File size: 32,152 Bytes
e8373a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
---
language:
- en
license: apache-2.0
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:6300
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
base_model: BAAI/bge-base-en-v1.5
widget:
- source_sentence: The net cash provided by operating activities during fiscal 2023
    was related to net income of $208 million, adjusted for non-cash items including
    $3.8 billion of depreciation and amortization and $3.3 billion related to stock-based
    compensation expense.
  sentences:
  - What are the three key aspects encompassed in a company's internal control over
    financial reporting?
  - What was the net cash provided by operating activities for fiscal 2023?
  - What are the two operating segments of NVIDIA as mentioned in the text?
- source_sentence: Intellectual Property  To establish and protect our proprietary
    rights, we rely on a combination of patents, trademarks, copyrights, trade secrets,
    including know-how, license agreements, confidentiality procedures, non-disclosure
    agreements with third parties, employee disclosure and invention assignment agreements,
    and other contractual rights.
  sentences:
  - What condition does Synthroid treat and what type of drug is it formulated as?
  - What legal tools does the company use to protect its intellectual property?
  - In which item and part of a financial document would you find information on legal
    proceedings?
- source_sentence: Cost of revenues is comprised of TAC and other costs of revenues.
    TAC includes amounts paid to our distribution partners and Google Network partners
    primarily for ads displayed on their properties. Other cost of revenues includes
    compensation expense related to our data centers and operations, content acquisition
    costs, depreciation expense related to technical infrastructure, and inventory
    and other costs related to devices we sell.
  sentences:
  - What is included in the cost of revenues for Google?
  - What was the total net uncertain tax positions as of December 31, 2023?
  - What portion of the restructuring charges incurred in fiscal 2023 are expected
    to be settled with cash?
- source_sentence: Comprehensive income (loss) | $ | (362) | | $ | 1,868 | $ | 4,775
  sentences:
  - What measures does the company take to ensure product quality?
  - How many pages does Item 8, which includes Financial Statements and Supplementary
    Data, span?
  - What was the total comprehensive income for Airbnb, Inc. in 2023?
- source_sentence: We make our branded beverage products available to consumers throughout
    the world through our network of independent bottling partners, distributors,
    wholesalers and retailers as well as our consolidated bottling and distribution
    operations.
  sentences:
  - How does The Coca-Cola Company distribute its beverage products globally?
  - What accounting method is predominantly used to determine inventory costs in the
    Company's supermarket divisions before LIFO adjustments?
  - How are the company's inventories valued?
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
model-index:
- name: BGE base Financial Matryoshka
  results:
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 768
      type: dim_768
    metrics:
    - type: cosine_accuracy@1
      value: 0.7142857142857143
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.8485714285714285
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.8814285714285715
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.9171428571428571
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.7142857142857143
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.28285714285714286
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.17628571428571424
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.09171428571428569
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.7142857142857143
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.8485714285714285
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.8814285714285715
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.9171428571428571
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.8195547708074192
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.7879784580498865
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.791495828863575
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 512
      type: dim_512
    metrics:
    - type: cosine_accuracy@1
      value: 0.7157142857142857
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.8457142857142858
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.8814285714285715
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.92
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.7157142857142857
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.2819047619047619
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.17628571428571424
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.09199999999999998
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.7157142857142857
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.8457142857142858
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.8814285714285715
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.92
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.8200080507124731
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.7878299319727888
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.7911645774121049
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 256
      type: dim_256
    metrics:
    - type: cosine_accuracy@1
      value: 0.6914285714285714
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.8471428571428572
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.88
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.91
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.6914285714285714
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.28238095238095234
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.176
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.09099999999999998
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.6914285714285714
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.8471428571428572
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.88
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.91
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.8087696033003087
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.7755997732426303
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.7799208675704249
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 128
      type: dim_128
    metrics:
    - type: cosine_accuracy@1
      value: 0.6914285714285714
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.83
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.87
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.9071428571428571
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.6914285714285714
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.27666666666666667
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.174
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.0907142857142857
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.6914285714285714
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.83
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.87
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.9071428571428571
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.8024684596621504
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.7686116780045347
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.7729258054107728
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 64
      type: dim_64
    metrics:
    - type: cosine_accuracy@1
      value: 0.6585714285714286
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.8028571428571428
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.8357142857142857
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.8828571428571429
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.6585714285714286
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.2676190476190476
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.1671428571428571
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.08828571428571429
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.6585714285714286
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.8028571428571428
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.8357142857142857
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.8828571428571429
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.7735846622621076
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.738378684807256
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.7433829659777168
      name: Cosine Map@100
---

