File size: 54,181 Bytes
a352c78
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
import collections
import math
from argparse import ArgumentParser
import enum
from os.path import isfile
from typing import List, Tuple, Optional

import torch
import torch.nn as nn
import torch.nn.functional as F
from torch import Tensor

import metl.relative_attention as ra


def reset_parameters_helper(m: nn.Module):
    """ helper function for resetting model parameters, meant to be used with model.apply() """

    # the PyTorch MultiHeadAttention has a private function _reset_parameters()
    # other layers have a public reset_parameters()... go figure
    reset_parameters = getattr(m, "reset_parameters", None)
    reset_parameters_private = getattr(m, "_reset_parameters", None)

    if callable(reset_parameters) and callable(reset_parameters_private):
        raise RuntimeError("Module has both public and private methods for resetting parameters. "
                           "This is unexpected... probably should just call the public one.")

    if callable(reset_parameters):
        m.reset_parameters()

    if callable(reset_parameters_private):
        m._reset_parameters()


class SequentialWithArgs(nn.Sequential):
    def forward(self, x, **kwargs):
        for module in self:
            if isinstance(module, ra.RelativeTransformerEncoder) or isinstance(module, SequentialWithArgs):
                # for relative transformer encoders, pass in kwargs (pdb_fn)
                x = module(x, **kwargs)
            else:
                # for all modules, don't pass in kwargs
                x = module(x)
        return x


class PositionalEncoding(nn.Module):
    # originally from https://pytorch.org/tutorials/beginner/transformer_tutorial.html
    # they have since updated their implementation, but it is functionally equivalent
    def __init__(self, d_model, dropout=0.1, max_len=5000):
        super(PositionalEncoding, self).__init__()
        self.dropout = nn.Dropout(p=dropout)

        pe = torch.zeros(max_len, d_model)
        position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1)
        div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model))
        pe[:, 0::2] = torch.sin(position * div_term)
        pe[:, 1::2] = torch.cos(position * div_term)
        # note the implementation on Pytorch's website expects [seq_len, batch_size, embedding_dim]
        # however our data is in [batch_size, seq_len, embedding_dim] (i.e. batch_first)
        # fixed by changing pe = pe.unsqueeze(0).transpose(0, 1) to pe = pe.unsqueeze(0)
        # also down below, changing our indexing into the position encoding to reflect new dimensions
        # pe = pe.unsqueeze(0).transpose(0, 1)
        pe = pe.unsqueeze(0)
        self.register_buffer('pe', pe)

    def forward(self, x, **kwargs):
        # note the implementation on Pytorch's website expects [seq_len, batch_size, embedding_dim]
        # however our data is in [batch_size, seq_len, embedding_dim] (i.e. batch_first)
        # fixed by changing x = x + self.pe[:x.size(0)] to x = x + self.pe[:, :x.size(1), :]
        # x = x + self.pe[:x.size(0), :]
        x = x + self.pe[:, :x.size(1), :]
        return self.dropout(x)


class ScaledEmbedding(nn.Module):
    # https://pytorch.org/tutorials/beginner/translation_transformer.html
    # a helper function for embedding that scales by sqrt(d_model) in the forward()
    # makes it, so we don't have to do the scaling in the main AttnModel forward()

    # todo: be aware of embedding scaling factor
    # regarding the scaling factor, it's unclear exactly what the purpose is and whether it is needed
    # there are several theories on why it is used, and it shows up in all the transformer reference implementations
    # https://datascience.stackexchange.com/questions/87906/transformer-model-why-are-word-embeddings-scaled-before-adding-positional-encod
    #   1. Has something to do with weight sharing between the embedding and the decoder output
    #   2. Scales up the embeddings so the signal doesn't get overwhelmed when adding the absolute positional encoding
    #   3. It cancels out with the scaling factor in scaled dot product attention, and helps make the model robust
    #      to the choice of embedding_len
    #   4. It's not actually needed

    # Regarding #1, not really sure about this. In section 3.4 of attention is all you need,
    # that's where they state they multiply the embedding weights by sqrt(d_model), and the context is that they
    # are sharing the same weight matrix between the two embedding layers and the pre-softmax linear transformation.
    # there may be a reason that we want those weights scaled differently for the embedding layers vs. the linear
    # transformation. It might have something to do with the scale at which embedding weights are initialized
    # is more appropriate for the decoder linear transform vs how they are used in the attention function. Might have
    # something to do with computing the correct next-token probabilities. Overall, I'm really not sure about this,
    # but we aren't using a decoder anyway. So if this is the reason, then we don't need to perform the multiply.

    # Regarding #2, it seems like in one implementation of transformers (fairseq), the sinusoidal positional encoding
    # has a range of (-1.0, 1.0), but the word embedding are initialized with mean 0 and s.d embedding_dim ** -0.5,
    # which for embedding_dim=512, is a range closer to (-0.10, 0.10). Thus, the positional embedding would overwhelm
    # the word embeddings when they are added together. The scaling factor increases the signal of the word embeddings.
    # for embedding_dim=512, it scales word embeddings by 22, increasing range of the word embeddings to (-2.2, 2.2).
    # link to fairseq implementation, search for nn.init to see them do the initialization
    # https://fairseq.readthedocs.io/en/v0.7.1/_modules/fairseq/models/transformer.html
    #
    # For PyTorch, PyTorch initializes nn.Embedding with a standard normal distribution mean 0, variance 1: N(0,1).
    # this puts the range for the word embeddings around (-3, 3). the pytorch implementation for positional encoding
    # also has a range of (-1.0, 1.0). So already, these are much closer in scale, and it doesn't seem like we need
    # to increase the scale of the word embeddings. However, PyTorch example still multiply by the scaling factor
    # unclear whether this is just a carryover that is not actually needed, or if there is a different reason
    #
    # EDIT! I just realized that even though nn.Embedding defaults to a range of around (-3, 3), the PyTorch
    # transformer example actually re-initializes them using a uniform distribution in the range of (-0.1, 0.1)
    # that makes it very similar to the fairseq implementation, so the scaling factor that PyTorch uses actually would
    # bring the word embedding and positional encodings much closer in scale. So this could be the reason why pytorch
    # does it

