpVCHAaAdN6ANoCEdAq2su+sYEXHV9lChoBkdAipw+l9BrvmgHTegDaAhHQKtsiVY6nzh1fZQoaAZHQI/RjASFoL5oB03oA2gIR0CrbVjQiRnwdX2UKGgGR0CT2MVQhwERaAdN6ANoCEdAq3Gsfs/puHV9lChoBkdAkyao9HMEBGgHTegDaAhHQKt6W1a4c3l1fZQoaAZHQJKIHpV0cOtoB03oA2gIR0CrfGnfuTibdX2UKGgGR0CR0pvhqCYkaAdN6ANoCEdAq31ocYIjW3V9lChoBkdAklC2DL8rJGgHTegDaAhHQKuBfwvxpcp1fZQoaAZHQJCnaDpTuOVoB03oA2gIR0Crh7d/SYw7dX2UKGgGR0CR+uAnUlRhaAdN6ANoCEdAq4kM4//vOXV9lChoBkdAkyZdIkJKJ2gHTegDaAhHQKuJ4AOJ+Dx1fZQoaAZHQJSTOt7rs0JoB03oA2gIR0CrjhOFQEZBdX2UKGgGR0CUYdpH7P6baAdN6ANoCEdAq5XBY1YQrnV9lChoBkdAklnYBRyfc2gHTegDaAhHQKuX1e0G/vh1fZQoaAZHQJMyzT6SDAdoB03oA2gIR0CrmQwPiDNAdX2UKGgGR0CWewGzKLbYaAdN6ANoCEdAq54bNY8uBnV9lChoBkdAkoej0Yj0MGgHTegDaAhHQKukclE7W/d1fZQoaAZHQJQFdjnV5KRoB03oA2gIR0CrpdRg7YChdX2UKGgGR0CUTh4XXRPXaAdN6ANoCEdAq6aogkka/HV9lChoBkdAkq9UQXhwVGgHTegDaAhHQKuq6XtShrZ1fZQoaAZHQJSTyIgvDgtoB03oA2gIR0Crsh/BFd9ldX2UKGgGR0CS8P6Mir1eaAdN6ANoCEdAq7QV89fTkXV9lChoBkdAkObCZa3ZwmgHTegDaAhHQKu1UJ1JUYN1fZQoaAZHQJAZJ6MR6GBoB03oA2gIR0CruxWPLgXNdX2UKGgGR0CRmmk5IYm+aAdN6ANoCEdAq8FTHwPRRnV9lChoBkdAk7rR+fAbhmgHTegDaAhHQKvCp04BFNN1fZQoaAZHQJKZ1MBZIQRoB03oA2gIR0Crw39P+GXYdX2UKGgGR0CRXgZpSJj2aAdN6ANoCEdAq8elwxWT5nV9lChoBkdAk70+fVZs9GgHTegDaAhHQKvN5bQkX1t1fZQoaAZHQIVNisGPgeloB03oA2gIR0Crz92MS9M9dX2UKGgGR0CSiXJbMX7+aAdN6ANoCEdAq9EEwg1WKnV9lChoBkdAkX+85fdAPmgHTegDaAhHQKvXX78ejmF1fZQoaAZHQJRRS0Sh8IBoB03oA2gIR0Cr3eQG4ZuRdX2UKGgGR0CQWtQ/oq0/aAdN6ANoCEdAq98yS9ugpXV9lChoBkdAkzPSX+l0o2gHTegDaAhHQKvf/CN0eU91fZQoaAZHQJG/M6GQCCBoB03oA2gIR0Cr5DHck+otdX2UKGgGR0CSv5ihnJ1aaAdN6ANoCEdAq+qCbBoEjnV9lChoBkdAlg9f8/D+BGgHTegDaAhHQKvr3HPu5SZ1fZQoaAZHQJaCU+mm+CdoB03oA2gIR0Cr7OKcmShbdX2UKGgGR0CVCPB8QZn+aAdN6ANoCEdAq/MaHTI/7nV9lChoBkdAkpMvTLGJemgHTegDaAhHQKv6fRO1v2p1fZQoaAZHQJIMUzoEB8xoB03oA2gIR0Cr+9gWi1zAdX2UKGgGR0CR26LrX18LaAdN6ANoCEdAq/ykWXTmXHV9lChoBkdAkgfH+ERJ3GgHTegDaAhHQKwA5Qfp2U11fZQoaAZHQJEGytzS1E5oB03oA2gIR0CsBy8QZn+RdX2UKGgGR0CSF5BP9DQaaAdN6ANoCEdArAiLm0VrRHV9lChoBkdAk9GorWiDd2gHTegDaAhHQKwJVz06HTJ1fZQoaAZHQJBAvEBKcutoB03oA2gIR0CsDuVuJk5IdX2UKGgGR0COTC+t8uzyaAdN6ANoCEdArBdL9uP3jHV9lChoBkdAkDmLlq8DjmgHTegDaAhHQKwYo/gR9PV1fZQoaAZHQJED9mg8KXxoB03oA2gIR0CsGXOrQw9JdX2UKGgGR0CQt/di2DxtaAdN6ANoCEdArB2iOHWSU3V9lChoBkdAi1ITgVGkOGgHTegDaAhHQKwj7ozN2Tx1fZQoaAZHQIdS06o2n89oB03oA2gIR0CsJUcKG+K1dX2UKGgGR0COJYZ4wAU+aAdN6ANoCEdArCYh8x9G7XV9lChoBkdAjX0vB7/n4mgHTegDaAhHQKwrA9K28Zl1fZQoaAZHQIwo/YFqzqtoB03oA2gIR0CsND1Iy0rtdX2UKGgGR0CLny1jy4FzaAdN6ANoCEdArDWXq1PWQXVlLg=="
