File size: 12,789 Bytes
227aebb
 
 
 
6ed6311
 
227aebb
 
 
 
 
 
 
 
 
 
 
6ed6311
227aebb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
---
license: other
base_model: nvidia/mit-b2
tags:
- image-segmentation
- vision
- generated_from_trainer
model-index:
- name: model2
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# model2

This model is a fine-tuned version of [nvidia/mit-b2](https://huggingface.co/nvidia/mit-b2) on the giuseppemartino/isaid_sam_predicted dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2318
- Mean Iou: 0.2504
- Mean Accuracy: 0.3019
- Overall Accuracy: 0.4542
- Accuracy Background: nan
- Accuracy Ship: 0.6330
- Accuracy Small-vehicle: 0.4644
- Accuracy Tennis-court: 0.0280
- Accuracy Helicopter: nan
- Accuracy Basketball-court: 0.0
- Accuracy Ground-track-field: 0.6010
- Accuracy Swimming-pool: nan
- Accuracy Harbor: 0.4575
- Accuracy Soccer-ball-field: 0.7776
- Accuracy Plane: nan
- Accuracy Storage-tank: 0.0
- Accuracy Baseball-diamond: nan
- Accuracy Large-vehicle: 0.3594
- Accuracy Bridge: 0.0
- Accuracy Roundabout: 0.0
- Iou Background: 0.0
- Iou Ship: 0.5194
- Iou Small-vehicle: 0.4368
- Iou Tennis-court: 0.0280
- Iou Helicopter: nan
- Iou Basketball-court: 0.0
- Iou Ground-track-field: 0.5492
- Iou Swimming-pool: nan
- Iou Harbor: 0.3611
- Iou Soccer-ball-field: 0.7592
- Iou Plane: nan
- Iou Storage-tank: 0.0
- Iou Baseball-diamond: nan
- Iou Large-vehicle: 0.3508
- Iou Bridge: 0.0
- Iou Roundabout: 0.0

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 1337
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: polynomial
- training_steps: 1345

### Training results

| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Background | Accuracy Ship | Accuracy Small-vehicle | Accuracy Tennis-court | Accuracy Helicopter | Accuracy Basketball-court | Accuracy Ground-track-field | Accuracy Swimming-pool | Accuracy Harbor | Accuracy Soccer-ball-field | Accuracy Plane | Accuracy Storage-tank | Accuracy Baseball-diamond | Accuracy Large-vehicle | Accuracy Bridge | Accuracy Roundabout | Iou Background | Iou Ship | Iou Small-vehicle | Iou Tennis-court | Iou Helicopter | Iou Basketball-court | Iou Ground-track-field | Iou Swimming-pool | Iou Harbor | Iou Soccer-ball-field | Iou Plane | Iou Storage-tank | Iou Baseball-diamond | Iou Large-vehicle | Iou Bridge | Iou Roundabout |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:-------------------:|:-------------:|:----------------------:|:---------------------:|:-------------------:|:-------------------------:|:---------------------------:|:----------------------:|:---------------:|:--------------------------:|:--------------:|:---------------------:|:-------------------------:|:----------------------:|:---------------:|:-------------------:|:--------------:|:--------:|:-----------------:|:----------------:|:--------------:|:--------------------:|:----------------------:|:-----------------:|:----------:|:---------------------:|:---------:|:----------------:|:--------------------:|:-----------------:|:----------:|:--------------:|
| 1.1413        | 1.0   | 113  | 0.5054          | 0.0431   | 0.0841        | 0.0445           | nan                 | 0.0611        | 0.0179                 | 0.0079                | nan                 | 0.0                       | 0.0                         | nan                    | 0.8374          | 0.0                        | nan            | 0.0                   | nan                       | 0.0010                 | 0.0             | 0.0                 | 0.0            | 0.0592   | 0.0178            | 0.0079           | nan            | 0.0                  | 0.0                    | nan               | 0.4319     | 0.0                   | nan       | 0.0              | nan                  | 0.0010            | 0.0        | 0.0            |
| 0.326         | 2.0   | 226  | 0.3240          | 0.0756   | 0.1192        | 0.2144           | nan                 | 0.0433        | 0.1690                 | 0.0                   | nan                 | 0.0                       | 0.0                         | nan                    | 0.8062          | 0.0                        | nan            | 0.0                   | nan                       | 0.2926                 | 0.0             | 0.0                 | 0.0            | 0.0430   | 0.1614            | 0.0              | nan            | 0.0                  | 0.0                    | nan               | 0.4129     | 0.0                   | nan       | 0.0              | nan                  | 0.2904            | 0.0        | 0.0            |
| 0.1849        | 3.0   | 339  | 0.2807          | 0.1589   | 0.2164        | 0.3238           | nan                 | 0.3520        | 0.3125                 | 0.0                   | nan                 | 0.0                       | 0.3563                      | nan                    | 0.6252          | 0.4509                     | nan            | 0.0                   | nan                       | 0.2835                 | 0.0             | 0.0                 | 0.0            | 0.3236   | 0.2894            | 0.0              | nan            | 0.0                  | 0.3265                 | 0.0               | 0.3954     | 0.4506                | nan       | 0.0              | nan                  | 0.2807            | 0.0        | 0.0            |
| 0.1341        | 4.0   | 452  | 0.2694          | 0.1618   | 0.2309        | 0.3055           | nan                 | 0.2089        | 0.3628                 | 0.0188                | nan                 | 0.0                       | 0.4866                      | nan                    | 0.7552          | 0.5206                     | nan            | 0.0                   | nan                       | 0.1866                 | 0.0             | 0.0                 | 0.0            | 0.2004   | 0.3303            | 0.0188           | nan            | 0.0                  | 0.4268                 | 0.0               | 0.4221     | 0.5205                | nan       | 0.0              | nan                  | 0.1840            | 0.0        | 0.0            |
| 0.1282        | 5.0   | 565  | 0.2631          | 0.2057   | 0.2726        | 0.3396           | nan                 | 0.4061        | 0.3347                 | 0.0292                | nan                 | 0.0                       | 0.6126                      | nan                    | 0.6152          | 0.8252                     | nan            | 0.0                   | nan                       | 0.1751                 | 0.0             | 0.0                 | 0.0            | 0.3667   | 0.3169            | 0.0292           | nan            | 0.0                  | 0.4767                 | nan               | 0.3995     | 0.7049                | nan       | 0.0              | nan                  | 0.1745            | 0.0        | 0.0            |
| 0.1138        | 6.0   | 678  | 0.2418          | 0.1949   | 0.2558        | 0.3865           | nan                 | 0.2362        | 0.3709                 | 0.0122                | nan                 | 0.0                       | 0.6128                      | nan                    | 0.6627          | 0.5823                     | nan            | 0.0                   | nan                       | 0.3365                 | 0.0             | 0.0                 | 0.0            | 0.2249   | 0.3444            | 0.0122           | nan            | 0.0                  | 0.4625                 | nan               | 0.3921     | 0.5725                | nan       | 0.0              | nan                  | 0.3301            | 0.0        | 0.0            |
| 0.1049        | 7.0   | 791  | 0.2345          | 0.2013   | 0.2623        | 0.4725           | nan                 | 0.3186        | 0.4071                 | 0.0827                | nan                 | 0.0                       | 0.1697                      | nan                    | 0.7809          | 0.6140                     | nan            | 0.0                   | nan                       | 0.5118                 | 0.0             | 0.0                 | 0.0            | 0.2927   | 0.3851            | 0.0827           | nan            | 0.0                  | 0.1679                 | nan               | 0.4702     | 0.5212                | nan       | 0.0              | nan                  | 0.4961            | 0.0        | 0.0            |
| 0.0829        | 8.0   | 904  | 0.2351          | 0.2194   | 0.2818        | 0.4348           | nan                 | 0.1689        | 0.4289                 | 0.0980                | nan                 | 0.0                       | 0.5547                      | nan                    | 0.7050          | 0.7860                     | nan            | 0.0                   | nan                       | 0.3580                 | 0.0             | 0.0                 | 0.0            | 0.1619   | 0.4048            | 0.0980           | nan            | 0.0                  | 0.5205                 | nan               | 0.3967     | 0.7023                | nan       | 0.0              | nan                  | 0.3490            | 0.0        | 0.0            |
| 0.0922        | 9.0   | 1017 | 0.2350          | 0.2549   | 0.3103        | 0.5060           | nan                 | 0.4729        | 0.4726                 | 0.0572                | nan                 | 0.0                       | 0.5679                      | nan                    | 0.5794          | 0.7942                     | nan            | 0.0                   | nan                       | 0.4690                 | 0.0             | 0.0                 | 0.0            | 0.4143   | 0.4398            | 0.0572           | nan            | 0.0                  | 0.5293                 | nan               | 0.4010     | 0.7613                | nan       | 0.0              | nan                  | 0.4563            | 0.0        | 0.0            |
| 0.0717        | 10.0  | 1130 | 0.2399          | 0.2344   | 0.2871        | 0.4150           | nan                 | 0.4512        | 0.4155                 | 0.0169                | nan                 | 0.0                       | 0.5706                      | nan                    | 0.6279          | 0.7676                     | nan            | 0.0                   | nan                       | 0.3089                 | 0.0             | 0.0                 | 0.0            | 0.3995   | 0.3949            | 0.0169           | nan            | 0.0                  | 0.5351                 | nan               | 0.4246     | 0.7393                | nan       | 0.0              | nan                  | 0.3023            | 0.0        | 0.0            |
| 0.0787        | 11.0  | 1243 | 0.2228          | 0.2578   | 0.3105        | 0.4726           | nan                 | 0.6679        | 0.4378                 | 0.0666                | nan                 | 0.0                       | 0.5865                      | nan                    | 0.4684          | 0.7796                     | nan            | 0.0                   | nan                       | 0.4087                 | 0.0             | 0.0                 | 0.0            | 0.5359   | 0.4172            | 0.0666           | nan            | 0.0                  | 0.5456                 | nan               | 0.3785     | 0.7528                | nan       | 0.0              | nan                  | 0.3975            | 0.0        | 0.0            |
| 0.0787        | 11.9  | 1345 | 0.2318          | 0.2504   | 0.3019        | 0.4542           | nan                 | 0.6330        | 0.4644                 | 0.0280                | nan                 | 0.0                       | 0.6010                      | nan                    | 0.4575          | 0.7776                     | nan            | 0.0                   | nan                       | 0.3594                 | 0.0             | 0.0                 | 0.0            | 0.5194   | 0.4368            | 0.0280           | nan            | 0.0                  | 0.5492                 | nan               | 0.3611     | 0.7592                | nan       | 0.0              | nan                  | 0.3508            | 0.0        | 0.0            |


### Framework versions

- Transformers 4.35.0.dev0
- Pytorch 2.0.1+cu118
- Datasets 2.14.5
- Tokenizers 0.14.1