giuseppemartino commited on
Commit
cbd1b79
·
1 Parent(s): 837c8f4

Model save

Browse files
Files changed (1) hide show
  1. README.md +30 -22
README.md CHANGED
@@ -2,8 +2,6 @@
2
  license: other
3
  base_model: nvidia/mit-b0
4
  tags:
5
- - image-segmentation
6
- - vision
7
  - generated_from_trainer
8
  model-index:
9
  - name: model1
@@ -15,42 +13,42 @@ should probably proofread and complete it, then remove this comment. -->
15
 
16
  # model1
17
 
18
- This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the giuseppemartino/i-SAID_custom_or_1 dataset.
19
  It achieves the following results on the evaluation set:
20
- - Loss: 1.3138
21
- - Mean Iou: 0.0868
22
- - Mean Accuracy: 0.1217
23
- - Overall Accuracy: 0.2285
24
  - Accuracy Background: nan
25
- - Accuracy Ship: 0.1353
26
- - Accuracy Small-vehicle: 0.0001
27
- - Accuracy Tennis-court: 0.7306
28
  - Accuracy Helicopter: nan
29
  - Accuracy Basketball-court: 0.0
30
- - Accuracy Ground-track-field: 0.0
31
  - Accuracy Swimming-pool: 0.0
32
- - Accuracy Harbor: 0.5786
33
  - Accuracy Soccer-ball-field: 0.0
34
  - Accuracy Plane: 0.0
35
  - Accuracy Storage-tank: 0.0
36
  - Accuracy Baseball-diamond: 0.0
37
- - Accuracy Large-vehicle: 0.2588
38
  - Accuracy Bridge: 0.0
39
  - Accuracy Roundabout: 0.0
40
  - Iou Background: 0.0
41
- - Iou Ship: 0.0532
42
- - Iou Small-vehicle: 0.0001
43
- - Iou Tennis-court: 0.7062
44
  - Iou Helicopter: nan
45
  - Iou Basketball-court: 0.0
46
- - Iou Ground-track-field: 0.0
47
  - Iou Swimming-pool: 0.0
48
- - Iou Harbor: 0.2868
49
  - Iou Soccer-ball-field: 0.0
50
  - Iou Plane: 0.0
51
  - Iou Storage-tank: 0.0
52
  - Iou Baseball-diamond: 0.0
53
- - Iou Large-vehicle: 0.2563
54
  - Iou Bridge: 0.0
55
  - Iou Roundabout: 0.0
56
 
@@ -77,14 +75,24 @@ The following hyperparameters were used during training:
77
  - seed: 1337
78
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
79
  - lr_scheduler_type: polynomial
80
- - training_steps: 200
81
 
82
  ### Training results
83
 
84
  | Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Background | Accuracy Ship | Accuracy Small-vehicle | Accuracy Tennis-court | Accuracy Helicopter | Accuracy Basketball-court | Accuracy Ground-track-field | Accuracy Swimming-pool | Accuracy Harbor | Accuracy Soccer-ball-field | Accuracy Plane | Accuracy Storage-tank | Accuracy Baseball-diamond | Accuracy Large-vehicle | Accuracy Bridge | Accuracy Roundabout | Iou Background | Iou Ship | Iou Small-vehicle | Iou Tennis-court | Iou Helicopter | Iou Basketball-court | Iou Ground-track-field | Iou Swimming-pool | Iou Harbor | Iou Soccer-ball-field | Iou Plane | Iou Storage-tank | Iou Baseball-diamond | Iou Large-vehicle | Iou Bridge | Iou Roundabout |
85
  |:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:-------------------:|:-------------:|:----------------------:|:---------------------:|:-------------------:|:-------------------------:|:---------------------------:|:----------------------:|:---------------:|:--------------------------:|:--------------:|:---------------------:|:-------------------------:|:----------------------:|:---------------:|:-------------------:|:--------------:|:--------:|:-----------------:|:----------------:|:--------------:|:--------------------:|:----------------------:|:-----------------:|:----------:|:---------------------:|:---------:|:----------------:|:--------------------:|:-----------------:|:----------:|:--------------:|
86
- | 2.069 | 1.0 | 105 | 1.4975 | 0.0942 | 0.1496 | 0.2837 | nan | 0.4327 | 0.0002 | 0.8374 | nan | 0.0 | 0.0 | 0.0 | 0.4733 | 0.0002 | 0.0 | 0.0 | 0.0 | 0.3506 | 0.0 | 0.0 | 0.0 | 0.0794 | 0.0002 | 0.7660 | nan | 0.0 | 0.0 | 0.0 | 0.2213 | 0.0002 | 0.0 | 0.0 | 0.0 | 0.3460 | 0.0 | 0.0 |
87
- | 1.5141 | 1.9 | 200 | 1.3138 | 0.0868 | 0.1217 | 0.2285 | nan | 0.1353 | 0.0001 | 0.7306 | nan | 0.0 | 0.0 | 0.0 | 0.5786 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2588 | 0.0 | 0.0 | 0.0 | 0.0532 | 0.0001 | 0.7062 | nan | 0.0 | 0.0 | 0.0 | 0.2868 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2563 | 0.0 | 0.0 |
 