|
67 |
+
},
|
68 |
+
"ep_success_buffer": {
|
69 |
+
":type:": "<class 'collections.deque'>",
|
70 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
71 |
+
},
|
72 |
+
"_n_updates": 62500,
|
73 |
+
"n_steps": 8,
|
74 |
+
"gamma": 0.99,
|
75 |
+
"gae_lambda": 0.9,
|
76 |
+
"ent_coef": 0.0,
|
77 |
+
"vf_coef": 0.4,
|
78 |
+
"max_grad_norm": 0.5,
|
79 |
+
"normalize_advantage": false,
|
80 |
+
"observation_space": {
|
81 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
82 |
+
":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
|
83 |
+
"dtype": "float32",
|
84 |
+
"_shape": [
|
85 |
+
28
|
86 |
+
],
|
87 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
88 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
|
89 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
90 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
91 |
+
"_np_random": null
|
92 |
+
},
|
93 |
+
"action_space": {
|
94 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
95 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
96 |
+
"dtype": "float32",
|
97 |
+
"_shape": [
|
98 |
+
8
|
99 |
+
],
|
100 |
+
"low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
|
101 |
+
"high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
|
102 |
+
"bounded_below": "[ True True True True True True True True]",
|
103 |
+
"bounded_above": "[ True True True True True True True True]",
|
104 |
+
"_np_random": null
|
105 |
+
},
|
106 |
+
"n_envs": 4
|
107 |
+
}
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5f2bc583ddb8074a319d8f5a92f4a31f6b9003acbc0bd6572329154133444ab7
|
3 |
+
size 56190
|
a2c-AntBulletEnv-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4fc327f4ce1a3e00b0553d294b0e9f19b5f0b594a128860d6a1e8c8b57a45470
|
3 |
+
size 56894
|
a2c-AntBulletEnv-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-AntBulletEnv-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.9.16
|
3 |
+
- Stable-Baselines3: 1.8.0
|
4 |
+