    # Regarding #3, I don't think so. Firstly, does it actually cancel there? Secondly, the purpose of the scaling
    # factor in scaled dot product attention, according to attention is all you need, is to counteract dot products
    # that are very high in magnitude due to choice of large mbedding length (aka d_k). The problem with high magnitude
    # dot products is that potentially, the softmax is pushed into regions where it has extremely small gradients,
    # making learning difficult. If the scaling factor in the embedding was meant to counteract the scaling factor in
    # scaled dot product attention, then what would be the point of doing all that?

    # Regarding #4, I don't think the scaling will have any effects in practice, it's probably not needed

    # Overall, I think #2 is the most likely reason why this scaling is performed. In theory, I think
    # even if the scaling wasn't performed, the network might learn to up-scale the word embedding weights to increase
    # word embedding signal vs. the position signal on its own. Another question I have is why not just initialize
    # the embedding weights to have higher initial values? Why put it in the range (-0.1, 0.1)?
    #
    # The fact that most implementations have this scaling concerns me, makes me think I might be missing something.
    # For our purposes, we can train a couple models to see if scaling has any positive or negative effect.
    # Still need to think about potential effects of this scaling on relative position embeddings.

    def __init__(self, num_embeddings: int, embedding_dim: int, scale: bool):
        super(ScaledEmbedding, self).__init__()
        self.embedding = nn.Embedding(num_embeddings, embedding_dim)
        self.emb_size = embedding_dim
        self.embed_scale = math.sqrt(self.emb_size)

        self.scale = scale

        self.init_weights()

    def init_weights(self):
        # todo: not sure why PyTorch example initializes weights like this
        #   might have something to do with word embedding scaling factor (see above)
        #   could also just try the default weight initialization for nn.Embedding()
        init_range = 0.1
        self.embedding.weight.data.uniform_(-init_range, init_range)

    def forward(self, tokens: Tensor, **kwargs):
        if self.scale:
            return self.embedding(tokens.long()) * self.embed_scale
        else:
            return self.embedding(tokens.long())


class FCBlock(nn.Module):
    """ a fully connected block with options for batchnorm and dropout

        can extend in the future with option for different activation, etc """

    def __init__(self,

                 in_features: int,

                 num_hidden_nodes: int = 64,

                 use_batchnorm: bool = False,

                 use_layernorm: bool = False,

                 norm_before_activation: bool = False,

                 use_dropout: bool = False,

                 dropout_rate: float = 0.2,

                 activation: str = "relu"):

        super().__init__()

        if use_batchnorm and use_layernorm:
            raise ValueError("Only one of use_batchnorm or use_layernorm can be set to True")

        self.use_batchnorm = use_batchnorm
        self.use_dropout = use_dropout
        self.use_layernorm = use_layernorm
        self.norm_before_activation = norm_before_activation

        self.fc = nn.Linear(in_features=in_features, out_features=num_hidden_nodes)

        self.activation = get_activation_fn(activation, functional=False)

        if use_batchnorm:
            self.norm = nn.BatchNorm1d(num_hidden_nodes)

        if use_layernorm:
            self.norm = nn.LayerNorm(num_hidden_nodes)

        if use_dropout:
            self.dropout = nn.Dropout(p=dropout_rate)

    def forward(self, x, **kwargs):
        x = self.fc(x)

        # norm can be before or after activation, using flag
        if (self.use_batchnorm or self.use_layernorm) and self.norm_before_activation:
            x = self.norm(x)

        x = self.activation(x)

        # batchnorm being applied after activation, there is some discussion on this online
        if (self.use_batchnorm or self.use_layernorm) and not self.norm_before_activation:
            x = self.norm(x)

        # dropout being applied last
        if self.use_dropout:
            x = self.dropout(x)

        return x


class TaskSpecificPredictionLayers(nn.Module):
    """ Constructs num_tasks [dense(num_hidden_nodes)+relu+dense(1)] layers, each independently transforming input

        into a single output node. All num_tasks outputs are then concatenated into a single tensor. """

    # todo: the independent layers are run in sequence rather than in parallel, causing a slowdown that
    #   scales with the number of tasks. might be able to run in parallel by hacking convolution operation
    #   https://stackoverflow.com/questions/58374980/run-multiple-models-of-an-ensemble-in-parallel-with-pytorch
    #   https://github.com/pytorch/pytorch/issues/54147
    #   https://github.com/pytorch/pytorch/issues/36459

    def __init__(self,

                 num_tasks: int,

                 in_features: int,

                 num_hidden_nodes: int = 64,

                 use_batchnorm: bool = False,

                 use_dropout: bool = False,

                 dropout_rate: float = 0.2,

                 activation: str = "relu"):

        super().__init__()