 
 
 
 
 
 
 
 
 
88
 
89
 
90
  ### Framework versions
 
2
  license: other
3
  base_model: nvidia/mit-b0
4
  tags:
 
 
5
  - generated_from_trainer
6
  model-index:
7
  - name: model1
 
13
 
14
  # model1
15
 
16
+ This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on an unknown dataset.
17
  It achieves the following results on the evaluation set:
18
+ - Loss: 0.2328
19
+ - Mean Iou: 0.1042
20
+ - Mean Accuracy: 0.1313
21
+ - Overall Accuracy: 0.2017
22
  - Accuracy Background: nan
23
+ - Accuracy Ship: 0.5956
24
+ - Accuracy Small-vehicle: 0.0476
25
+ - Accuracy Tennis-court: 0.5923
26
  - Accuracy Helicopter: nan
27
  - Accuracy Basketball-court: 0.0
28
+ - Accuracy Ground-track-field: 0.0098
29
  - Accuracy Swimming-pool: 0.0
30
+ - Accuracy Harbor: 0.3785
31
  - Accuracy Soccer-ball-field: 0.0
32
  - Accuracy Plane: 0.0
33
  - Accuracy Storage-tank: 0.0
34
  - Accuracy Baseball-diamond: 0.0
35
+ - Accuracy Large-vehicle: 0.2151
36
  - Accuracy Bridge: 0.0
37
  - Accuracy Roundabout: 0.0
38
  - Iou Background: 0.0
39
+ - Iou Ship: 0.4621
40
+ - Iou Small-vehicle: 0.0458
41
+ - Iou Tennis-court: 0.5337
42
  - Iou Helicopter: nan
43
  - Iou Basketball-court: 0.0
44
+ - Iou Ground-track-field: 0.0097
45
  - Iou Swimming-pool: 0.0
46
+ - Iou Harbor: 0.2993
47
  - Iou Soccer-ball-field: 0.0
48
  - Iou Plane: 0.0
49
  - Iou Storage-tank: 0.0
50
  - Iou Baseball-diamond: 0.0
51
+ - Iou Large-vehicle: 0.2124
52
  - Iou Bridge: 0.0
53
  - Iou Roundabout: 0.0
54
 
 
75
  - seed: 1337
76
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
77
  - lr_scheduler_type: polynomial
78
+ - training_steps: 1200
79
 