- PyTorch: 2.0.0+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f5be7a433a0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f5be7a43430>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f5be7a434c0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f5be7a43550>", "_build": "<function ActorCriticPolicy._build at 0x7f5be7a435e0>", "forward": "<function ActorCriticPolicy.forward at 0x7f5be7a43670>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f5be7a43700>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f5be7a43790>", "_predict": "<function ActorCriticPolicy._predict at 0x7f5be7a43820>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f5be7a438b0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f5be7a43940>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f5be7a439d0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f5be7a44340>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1681007083780536568, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAPo9Cr8WPzQ/Cw+bPonEEL+0BSa+0aa5PjhIdTyJozK/dRoGPtweBz9X0go/j9dOPgpy6b6PtJk+bQBIP9BtI7+IDY0/CsMLPt8AyD5c9p8+tvKnPx/ztL1HlAe/5lbRPrlJbj+f7OQ+lCzePi6vmL8/kx7AYikEQIsjDcC+B6C/WJBxvsevVj1cfrY7R9A1P1wT5L/yIlG7sleKv6xN3bx+HHE+Cfg8up08Xj9UuuU8NIOBv5yjxLr9qFk/Y+vSPJIvpb8Asks574xyv4Kwk7y5SW4/n+zkPpQs3j7fnFY/0FXYPVb3lb+kxoe8v60+v6H0Rb7611PAoKuKv03IJT2BIeS+p3tJQFErub7zbvI/BqTDP4XpHL+eeFg/gvbrvsb9Gr+qG5I/46blvrTaGcAobcO9gS52QLezyT9l+0E/p4OJv5YjD8CULN4+35xWP3cUkb4Opso/jwpcvwNRTr5KAF2/mWqAPgZq57ul4qS/qw56Pm1ALD/NVJU/zFMBv+Ebjr8ixIW/x08jP2qCIb9x/dQ+CgjivrqZUj9bqpk+s8OzPyLvZLke2oy/WT12vLlJbj+f7OQ+lCzePi6vmL+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAABXv0K2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA4zeivQAAAADBA96/AAAAABzIob0AAAAAoGbqPwAAAABiXq+8AAAAAJSQ8j8AAAAA94XWPQAAAACMgvW/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAs6LYNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgH3i37sAAAAAp5XsvwAAAACruZo8AAAAAOir5D8AAAAAV6kLPgAAAABs//I/AAAAAMyKAr4AAAAAUQPtvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKHDMrcAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAcmpQ9AAAAAJsz378AAAAAljPQvQAAAACX4+I/AAAAAAFtCb4AAAAAP7TgPwAAAAALBRI+AAAAAIsa978AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAeko42AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAcNVdvQAAAADKQvy/AAAAAE/asTwAAAAA+tLuPwAAAACZjj09AAAAAOSY5T8AAAAAuHyAvQAAAAA/nNm/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQIemgDzRQaeMAWyUTegDjAF0lEdAqtFaZSeiBXV9lChoBkdAfxKWTot+TmgHTegDaAhHQKrVlhky1u11fZQoaAZHQJTj7u+h4+toB03oA2gIR0Cq3FwUpNKzdX2UKGgGR0CWqCJ9RaX8aAdN6ANoCEdAqt5JY3eenXV9lChoBkdAlEk2mLtNSWgHTegDaAhHQKrfeTrVvuR1fZQoaAZHQJVSmQT238ZoB03oA2gIR0Cq5YHnMdLhdX2UKGgGR0CSDGdY4hllaAdN6ANoCEdAquuvX9R77nV9lChoBkdAlCqBFZxJd2gHTegDaAhHQKrtETot+Th1fZQoaAZHQJD7pJz1bq1oB03oA2gIR0Cq7eaRISUUdX2UKGgGR0CT6gP7N0NjaAdN6ANoCEdAqvIMPrfLtHV9lChoBkdAlYZGHgxagWgHTegDaAhHQKr4LDzAeq91fZQoaAZHQJQz7/CIk7hoB03oA2gIR0Cq+dvRRdhRdX2UKGgGR0CUb/LE1l5GaAdN6ANoCEdAqvr7kQwsXnV9lChoBkdAk7bPn4fwJGgHTegDaAhHQKsBQh11W811fZQoaAZHQJev+CPIXCVoB03oA2gIR0CrCA/KQq7RdX2UKGgGR0CVHpwQDmr9aAdN6ANoCEdAqwlbGtITXnV9lChoBkdAmnJsmfGuLmgHTegDaAhHQKsKJIXCTEB1fZQoaAZHQJbkkySFGodoB03oA2gIR0CrDlfRNRFadX2UKGgGR0CWzVuZCv5haAdN6ANoCEdAqxSbENvwVnV9lChoBkdAlnUemWMS9WgHTegDaAhHQKsV92r4nF51fZQoaAZHQJE41PRArx1oB03oA2gIR0CrFsedTYNBdX2UKGgGR0CV4eBkqc3EaAdN6ANoCEdAqxzhZB9kSXV9lChoBkdAkWtJB5X2d2gHTegDaAhHQKsk0DbJwKl1fZQoaAZHQJOP6zOX3QFoB03oA2gIR0CrJipqynk1dX2UKGgGR0CUFptPpIMCaAdN6ANoCEdAqyb3Lkjop3V9lChoBkdAl7I/pY9xImgHTegDaAhHQKsrH4M4LkV1fZQoaAZHQJT1BDBuXNVoB03oA2gIR0CrMVZvUBn0dX2UKGgGR0CU0Zq5LAYYaAdN6ANoCEdAqzKof4h2XHV9lChoBkdAl7EOkLx7RmgHTegDaAhHQKszdtBv73x1fZQoaAZHQJfeLEWIoE1oB03oA2gIR0CrOJszl90BdX2UKGgGR0CQIr6H0se5aAdN6ANoCEdAq0FrufEn9nV9lChoBkdAj8bnHvMKTmgHTegDaAhHQKtCw9Pk7wN1fZQoaAZHQJVdeVjZteloB03oA2gIR0CrQ5NpM6BAdX2UKGgGR0CUdcYtg8bJaAdN6ANoCEdAq0fKuGKyfXV9lChoBkdAkVVXzcynDWgHTegDaAhHQKtOIOLBKth1fZQoaAZHQJD6VH+ZPVNoB03oA2gIR0CrT4ZooNNKdX2UKGgGR0CRK/JokAxSaAdN6ANoCEdAq1Ba1E3KjnV9lChoBkdAkZn4ClrM1WgHTegDaAhHQKtU8OtGNJh1fZQoaAZHQJCcYiILw4NoB03oA2gIR0CrXpr+YMOPdX2UKGgGR0COAuqslsxgaAdN6ANoCEdAq1/6DsdDIHV9lChoBkdAkE1MZ1mrbWgHTegDaAhHQKtgwjnFHax1fZQoaAZHQIxRsjiXIENoB03oA2gIR0CrZPPWxyGSdX2UKGgGR0CQI9mpVCHAaAdN6ANoCEdAq2su+sYEXHV9lChoBkdAipw+l9BrvmgHTegDaAhHQKtsiVY6nzh1fZQoaAZHQI/RjASFoL5oB03oA2gIR0CrbVjQiRnwdX2UKGgGR0CT2MVQhwERaAdN6ANoCEdAq3Gsfs/puHV9lChoBkdAkyao9HMEBGgHTegDaAhHQKt6W1a4c3l1fZQoaAZHQJKIHpV0cOtoB03oA2gIR0CrfGnfuTibdX2UKGgGR0CR0pvhqCYkaAdN6ANoCEdAq31ocYIjW3V9lChoBkdAklC2DL8rJGgHTegDaAhHQKuBfwvxpcp1fZQoaAZHQJCnaDpTuOVoB03oA2gIR0Crh7d/SYw7dX2UKGgGR0CR+uAnUlRhaAdN6ANoCEdAq4kM4//vOXV9lChoBkdAkyZdIkJKJ2gHTegDaAhHQKuJ4AOJ+Dx1fZQoaAZHQJSTOt7rs0JoB03oA2gIR0CrjhOFQEZBdX2UKGgGR0CUYdpH7P6baAdN6ANoCEdAq5XBY