        # each task-specific layer outputs a single node,
        # which can be combined with torch.cat into prediction vector
        self.task_specific_pred_layers = nn.ModuleList()
        for i in range(num_tasks):
            layers = [FCBlock(in_features=in_features,
                              num_hidden_nodes=num_hidden_nodes,
                              use_batchnorm=use_batchnorm,
                              use_dropout=use_dropout,
                              dropout_rate=dropout_rate,
                              activation=activation),
                      nn.Linear(in_features=num_hidden_nodes, out_features=1)]
            self.task_specific_pred_layers.append(nn.Sequential(*layers))

    def forward(self, x, **kwargs):
        # run each task-specific layer and concatenate outputs into a single output vector
        task_specific_outputs = []
        for layer in self.task_specific_pred_layers:
            task_specific_outputs.append(layer(x))

        output = torch.cat(task_specific_outputs, dim=1)
        return output


class GlobalAveragePooling(nn.Module):
    """ helper class for global average pooling """

    def __init__(self, dim=1):
        super().__init__()
        # our data is in [batch_size, sequence_length, embedding_length]
        # with global pooling, we want to pool over the sequence dimension (dim=1)
        self.dim = dim

    def forward(self, x, **kwargs):
        return torch.mean(x, dim=self.dim)


class CLSPooling(nn.Module):
    """ helper class for CLS token extraction """

    def __init__(self, cls_position=0):
        super().__init__()

        # the position of the CLS token in the sequence dimension
        # currently, the CLS token is in the first position, but may move it to the last position
        self.cls_position = cls_position

    def forward(self, x, **kwargs):
        # assumes input is in [batch_size, sequence_len, embedding_len]
        # thus sequence dimension is dimension 1
        return x[:, self.cls_position, :]


class TransformerEncoderWrapper(nn.TransformerEncoder):
    """ wrapper around PyTorch's TransformerEncoder that re-initializes layer parameters,

        so each transformer encoder layer has a different initialization """

    # todo: PyTorch is changing its transformer API... check up on and see if there is a better way
    def __init__(self, encoder_layer, num_layers, norm=None, reset_params=True):
        super().__init__(encoder_layer, num_layers, norm)
        if reset_params:
            self.apply(reset_parameters_helper)


class AttnModel(nn.Module):
    # https://pytorch.org/tutorials/beginner/transformer_tutorial.html

    @staticmethod
    def add_model_specific_args(parent_parser):
        parser = ArgumentParser(parents=[parent_parser], add_help=False)

        parser.add_argument('--pos_encoding', type=str, default="absolute",
                            choices=["none", "absolute", "relative", "relative_3D"],
                            help="what type of positional encoding to use")
        parser.add_argument('--pos_encoding_dropout', type=float, default=0.1,
                            help="out much dropout to use in positional encoding, for pos_encoding==absolute")
        parser.add_argument('--clipping_threshold', type=int, default=3,
                            help="clipping threshold for relative position embedding, for relative and relative_3D")
        parser.add_argument('--contact_threshold', type=int, default=7,
                            help="threshold, in angstroms, for contact map, for relative_3D")
        parser.add_argument('--embedding_len', type=int, default=128)
        parser.add_argument('--num_heads', type=int, default=2)
        parser.add_argument('--num_hidden', type=int, default=64)
        parser.add_argument('--num_enc_layers', type=int, default=2)
        parser.add_argument('--enc_layer_dropout', type=float, default=0.1)
        parser.add_argument('--use_final_encoder_norm', action="store_true", default=False)

        parser.add_argument('--global_average_pooling', action="store_true", default=False)
        parser.add_argument('--cls_pooling', action="store_true", default=False)

        parser.add_argument('--use_task_specific_layers', action="store_true", default=False,
                            help="exclusive with use_final_hidden_layer; takes priority over use_final_hidden_layer"
                                 " if both flags are set")
        parser.add_argument('--task_specific_hidden_nodes', type=int, default=64)
        parser.add_argument('--use_final_hidden_layer', action="store_true", default=False)
        parser.add_argument('--final_hidden_size', type=int, default=64)
        parser.add_argument('--use_final_hidden_layer_norm', action="store_true", default=False)
        parser.add_argument('--final_hidden_layer_norm_before_activation', action="store_true", default=False)
        parser.add_argument('--use_final_hidden_layer_dropout', action="store_true", default=False)
        parser.add_argument('--final_hidden_layer_dropout_rate', type=float, default=0.2)

        parser.add_argument('--activation', type=str, default="relu",
                            help="activation function used for all activations in the network")
        return parser

    def __init__(self,

                 # data args

                 num_tasks: int,

                 aa_seq_len: int,

                 num_tokens: int,

                 # transformer encoder model args

                 pos_encoding: str = "absolute",

                 pos_encoding_dropout: float = 0.1,

                 clipping_threshold: int = 3,

                 contact_threshold: int = 7,

                 pdb_fns: List[str] = None,

                 embedding_len: int = 64,

                 num_heads: int = 2,

                 num_hidden: int = 64,

                 num_enc_layers: int = 2,

                 enc_layer_dropout: float = 0.1,

                 use_final_encoder_norm: bool = False,

                 # pooling to fixed-length representation

                 global_average_pooling: bool = True,

                 cls_pooling: bool = False,

                 # prediction layers

                 use_task_specific_layers: bool = False,

                 task_specific_hidden_nodes: int = 64,

                 use_final_hidden_layer: bool = False,

                 final_hidden_size: int = 64,

                 use_final_hidden_layer_norm: bool = False,

                 final_hidden_layer_norm_before_activation: bool = False,

                 use_final_hidden_layer_dropout: bool = False,

                 final_hidden_layer_dropout_rate: float = 0.2,

                 # activation function

                 activation: str = "relu",

                 *args, **kwargs):

        super().__init__()

        # store embedding length for use in the forward function
        self.embedding_len = embedding_len
        self.aa_seq_len = aa_seq_len