# BGE base Financial Matryoshka

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) on the json dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) <!-- at revision a5beb1e3e68b9ab74eb54cfd186867f64f240e1a -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
    - json
- **Language:** en
- **License:** apache-2.0

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("girijesh/bge-base-financial-matryoshka")
# Run inference
sentences = [
    'We make our branded beverage products available to consumers throughout the world through our network of independent bottling partners, distributors, wholesalers and retailers as well as our consolidated bottling and distribution operations.',
    'How does The Coca-Cola Company distribute its beverage products globally?',
    "What accounting method is predominantly used to determine inventory costs in the Company's supermarket divisions before LIFO adjustments?",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Information Retrieval
* Dataset: `dim_768`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.7143     |
| cosine_accuracy@3   | 0.8486     |
| cosine_accuracy@5   | 0.8814     |
| cosine_accuracy@10  | 0.9171     |
| cosine_precision@1  | 0.7143     |
| cosine_precision@3  | 0.2829     |
| cosine_precision@5  | 0.1763     |
| cosine_precision@10 | 0.0917     |
| cosine_recall@1     | 0.7143     |
| cosine_recall@3     | 0.8486     |
| cosine_recall@5     | 0.8814     |
| cosine_recall@10    | 0.9171     |
| cosine_ndcg@10      | 0.8196     |
| cosine_mrr@10       | 0.788      |
| **cosine_map@100**  | **0.7915** |

#### Information Retrieval
* Dataset: `dim_512`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.7157     |
| cosine_accuracy@3   | 0.8457     |
| cosine_accuracy@5   | 0.8814     |
| cosine_accuracy@10  | 0.92       |
| cosine_precision@1  | 0.7157     |
| cosine_precision@3  | 0.2819     |
| cosine_precision@5  | 0.1763     |
| cosine_precision@10 | 0.092      |
| cosine_recall@1     | 0.7157     |
| cosine_recall@3     | 0.8457     |
| cosine_recall@5     | 0.8814     |
| cosine_recall@10    | 0.92       |
| cosine_ndcg@10      | 0.82       |
| cosine_mrr@10       | 0.7878     |
| **cosine_map@100**  | **0.7912** |

#### Information Retrieval
* Dataset: `dim_256`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.6914     |
| cosine_accuracy@3   | 0.8471     |
| cosine_accuracy@5   | 0.88       |
| cosine_accuracy@10  | 0.91       |
| cosine_precision@1  | 0.6914     |
| cosine_precision@3  | 0.2824     |
| cosine_precision@5  | 0.176      |
| cosine_precision@10 | 0.091      |
| cosine_recall@1     | 0.6914     |
| cosine_recall@3     | 0.8471     |
| cosine_recall@5     | 0.88       |
| cosine_recall@10    | 0.91       |
| cosine_ndcg@10      | 0.8088     |
| cosine_mrr@10       | 0.7756     |
| **cosine_map@100**  | **0.7799** |

#### Information Retrieval
* Dataset: `dim_128`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.6914     |
| cosine_accuracy@3   | 0.83       |
| cosine_accuracy@5   | 0.87       |
| cosine_accuracy@10  | 0.9071     |
| cosine_precision@1  | 0.6914     |
| cosine_precision@3  | 0.2767     |
| cosine_precision@5  | 0.174      |
| cosine_precision@10 | 0.0907     |
| cosine_recall@1     | 0.6914     |
| cosine_recall@3     | 0.83       |
| cosine_recall@5     | 0.87       |
| cosine_recall@10    | 0.9071     |
| cosine_ndcg@10      | 0.8025     |
| cosine_mrr@10       | 0.7686     |
| **cosine_map@100**  | **0.7729** |

#### Information Retrieval
* Dataset: `dim_64`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.6586     |
| cosine_accuracy@3   | 0.8029     |
| cosine_accuracy@5   | 0.8357     |
| cosine_accuracy@10  | 0.8829     |
| cosine_precision@1  | 0.6586     |
| cosine_precision@3  | 0.2676     |
| cosine_precision@5  | 0.1671     |
| cosine_precision@10 | 0.0883     |
| cosine_recall@1     | 0.6586     |
| cosine_recall@3     | 0.8029     |
| cosine_recall@5     | 0.8357     |
| cosine_recall@10    | 0.8829     |
| cosine_ndcg@10      | 0.7736     |
| cosine_mrr@10       | 0.7384     |
| **cosine_map@100**  | **0.7434** |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### json