1YQrnV9lChoBkdAklnYBRyfc2gHTegDaAhHQKuX1e0G/vh1fZQoaAZHQJMyzT6SDAdoB03oA2gIR0CrmQwPiDNAdX2UKGgGR0CWewGzKLbYaAdN6ANoCEdAq54bNY8uBnV9lChoBkdAkoej0Yj0MGgHTegDaAhHQKukclE7W/d1fZQoaAZHQJQFdjnV5KRoB03oA2gIR0CrpdRg7YChdX2UKGgGR0CUTh4XXRPXaAdN6ANoCEdAq6aogkka/HV9lChoBkdAkq9UQXhwVGgHTegDaAhHQKuq6XtShrZ1fZQoaAZHQJSTyIgvDgtoB03oA2gIR0Crsh/BFd9ldX2UKGgGR0CS8P6Mir1eaAdN6ANoCEdAq7QV89fTkXV9lChoBkdAkObCZa3ZwmgHTegDaAhHQKu1UJ1JUYN1fZQoaAZHQJAZJ6MR6GBoB03oA2gIR0CruxWPLgXNdX2UKGgGR0CRmmk5IYm+aAdN6ANoCEdAq8FTHwPRRnV9lChoBkdAk7rR+fAbhmgHTegDaAhHQKvCp04BFNN1fZQoaAZHQJKZ1MBZIQRoB03oA2gIR0Crw39P+GXYdX2UKGgGR0CRXgZpSJj2aAdN6ANoCEdAq8elwxWT5nV9lChoBkdAk70+fVZs9GgHTegDaAhHQKvN5bQkX1t1fZQoaAZHQIVNisGPgeloB03oA2gIR0Crz92MS9M9dX2UKGgGR0CSiXJbMX7+aAdN6ANoCEdAq9EEwg1WKnV9lChoBkdAkX+85fdAPmgHTegDaAhHQKvXX78ejmF1fZQoaAZHQJRRS0Sh8IBoB03oA2gIR0Cr3eQG4ZuRdX2UKGgGR0CQWtQ/oq0/aAdN6ANoCEdAq98yS9ugpXV9lChoBkdAkzPSX+l0o2gHTegDaAhHQKvf/CN0eU91fZQoaAZHQJG/M6GQCCBoB03oA2gIR0Cr5DHck+otdX2UKGgGR0CSv5ihnJ1aaAdN6ANoCEdAq+qCbBoEjnV9lChoBkdAlg9f8/D+BGgHTegDaAhHQKvr3HPu5SZ1fZQoaAZHQJaCU+mm+CdoB03oA2gIR0Cr7OKcmShbdX2UKGgGR0CVCPB8QZn+aAdN6ANoCEdAq/MaHTI/7nV9lChoBkdAkpMvTLGJemgHTegDaAhHQKv6fRO1v2p1fZQoaAZHQJIMUzoEB8xoB03oA2gIR0Cr+9gWi1zAdX2UKGgGR0CR26LrX18LaAdN6ANoCEdAq/ykWXTmXHV9lChoBkdAkgfH+ERJ3GgHTegDaAhHQKwA5Qfp2U11fZQoaAZHQJEGytzS1E5oB03oA2gIR0CsBy8QZn+RdX2UKGgGR0CSF5BP9DQaaAdN6ANoCEdArAiLm0VrRHV9lChoBkdAk9GorWiDd2gHTegDaAhHQKwJVz06HTJ1fZQoaAZHQJBAvEBKcutoB03oA2gIR0CsDuVuJk5IdX2UKGgGR0COTC+t8uzyaAdN6ANoCEdArBdL9uP3jHV9lChoBkdAkDmLlq8DjmgHTegDaAhHQKwYo/gR9PV1fZQoaAZHQJED9mg8KXxoB03oA2gIR0CsGXOrQw9JdX2UKGgGR0CQt/di2DxtaAdN6ANoCEdArB2iOHWSU3V9lChoBkdAi1ITgVGkOGgHTegDaAhHQKwj7ozN2Tx1fZQoaAZHQIdS06o2n89oB03oA2gIR0CsJUcKG+K1dX2UKGgGR0COJYZ4wAU+aAdN6ANoCEdArCYh8x9G7XV9lChoBkdAjX0vB7/n4mgHTegDaAhHQKwrA9K28Zl1fZQoaAZHQIwo/YFqzqtoB03oA2gIR0CsND1Iy0rtdX2UKGgGR0CLny1jy4FzaAdN6ANoCEdArDWXq1PWQXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
Binary file (927 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 1087.7214991292917, "std_reward": 88.11343243717522, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-04-09T03:25:47.484303"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4e8b42ed5bd8af309b596282857b11525b9c4b7feba7bf15ffdb48d561b37fa3
|
3 |
+
size 2170
|