        # build up layers
        layers = collections.OrderedDict()

        # amino acid embedding
        layers["embedder"] = ScaledEmbedding(num_embeddings=num_tokens, embedding_dim=embedding_len, scale=True)

        # absolute positional encoding
        if pos_encoding == "absolute":
            layers["pos_encoder"] = PositionalEncoding(embedding_len, dropout=pos_encoding_dropout, max_len=512)

        # transformer encoder layer for none or absolute positional encoding
        if pos_encoding in ["none", "absolute"]:
            encoder_layer = torch.nn.TransformerEncoderLayer(d_model=embedding_len,
                                                             nhead=num_heads,
                                                             dim_feedforward=num_hidden,
                                                             dropout=enc_layer_dropout,
                                                             activation=get_activation_fn(activation),
                                                             norm_first=True,
                                                             batch_first=True)

            # layer norm that is used after the transformer encoder layers
            # if the norm_first is False, this is *redundant* and not needed
            # but if norm_first is True, this can be used to normalize outputs from
            # the transformer encoder before inputting to the final fully connected layer
            encoder_norm = None
            if use_final_encoder_norm:
                encoder_norm = nn.LayerNorm(embedding_len)

            layers["tr_encoder"] = TransformerEncoderWrapper(encoder_layer=encoder_layer,
                                                             num_layers=num_enc_layers,
                                                             norm=encoder_norm)

        # transformer encoder layer for relative position encoding
        elif pos_encoding in ["relative", "relative_3D"]:
            relative_encoder_layer = ra.RelativeTransformerEncoderLayer(d_model=embedding_len,
                                                                        nhead=num_heads,
                                                                        pos_encoding=pos_encoding,
                                                                        clipping_threshold=clipping_threshold,
                                                                        contact_threshold=contact_threshold,
                                                                        pdb_fns=pdb_fns,
                                                                        dim_feedforward=num_hidden,
                                                                        dropout=enc_layer_dropout,
                                                                        activation=get_activation_fn(activation),
                                                                        norm_first=True)

            encoder_norm = None
            if use_final_encoder_norm:
                encoder_norm = nn.LayerNorm(embedding_len)

            layers["tr_encoder"] = ra.RelativeTransformerEncoder(encoder_layer=relative_encoder_layer,
                                                                 num_layers=num_enc_layers,
                                                                 norm=encoder_norm)

        # GLOBAL AVERAGE POOLING OR CLS TOKEN
        # set up the layers and output shapes (i.e. input shapes for the pred layer)
        if global_average_pooling:
            # pool over the sequence dimension
            layers["avg_pooling"] = GlobalAveragePooling(dim=1)
            pred_layer_input_features = embedding_len
        elif cls_pooling:
            layers["cls_pooling"] = CLSPooling(cls_position=0)
            pred_layer_input_features = embedding_len
        else:
            # no global average pooling or CLS token
            # sequence dimension is still there, just flattened
            layers["flatten"] = nn.Flatten()
            pred_layer_input_features = embedding_len * aa_seq_len

        # PREDICTION
        if use_task_specific_layers:
            # task specific prediction layers (nonlinear transform for each task)
            layers["prediction"] = TaskSpecificPredictionLayers(num_tasks=num_tasks,
                                                                in_features=pred_layer_input_features,
                                                                num_hidden_nodes=task_specific_hidden_nodes,
                                                                activation=activation)
        elif use_final_hidden_layer:
            # combined prediction linear (linear transform for each task)
            layers["fc1"] = FCBlock(in_features=pred_layer_input_features,
                                    num_hidden_nodes=final_hidden_size,
                                    use_batchnorm=False,
                                    use_layernorm=use_final_hidden_layer_norm,
                                    norm_before_activation=final_hidden_layer_norm_before_activation,
                                    use_dropout=use_final_hidden_layer_dropout,
                                    dropout_rate=final_hidden_layer_dropout_rate,
                                    activation=activation)

            layers["prediction"] = nn.Linear(in_features=final_hidden_size, out_features=num_tasks)
        else:
            layers["prediction"] = nn.Linear(in_features=pred_layer_input_features, out_features=num_tasks)

        # FINAL MODEL
        self.model = SequentialWithArgs(layers)

    def forward(self, x, **kwargs):
        return self.model(x, **kwargs)


class Transpose(nn.Module):
    """ helper layer to swap data from (batch, seq, channels) to (batch, channels, seq)

        used as a helper in the convolutional network which pytorch defaults to channels-first """

    def __init__(self, dims: Tuple[int, ...] = (1, 2)):
        super().__init__()
        self.dims = dims

    def forward(self, x, **kwargs):
        x = x.transpose(*self.dims).contiguous()
        return x


def conv1d_out_shape(seq_len, kernel_size, stride=1, pad=0, dilation=1):
    return (seq_len + (2 * pad) - (dilation * (kernel_size - 1)) - 1 // stride) + 1


class ConvBlock(nn.Module):
    def __init__(self,

                 in_channels: int,

                 out_channels: int,

                 kernel_size: int,

                 dilation: int = 1,

                 padding: str = "same",

                 use_batchnorm: bool = False,

                 use_layernorm: bool = False,

                 norm_before_activation: bool = False,

                 use_dropout: bool = False,

                 dropout_rate: float = 0.2,

                 activation: str = "relu"):

        super().__init__()

        if use_batchnorm and use_layernorm:
            raise ValueError("Only one of use_batchnorm or use_layernorm can be set to True")

        self.use_batchnorm = use_batchnorm
        self.use_layernorm = use_layernorm
        self.norm_before_activation = norm_before_activation
        self.use_dropout = use_dropout

        self.conv = nn.Conv1d(in_channels=in_channels,
                              out_channels=out_channels,
                              kernel_size=kernel_size,
                              padding=padding,
                              dilation=dilation)

        self.activation = get_activation_fn(activation, functional=False)

        if use_batchnorm:
            self.norm = nn.BatchNorm1d(out_channels)

        if use_layernorm:
            self.norm = nn.LayerNorm(out_channels)

        if use_dropout:
            self.dropout = nn.Dropout(p=dropout_rate)

    def forward(self, x, **kwargs):
        x = self.conv(x)