80
  ### Training results
81
 
82
  | Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Background | Accuracy Ship | Accuracy Small-vehicle | Accuracy Tennis-court | Accuracy Helicopter | Accuracy Basketball-court | Accuracy Ground-track-field | Accuracy Swimming-pool | Accuracy Harbor | Accuracy Soccer-ball-field | Accuracy Plane | Accuracy Storage-tank | Accuracy Baseball-diamond | Accuracy Large-vehicle | Accuracy Bridge | Accuracy Roundabout | Iou Background | Iou Ship | Iou Small-vehicle | Iou Tennis-court | Iou Helicopter | Iou Basketball-court | Iou Ground-track-field | Iou Swimming-pool | Iou Harbor | Iou Soccer-ball-field | Iou Plane | Iou Storage-tank | Iou Baseball-diamond | Iou Large-vehicle | Iou Bridge | Iou Roundabout |
83
  |:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:-------------------:|:-------------:|:----------------------:|:---------------------:|:-------------------:|:-------------------------:|:---------------------------:|:----------------------:|:---------------:|:--------------------------:|:--------------:|:---------------------:|:-------------------------:|:----------------------:|:---------------:|:-------------------:|:--------------:|:--------:|:-----------------:|:----------------:|:--------------:|:--------------------:|:----------------------:|:-----------------:|:----------:|:---------------------:|:---------:|:----------------:|:--------------------:|:-----------------:|:----------:|:--------------:|
84
+ | 1.9822 | 1.0 | 105 | 1.2892 | 0.0989 | 0.1440 | 0.2348 | nan | 0.4735 | 0.0 | 0.8169 | nan | 0.0 | 0.0 | 0.0 | 0.4963 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2296 | 0.0 | 0.0 | 0.0 | 0.2526 | 0.0 | 0.6683 | nan | 0.0 | 0.0 | 0.0 | 0.3355 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2269 | 0.0 | 0.0 |
85
+ | 1.2543 | 2.0 | 210 | 0.8623 | 0.0866 | 0.1170 | 0.2348 | nan | 0.1505 | 0.0 | 0.8538 | nan | 0.0 | 0.0 | 0.0 | 0.4055 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2275 | 0.0 | 0.0 | 0.0 | 0.0861 | 0.0 | 0.7363 | nan | 0.0 | 0.0 | 0.0 | 0.2519 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2248 | 0.0 | 0.0 |
86
+ | 0.8713 | 3.0 | 315 | 0.5622 | 0.0639 | 0.0761 | 0.1772 | nan | 0.0095 | 0.0 | 0.5983 | nan | 0.0 | 0.0 | 0.0 | 0.2609 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1963 | 0.0 | 0.0 | 0.0 | 0.0091 | 0.0 | 0.5714 | nan | 0.0 | 0.0 | 0.0 | 0.1821 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1953 | 0.0 | 0.0 |
87
+ | 0.5934 | 4.0 | 420 | 0.4178 | 0.0698 | 0.0859 | 0.2062 | nan | 0.0156 | 0.0 | 0.5852 | nan | 0.0 | 0.0 | 0.0 | 0.3260 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2754 | 0.0 | 0.0 | 0.0 | 0.0137 | 0.0 | 0.5481 | nan | 0.0 | 0.0 | 0.0 | 0.2149 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2706 | 0.0 | 0.0 |
88
+ | 0.4793 | 5.0 | 525 | 0.3240 | 0.0518 | 0.0630 | 0.1120 | nan | 0.1356 | 0.0005 | 0.4301 | nan | 0.0 | 0.0 | 0.0 | 0.2204 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0954 | 0.0 | 0.0 | 0.0 | 0.1177 | 0.0005 | 0.3972 | nan | 0.0 | 0.0 | 0.0 | 0.1673 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0951 | 0.0 | 0.0 |
89
+ | 0.3711 | 6.0 | 630 | 0.2836 | 0.0736 | 0.0930 | 0.1310 | nan | 0.4607 | 0.0002 | 0.5083 | nan | 0.0 | 0.0000 | 0.0 | 0.2322 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1002 | 0.0 | 0.0 | 0.0 | 0.3787 | 0.0002 | 0.4270 | nan | 0.0 | 0.0000 | 0.0 | 0.1978 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0998 | 0.0 | 0.0 |
90
+ | 0.347 | 7.0 | 735 | 0.2647 | 0.0988 | 0.1242 | 0.1963 | nan | 0.5288 | 0.0160 | 0.5769 | nan | 0.0 | 0.0001 | 0.0 | 0.3912 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2261 | 0.0 | 0.0 | 0.0 | 0.4020 | 0.0159 | 0.5461 | nan | 0.0 | 0.0001 | 0.0 | 0.2955 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2223 | 0.0 | 0.0 |
91
+ | 0.3004 | 8.0 | 840 | 0.2667 | 0.1135 | 0.1445 | 0.2693 | nan | 0.5257 | 0.0617 | 0.6456 | nan | 0.0 | 0.0006 | 0.0 | 0.4247 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3640 | 0.0 | 0.0 | 0.0 | 0.4010 | 0.0590 | 0.5757 | nan | 0.0 | 0.0006 | 0.0 | 0.3104 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3557 | 0.0 | 0.0 |
92
+ | 0.2622 | 9.0 | 945 | 0.2399 | 0.0856 | 0.1053 | 0.1591 | nan | 0.4918 | 0.0207 | 0.5720 | nan | 0.0 | 0.0001 | 0.0 | 0.2555 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1344 | 0.0 | 0.0 | 0.0 | 0.4010 | 0.0203 | 0.5078 | nan | 0.0 | 0.0001 | 0.0 | 0.2207 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1334 | 0.0 | 0.0 |
93
+ | 0.2489 | 10.0 | 1050 | 0.2446 | 0.1002 | 0.1257 | 0.1846 | nan | 0.5400 | 0.0391 | 0.5641 | nan | 0.0 | 0.0030 | 0.0 | 0.4262 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1880 | 0.0 | 0.0 | 0.0 | 0.4294 | 0.0379 | 0.5256 | nan | 0.0 | 0.0030 | 0.0 | 0.3212 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1860 | 0.0 | 0.0 |
94
+ | 0.242 | 11.0 | 1155 | 0.2346 | 0.0957 | 0.1198 | 0.1773 | nan | 0.5657 | 0.0261 | 0.5443 | nan | 0.0 | 0.0024 | 0.0 | 0.3529 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1854 | 0.0 | 0.0 | 0.0 | 0.4501 | 0.0257 | 0.4917 | nan | 0.0 | 0.0024 | 0.0 | 0.2829 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1834 | 0.0 | 0.0 |
95
+ | 0.2276 | 11.43 | 1200 | 0.2328 | 0.1042 | 0.1313 | 0.2017 | nan | 0.5956 | 0.0476 | 0.5923 | nan | 0.0 | 0.0098 | 0.0 | 0.3785 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2151 | 0.0 | 0.0 | 0.0 | 0.4621 | 0.0458 | 0.5337 | nan | 0.0 | 0.0097 | 0.0 | 0.2993 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2124 | 0.0 | 0.0 |
96
 
97
 
98
  ### Framework versions