* Dataset: json
* Size: 6,300 training samples
* Columns: <code>positive</code> and <code>anchor</code>
* Approximate statistics based on the first 1000 samples:
  |         | positive                                                                           | anchor                                                                            |
  |:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
  | type    | string                                                                             | string                                                                            |
  | details | <ul><li>min: 8 tokens</li><li>mean: 44.98 tokens</li><li>max: 439 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 20.31 tokens</li><li>max: 45 tokens</li></ul> |
* Samples:
  | positive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | anchor                                                                                                                    |
  |:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------|
  | <code>Change in control events potentially triggering benefits under the CIC Plan and Mr. Begor’s agreement would occur, subject to certain exceptions, if (1) any person acquires 20% or more of our voting stock; (2) upon a merger or other business combination, our shareholders receive less than two-thirds of the common stock and combined voting power of the new company; (3) members of the current Board of Directors ceasing to constitute a majority of the Board of Directors, except for new directors that are regularly elected; (4) we sell or otherwise dispose of all or substantially all of our assets; or (5) we liquidate or dissolve.</code> | <code>What events potentially trigger benefits under Mark W. Begor's change in control agreement and the CIC Plan?</code> |
  | <code>The growth in marketplace revenue was primarily due to the impact of the pricing update to increase our seller transaction fee for the Etsy marketplace from 5% to 6.5% beginning on April 11, 2022, and an increase in foreign currency payments, which we earn an additional transaction fee on, in the year ended December 31, 2023.</code>                                                                                                                                                                                                                                                                                                                    | <code>What drove the growth in marketplace revenue for the year ended December 31, 2023?</code>                           |
  | <code>We are focused on ensuring that we efficiently allocate our resources to the areas with the highest potential for profitable growth. ... The uncertain macroeconomic environment in many of these markets is expected to continue and we aim to ensure our investments in these international markets are appropriate relative to the size of the opportunity.</code>                                                                                                                                                                                                                                                                                             | <code>What are Hershey's goals for international expansion and how are they being approached?</code>                      |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
  ```json
  {
      "loss": "MultipleNegativesRankingLoss",
      "matryoshka_dims": [
          768,
          512,
          256,
          128,
          64
      ],
      "matryoshka_weights": [
          1,
          1,
          1,
          1,
          1
      ],
      "n_dims_per_step": -1
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: epoch
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 16
- `gradient_accumulation_steps`: 16
- `learning_rate`: 2e-05
- `num_train_epochs`: 4
- `lr_scheduler_type`: cosine
- `warmup_ratio`: 0.1
- `bf16`: True
- `tf32`: True
- `load_best_model_at_end`: True
- `optim`: adamw_torch_fused
- `batch_sampler`: no_duplicates

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: epoch
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 16
- `eval_accumulation_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 4
- `max_steps`: -1
- `lr_scheduler_type`: cosine
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: True
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: True
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch_fused
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
| Epoch      | Step   | Training Loss | dim_768_cosine_map@100 | dim_512_cosine_map@100 | dim_256_cosine_map@100 | dim_128_cosine_map@100 | dim_64_cosine_map@100 |
|:----------:|:------:|:-------------:|:----------------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|
| 0.9697     | 6      | -             | 0.7527                 | 0.7516                 | 0.7454                 | 0.7253                 | 0.6808                |
| 1.6162     | 10     | 2.3351        | -                      | -                      | -                      | -                      | -                     |
| 1.9394     | 12     | -             | 0.7740                 | 0.7699                 | 0.7707                 | 0.7474                 | 0.7188                |
| 2.9091     | 18     | -             | 0.7784                 | 0.7790                 | 0.7735                 | 0.7575                 | 0.7275                |
| 3.2323     | 20     | 1.0519        | -                      | -                      | -                      | -                      | -                     |
| **3.8788** | **24** | **-**         | **0.7818**             | **0.7784**             | **0.7763**             | **0.7581**             | **0.7293**            |
| 0.9697     | 6      | -             | 0.7836                 | 0.7826                 | 0.7817                 | 0.7664                 | 0.7353                |
| 1.6162     | 10     | 0.8132        | -                      | -                      | -                      | -                      | -                     |
| 1.9394     | 12     | -             | 0.7887                 | 0.7887                 | 0.7837                 | 0.7714                 | 0.7409                |
| 2.9091     | 18     | -             | 0.7897                 | 0.7902                 | 0.7798                 | 0.7721                 | 0.7410                |
| 3.2323     | 20     | 0.6098        | -                      | -                      | -                      | -                      | -                     |
| **3.8788** | **24** | **-**         | **0.7915**             | **0.7912**             | **0.7799**             | **0.7729**             | **0.7434**            |

* The bold row denotes the saved checkpoint.

### Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.2.1
- Transformers: 4.41.2
- PyTorch: 2.1.2+cu121
- Accelerate: 1.0.1
- Datasets: 2.19.1
- Tokenizers: 0.19.1

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### MatryoshkaLoss
```bibtex
@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning},
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}
```

#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->