        # norm can be before or after activation, using flag
        if self.use_batchnorm and self.norm_before_activation:
            x = self.norm(x)
        elif self.use_layernorm and self.norm_before_activation:
            x = self.norm(x.transpose(1, 2)).transpose(1, 2)

        x = self.activation(x)

        # batchnorm being applied after activation, there is some discussion on this online
        if self.use_batchnorm and not self.norm_before_activation:
            x = self.norm(x)
        elif self.use_layernorm and not self.norm_before_activation:
            x = self.norm(x.transpose(1, 2)).transpose(1, 2)

        # dropout being applied after batchnorm, there is some discussion on this online
        if self.use_dropout:
            x = self.dropout(x)

        return x


class ConvModel2(nn.Module):
    """ convolutional source model that supports padded inputs, pooling, etc """

    @staticmethod
    def add_model_specific_args(parent_parser):
        parser = ArgumentParser(parents=[parent_parser], add_help=False)
        parser.add_argument('--use_embedding', action="store_true", default=False)
        parser.add_argument('--embedding_len', type=int, default=128)

        parser.add_argument('--num_conv_layers', type=int, default=1)
        parser.add_argument('--kernel_sizes', type=int, nargs="+", default=[7])
        parser.add_argument('--out_channels', type=int, nargs="+", default=[128])
        parser.add_argument('--dilations', type=int, nargs="+", default=[1])
        parser.add_argument('--padding', type=str, default="valid", choices=["valid", "same"])
        parser.add_argument('--use_conv_layer_norm', action="store_true", default=False)
        parser.add_argument('--conv_layer_norm_before_activation', action="store_true", default=False)
        parser.add_argument('--use_conv_layer_dropout', action="store_true", default=False)
        parser.add_argument('--conv_layer_dropout_rate', type=float, default=0.2)

        parser.add_argument('--global_average_pooling', action="store_true", default=False)

        parser.add_argument('--use_task_specific_layers', action="store_true", default=False)
        parser.add_argument('--task_specific_hidden_nodes', type=int, default=64)
        parser.add_argument('--use_final_hidden_layer', action="store_true", default=False)
        parser.add_argument('--final_hidden_size', type=int, default=64)
        parser.add_argument('--use_final_hidden_layer_norm', action="store_true", default=False)
        parser.add_argument('--final_hidden_layer_norm_before_activation', action="store_true", default=False)
        parser.add_argument('--use_final_hidden_layer_dropout', action="store_true", default=False)
        parser.add_argument('--final_hidden_layer_dropout_rate', type=float, default=0.2)

        parser.add_argument('--activation', type=str, default="relu",
                            help="activation function used for all activations in the network")

        return parser

    def __init__(self,

                 # data

                 num_tasks: int,

                 aa_seq_len: int,

                 aa_encoding_len: int,

                 num_tokens: int,

                 # convolutional model args

                 use_embedding: bool = False,

                 embedding_len: int = 64,

                 num_conv_layers: int = 1,

                 kernel_sizes: List[int] = (7,),

                 out_channels: List[int] = (128,),

                 dilations: List[int] = (1,),

                 padding: str = "valid",

                 use_conv_layer_norm: bool = False,

                 conv_layer_norm_before_activation: bool = False,

                 use_conv_layer_dropout: bool = False,

                 conv_layer_dropout_rate: float = 0.2,

                 # pooling

                 global_average_pooling: bool = True,

                 # prediction layers

                 use_task_specific_layers: bool = False,

                 task_specific_hidden_nodes: int = 64,

                 use_final_hidden_layer: bool = False,

                 final_hidden_size: int = 64,

                 use_final_hidden_layer_norm: bool = False,

                 final_hidden_layer_norm_before_activation: bool = False,

                 use_final_hidden_layer_dropout: bool = False,

                 final_hidden_layer_dropout_rate: float = 0.2,

                 # activation function

                 activation: str = "relu",

                 *args, **kwargs):

        super(ConvModel2, self).__init__()

        # build up the layers
        layers = collections.OrderedDict()

        # amino acid embedding
        if use_embedding:
            layers["embedder"] = ScaledEmbedding(num_embeddings=num_tokens, embedding_dim=embedding_len, scale=False)

        # transpose the input to match PyTorch's expected format
        layers["transpose"] = Transpose(dims=(1, 2))

        # build up the convolutional layers
        for layer_num in range(num_conv_layers):
            # determine the number of input channels for the first convolutional layer
            if layer_num == 0 and use_embedding:
                # for the first convolutional layer, the in_channels is the embedding_len
                in_channels = embedding_len
            elif layer_num == 0 and not use_embedding:
                # for the first convolutional layer, the in_channels is the aa_encoding_len
                in_channels = aa_encoding_len
            else:
                in_channels = out_channels[layer_num - 1]

            layers[f"conv{layer_num}"] = ConvBlock(in_channels=in_channels,
                                                   out_channels=out_channels[layer_num],
                                                   kernel_size=kernel_sizes[layer_num],
                                                   dilation=dilations[layer_num],
                                                   padding=padding,
                                                   use_batchnorm=False,
                                                   use_layernorm=use_conv_layer_norm,
                                                   norm_before_activation=conv_layer_norm_before_activation,
                                                   use_dropout=use_conv_layer_dropout,
                                                   dropout_rate=conv_layer_dropout_rate,
                                                   activation=activation)

        # handle transition from convolutional layers to fully connected layer
        # either use global average pooling or flatten
        # take into consideration whether we are using valid or same padding
        if global_average_pooling:
            # global average pooling (mean across the seq len dimension)
            # the seq len dimensions is the last dimension (batch_size, num_filters, seq_len)
            layers["avg_pooling"] = GlobalAveragePooling(dim=-1)
            # the prediction layers will take num_filters input features
            pred_layer_input_features = out_channels[-1]

        else:
            # no global average pooling. flatten instead.
            layers["flatten"] = nn.Flatten()
            # calculate the final output len of the convolutional layers
            # and the number of input features for the prediction layers
            if padding == "valid":
                # valid padding (aka no padding) results in shrinking length in progressive layers
                conv_out_len = conv1d_out_shape(aa_seq_len, kernel_size=kernel_sizes[0], dilation=dilations[0])
                for layer_num in range(1, num_conv_layers):
                    conv_out_len = conv1d_out_shape(conv_out_len,
                                                    kernel_size=kernel_sizes[layer_num],
                                                    dilation=dilations[layer_num])
                pred_layer_input_features = conv_out_len * out_channels[-1]
            else:
                # padding == "same"
                pred_layer_input_features = aa_seq_len * out_channels[-1]

        # prediction layer
        if use_task_specific_layers:
            layers["prediction"] = TaskSpecificPredictionLayers(num_tasks=num_tasks,
                                                                in_features=pred_layer_input_features,
                                                                num_hidden_nodes=task_specific_hidden_nodes,
                                                                activation=activation)

        # final hidden layer (with potential additional dropout)
        elif use_final_hidden_layer:
            layers["fc1"] = FCBlock(in_features=pred_layer_input_features,
                                    num_hidden_nodes=final_hidden_size,
                                    use_batchnorm=False,
                                    use_layernorm=use_final_hidden_layer_norm,
                                    norm_before_activation=final_hidden_layer_norm_before_activation,
                                    use_dropout=use_final_hidden_layer_dropout,
                                    dropout_rate=final_hidden_layer_dropout_rate,
                                    activation=activation)
            layers["prediction"] = nn.Linear(in_features=final_hidden_size, out_features=num_tasks)

        else:
            layers["prediction"] = nn.Linear(in_features=pred_layer_input_features, out_features=num_tasks)

        self.model = nn.Sequential(layers)

    def forward(self, x, **kwargs):
        output = self.model(x)
        return output


class ConvModel(nn.Module):
    """ a convolutional network with convolutional layers followed by a fully connected layer """

    @staticmethod
    def add_model_specific_args(parent_parser):
        parser = ArgumentParser(parents=[parent_parser], add_help=False)
        parser.add_argument('--num_conv_layers', type=int, default=1)
        parser.add_argument('--kernel_sizes', type=int, nargs="+", default=[7])
        parser.add_argument('--out_channels', type=int, nargs="+", default=[128])
        parser.add_argument('--padding', type=str, default="valid", choices=["valid", "same"])
        parser.add_argument('--use_final_hidden_layer', action="store_true",
                            help="whether to use a final hidden layer")
        parser.add_argument('--final_hidden_size', type=int, default=128,
                            help="number of nodes in the final hidden layer")
        parser.add_argument('--use_dropout', action="store_true",
                            help="whether to use dropout in the final hidden layer")
        parser.add_argument('--dropout_rate', type=float, default=0.2,
                            help="dropout rate in the final hidden layer")
        parser.add_argument('--use_task_specific_layers', action="store_true", default=False)
        parser.add_argument('--task_specific_hidden_nodes', type=int, default=64)
        return parser

    def __init__(self,

                 num_tasks: int,

                 aa_seq_len: int,

                 aa_encoding_len: int,

                 num_conv_layers: int = 1,

                 kernel_sizes: List[int] = (7,),

                 out_channels: List[int] = (128,),

                 padding: str = "valid",

                 use_final_hidden_layer: bool = True,

                 final_hidden_size: int = 128,

                 use_dropout: bool = False,

                 dropout_rate: float = 0.2,

                 use_task_specific_layers: bool = False,

                 task_specific_hidden_nodes: int = 64,

                 *args, **kwargs):

        super(ConvModel, self).__init__()

        # set up the model as a Sequential block (less to do in forward())
        layers = collections.OrderedDict()

        layers["transpose"] = Transpose(dims=(1, 2))

        for layer_num in range(num_conv_layers):
            # for the first convolutional layer, the in_channels is the feature_len
            in_channels = aa_encoding_len if layer_num == 0 else out_channels[layer_num - 1]

            layers["conv{}".format(layer_num)] = nn.Sequential(
                nn.Conv1d(in_channels=in_channels,
                          out_channels=out_channels[layer_num],
                          kernel_size=kernel_sizes[layer_num],
                          padding=padding),
                nn.ReLU()
            )

        layers["flatten"] = nn.Flatten()

        # calculate the final output len of the convolutional layers
        # and the number of input features for the prediction layers
        if padding == "valid":
            # valid padding (aka no padding) results in shrinking length in progressive layers
            conv_out_len = conv1d_out_shape(aa_seq_len, kernel_size=kernel_sizes[0])
            for layer_num in range(1, num_conv_layers):
                conv_out_len = conv1d_out_shape(conv_out_len, kernel_size=kernel_sizes[layer_num])
            next_dim = conv_out_len * out_channels[-1]
        elif padding == "same":
            next_dim = aa_seq_len * out_channels[-1]
        else:
            raise ValueError("unexpected value for padding: {}".format(padding))

        # final hidden layer (with potential additional dropout)
        if use_final_hidden_layer:
            layers["fc1"] = FCBlock(in_features=next_dim,
                                    num_hidden_nodes=final_hidden_size,
                                    use_batchnorm=False,
                                    use_dropout=use_dropout,
                                    dropout_rate=dropout_rate)
            next_dim = final_hidden_size

        # final prediction layer
        # either task specific nonlinear layers or a single linear layer
        if use_task_specific_layers:
            layers["prediction"] = TaskSpecificPredictionLayers(num_tasks=num_tasks,
                                                                in_features=next_dim,
                                                                num_hidden_nodes=task_specific_hidden_nodes)
        else:
            layers["prediction"] = nn.Linear(in_features=next_dim, out_features=num_tasks)

        self.model = nn.Sequential(layers)

    def forward(self, x, **kwargs):
        output = self.model(x)
        return output


class FCModel(nn.Module):

    @staticmethod
    def add_model_specific_args(parent_parser):
        parser = ArgumentParser(parents=[parent_parser], add_help=False)
        parser.add_argument('--num_layers', type=int, default=1)
        parser.add_argument('--num_hidden', nargs="+", type=int, default=[128])
        parser.add_argument('--use_batchnorm', action="store_true", default=False)
        parser.add_argument('--use_layernorm', action="store_true", default=False)
        parser.add_argument('--norm_before_activation', action="store_true", default=False)
        parser.add_argument('--use_dropout', action="store_true", default=False)
        parser.add_argument('--dropout_rate', type=float, default=0.2)
        return parser

    def __init__(self,

                 num_tasks: int,

                 seq_encoding_len: int,

                 num_layers: int = 1,

                 num_hidden: List[int] = (128,),

                 use_batchnorm: bool = False,

                 use_layernorm: bool = False,

                 norm_before_activation: bool = False,

                 use_dropout: bool = False,

                 dropout_rate: float = 0.2,

                 activation: str = "relu",

                 *args, **kwargs):
        super().__init__()

        # set up the model as a Sequential block (less to do in forward())
        layers = collections.OrderedDict()

        # flatten inputs as this is all fully connected
        layers["flatten"] = nn.Flatten()

        # build up the variable number of hidden layers (fully connected + ReLU + dropout (if set))
        for layer_num in range(num_layers):
            # for the first layer (layer_num == 0), in_features is determined by given input
            # for subsequent layers, the in_features is the previous layer's num_hidden
            in_features = seq_encoding_len if layer_num == 0 else num_hidden[layer_num - 1]

            layers["fc{}".format(layer_num)] = FCBlock(in_features=in_features,
                                                       num_hidden_nodes=num_hidden[layer_num],
                                                       use_batchnorm=use_batchnorm,
                                                       use_layernorm=use_layernorm,
                                                       norm_before_activation=norm_before_activation,
                                                       use_dropout=use_dropout,
                                                       dropout_rate=dropout_rate,
                                                       activation=activation)

        # finally, the linear output layer
        in_features = num_hidden[-1] if num_layers > 0 else seq_encoding_len
        layers["output"] = nn.Linear(in_features=in_features, out_features=num_tasks)

        self.model = nn.Sequential(layers)

    def forward(self, x, **kwargs):
        output = self.model(x)
        return output


class LRModel(nn.Module):
    """ a simple linear model """

    def __init__(self, num_tasks, seq_encoding_len, *args, **kwargs):
        super().__init__()

        self.model = nn.Sequential(
            nn.Flatten(),
            nn.Linear(seq_encoding_len, out_features=num_tasks))

    def forward(self, x, **kwargs):
        output = self.model(x)
        return output


class TransferModel(nn.Module):
    """ transfer learning model """

    @staticmethod
    def add_model_specific_args(parent_parser):

        def none_or_int(value: str):
            return None if value.lower() == "none" else int(value)

        p = ArgumentParser(parents=[parent_parser], add_help=False)

        # for model set up
        p.add_argument('--pretrained_ckpt_path', type=str, default=None)

        # where to cut off the backbone
        p.add_argument("--backbone_cutoff", type=none_or_int, default=-1,
                       help="where to cut off the backbone. can be a negative int, indexing back from "
                            "pretrained_model.model.model. a value of -1 would chop off the backbone prediction head. "
                            "a value of -2 chops the prediction head and FC layer. a value of -3 chops"
                            "the above, as well as the global average pooling layer. all depends on architecture.")

        p.add_argument("--pred_layer_input_features", type=int, default=None,
                       help="if None, number of features will be determined based on backbone_cutoff and standard "
                            "architecture. otherwise, specify the number of input features for the prediction layer")

        # top net args
        p.add_argument("--top_net_type", type=str, default="linear", choices=["linear", "nonlinear", "sklearn"])
        p.add_argument("--top_net_hidden_nodes", type=int, default=256)
        p.add_argument("--top_net_use_batchnorm", action="store_true")
        p.add_argument("--top_net_use_dropout", action="store_true")
        p.add_argument("--top_net_dropout_rate", type=float, default=0.1)

        return p

    def __init__(self,

                 # pretrained model

                 pretrained_ckpt_path: Optional[str] = None,

                 pretrained_hparams: Optional[dict] = None,

                 backbone_cutoff: Optional[int] = -1,

                 # top net

                 pred_layer_input_features: Optional[int] = None,

                 top_net_type: str = "linear",

                 top_net_hidden_nodes: int = 256,

                 top_net_use_batchnorm: bool = False,

                 top_net_use_dropout: bool = False,

                 top_net_dropout_rate: float = 0.1,

                 *args, **kwargs):

        super().__init__()

        # error checking: if pretrained_ckpt_path is None, then pretrained_hparams must be specified
        if pretrained_ckpt_path is None and pretrained_hparams is None:
            raise ValueError("Either pretrained_ckpt_path or pretrained_hparams must be specified")

        # note: pdb_fns is loaded from transfer model arguments rather than original source model hparams
        # if pdb_fns is specified as a kwarg, pass it on for structure-based RPE
        # otherwise, can just set pdb_fns to None, and structure-based RPE will handle new PDBs on the fly
        pdb_fns = kwargs["pdb_fns"] if "pdb_fns" in kwargs else None

        # generate a fresh backbone using pretrained_hparams if specified
        # otherwise load the backbone from the pretrained checkpoint
        # we prioritize pretrained_hparams over pretrained_ckpt_path because
        # pretrained_hparams will only really be specified if we are loading from a DMSTask checkpoint
        # meaning the TransferModel has already been fine-tuned on DMS data, and we are likely loading
        # weights from that finetuning (including weights for the backbone)
        # whereas if pretrained_hparams is not specified but pretrained_ckpt_path is, then we are
        # likely finetuning the TransferModel for the first time, and we need the pretrained weights for the
        # backbone from the RosettaTask checkpoint
        if pretrained_hparams is not None:
            # pretrained_hparams will only be specified if we are loading from a DMSTask checkpoint
            pretrained_hparams["pdb_fns"] = pdb_fns
            pretrained_model = Model[pretrained_hparams["model_name"]].cls(**pretrained_hparams)
            self.pretrained_hparams = pretrained_hparams
        else:
            # not supported in metl-pretrained
            raise NotImplementedError("Loading pretrained weights from RosettaTask checkpoint not supported")

        layers = collections.OrderedDict()

        # set the backbone to all layers except the last layer (the pre-trained prediction layer)
        if backbone_cutoff is None:
            layers["backbone"] = SequentialWithArgs(*list(pretrained_model.model.children()))
        else:
            layers["backbone"] = SequentialWithArgs(*list(pretrained_model.model.children())[0:backbone_cutoff])

        if top_net_type == "sklearn":
            # sklearn top not doesn't require any more layers, just return model for the repr layer
            self.model = SequentialWithArgs(layers)
            return

        # figure out dimensions of input into the prediction layer
        if pred_layer_input_features is None:
            # todo: can make this more robust by checking if the pretrained_mode.hparams for use_final_hidden_layer,
            #   global_average_pooling, etc. then can determine what the layer will be based on backbone_cutoff.
            # currently, assumes that pretrained_model uses global average pooling and a final_hidden_layer
            if backbone_cutoff is None:
                # no backbone cutoff... use the full network (including tasks) as the backbone
                pred_layer_input_features = self.pretrained_hparams["num_tasks"]
            elif backbone_cutoff == -1:
                pred_layer_input_features = self.pretrained_hparams["final_hidden_size"]
            elif backbone_cutoff == -2:
                pred_layer_input_features = self.pretrained_hparams["embedding_len"]
            elif backbone_cutoff == -3:
                pred_layer_input_features = self.pretrained_hparams["embedding_len"] * kwargs["aa_seq_len"]
            else:
                raise ValueError("can't automatically determine pred_layer_input_features for given backbone_cutoff")

        layers["flatten"] = nn.Flatten(start_dim=1)

        # create a new prediction layer on top of the backbone
        if top_net_type == "linear":
            # linear layer for prediction
            layers["prediction"] = nn.Linear(in_features=pred_layer_input_features, out_features=1)
        elif top_net_type == "nonlinear":
            # fully connected with hidden layer
            fc_block = FCBlock(in_features=pred_layer_input_features,
                               num_hidden_nodes=top_net_hidden_nodes,
                               use_batchnorm=top_net_use_batchnorm,
                               use_dropout=top_net_use_dropout,
                               dropout_rate=top_net_dropout_rate)

            pred_layer = nn.Linear(in_features=top_net_hidden_nodes, out_features=1)

            layers["prediction"] = SequentialWithArgs(fc_block, pred_layer)
        else:
            raise ValueError("Unexpected type of top net layer: {}".format(top_net_type))

        self.model = SequentialWithArgs(layers)

    def forward(self, x, **kwargs):
        return self.model(x, **kwargs)


def get_activation_fn(activation, functional=True):
    if activation == "relu":
        return F.relu if functional else nn.ReLU()
    elif activation == "gelu":
        return F.gelu if functional else nn.GELU()
    elif activation == "silo" or activation == "swish":
        return F.silu if functional else nn.SiLU()
    elif activation == "leaky_relu" or activation == "lrelu":
        return F.leaky_relu if functional else nn.LeakyReLU()
    else:
        raise RuntimeError("unknown activation: {}".format(activation))


class Model(enum.Enum):
    def __new__(cls, *args, **kwds):
        value = len(cls.__members__) + 1
        obj = object.__new__(cls)
        obj._value_ = value
        return obj

    def __init__(self, cls, transfer_model):
        self.cls = cls
        self.transfer_model = transfer_model

    linear = LRModel, False
    fully_connected = FCModel, False
    cnn = ConvModel, False
    cnn2 = ConvModel2, False
    transformer_encoder = AttnModel, False
    transfer_model = TransferModel, True


def main():
    pass


if __name__ == "__main__":
    main()