File size: 12,788 Bytes
6f3b717 7465133 c2e765b 7465133 c2e765b fbd3f76 6f3b717 afc39cb 6f3b717 b025d13 6f3b717 2e435e1 6f3b717 2e435e1 6f3b717 2e435e1 6f3b717 2e435e1 6f3b717 2e435e1 6f3b717 2e435e1 6f3b717 db419f3 2e435e1 6f3b717 f0c6477 2e435e1 6f3b717 f0c6477 2e435e1 6f3b717 2e435e1 6f3b717 2e435e1 6f3b717 2e435e1 6f3b717 2e435e1 6f3b717 2e435e1 6f3b717 db419f3 2e435e1 6f3b717 db419f3 6f3b717 12870c3 db419f3 12870c3 db419f3 12870c3 2e435e1 6f3b717 2e435e1 c2e765b 2e435e1 dc0a829 2e435e1 fbd3f76 2e435e1 f0c6477 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 |
---
language:
- en
- vi
license: mit
library_name: transformers
tags:
- ghost
pipeline_tag: text-generation
model-index:
- name: ghost-7b-v0.9.1
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 55.38
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=lamhieu/ghost-7b-v0.9.1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 77.03
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=lamhieu/ghost-7b-v0.9.1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 54.78
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=lamhieu/ghost-7b-v0.9.1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 43.96
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=lamhieu/ghost-7b-v0.9.1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 72.53
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=lamhieu/ghost-7b-v0.9.1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 26.91
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=lamhieu/ghost-7b-v0.9.1
name: Open LLM Leaderboard
widget:
- text: 'How many helicopters can a human eat in one sitting'
output:
text: "Ahoy, me matey! A human can eat approximately one helicopter in one sitting, but only if they're a giant sea monster with a stomach the size of a small country. π€’π€’ So, it's not advisable to try this, pirate! π°π’οΈ"
---
# Model Card for Model ID
**Ghost 7B Alpha, flying, v0.9.1**
[βΆοΈ Experience it on Colab](https://colab.research.google.com/drive/1Q0dvH79PUffRKH8VKCrqn_krKmOp1QE7?usp=sharing)
### Come on, create yourself an AI assistant, according to your wishes!
In your language, maybe Vietnamese.
<img src="https://cdn-uploads.huggingface.co/production/uploads/600ae38cc92b79f54efd4556/_4EmivXdOYjQpBVpIO9WL.png" width="600" align="center" />
Or, English.
<img src="https://cdn-uploads.huggingface.co/production/uploads/600ae38cc92b79f54efd4556/ctmTOz5V7pHm0FnX8c6BD.png" width="600" align="center" />
### Let the assistant become an expert, and more.
The challenge of the model's ability to understand the language.
<img src="https://cdn-uploads.huggingface.co/production/uploads/600ae38cc92b79f54efd4556/N0RJUFFf1t8QRg8AVyxNj.png" width="600" align="center" />
Challenge the model's reasoning ability, in Vietnamese language.
<img src="https://cdn-uploads.huggingface.co/production/uploads/600ae38cc92b79f54efd4556/KUXjV2XJK5vNy7genVtfN.png" width="600" align="center" />
<img src="https://cdn-uploads.huggingface.co/production/uploads/600ae38cc92b79f54efd4556/ngX6unqUNnnBGq4R1gYY2.png" width="600" align="center" />
In case of using Vietnamese language, it lacks accents, abbreviations or uses slang.
<img src="https://cdn-uploads.huggingface.co/production/uploads/600ae38cc92b79f54efd4556/xSL8WErn5girbKxUbEOsh.png" width="600" align="center" />
<img src="https://cdn-uploads.huggingface.co/production/uploads/600ae38cc92b79f54efd4556/-IXPjLL_QGb_5frOKftUW.png" width="600" align="center" />
## π Model Details
### Model Description
A version to consider comprehension in generating languages other than the original language being initially trained, here is the Vietnamese language. A brief summary of the effectiveness of the **Mistral 7B** model for training with a new language is excellent and low cost.
I have started training the [Ghost 7B v0.9.0](https://huggingface.co/lamhieu/ghost-7b-v0.9.0) model again, with a smaller amount of data, it is estimated to be only about 150MB. In that data, about 70% is Vietnamese, the rest is almost English.
The approach here uses QLora for training then merges them. Also, I am very thankful to Unsloth for their features.
## Uses
### Online using Google Colab
To make it easier to play around with the model, I created a notebook in [Google Colab](https://drive.google.com/file/d/1jVZuQ2QbMxLMJDKjpCRDKQaIxNXNpWI-/view?usp=sharing) so people can start experimenting.
### Directly
For direct use, you can easily get started with the following steps.
* Firstly, you need to install **transformers** via the command below with `pip`.
```bash
pip install -U transformers
```
* Right now, you can start using the model directly.
```python
import torch
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
)
base_model = "lamhieu/ghost-7b-v0.9.1"
model = AutoModelForCausalLM.from_pretrained(
base_model,
torch_dtype=torch.bfloat16,
trust_remote_code=True,
device_map="auto",
)
tokenizer = AutoTokenizer.from_pretrained(base_model)
messages = [
{"role": "system", "content": "You are a friendly chatbot who always responds in the style of a pirate"},
{"role": "user", "content": "How many helicopters can a human eat in one sitting?"},
]
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
tokenized = tokenizer(prompt, return_tensors="pt", add_special_tokens=False)
outputs = model.generate(**tokenized, max_new_tokens=512)
results = tokenizer.batch_decode(outputs)[0]
print(results)
```
* Additionally, you can also use a model with **4bit quantization** to reduce the required resources at least. You can start with the code below.
```python
import torch
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
BitsAndBytesConfig,
)
base_model = "lamhieu/ghost-7b-v0.9.1"
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.bfloat16,
bnb_4bit_use_double_quant=False,
)
model = AutoModelForCausalLM.from_pretrained(
base_model,
quantization_config=bnb_config,
trust_remote_code=True,
device_map="auto",
)
tokenizer = AutoTokenizer.from_pretrained(base_model)
messages = [
{"role": "system", "content": "You are a friendly chatbot who always responds in the style of a pirate"},
{"role": "user", "content": "How many helicopters can a human eat in one sitting?"},
]
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
tokenized = tokenizer(prompt, return_tensors="pt", add_special_tokens=False)
outputs = model.generate(**tokenized, max_new_tokens=512)
results = tokenizer.batch_decode(outputs)[0]
print(results)
```
### Summary
Although the amount of training data is small, it is "great". You don't need to worry too much that it won't be able to meet some of your requirements. Instead, try experimenting with the model of what you want.
One more thing, use it like you would **ChatGPT**, I've purposely tweaked it to be able to replace my app (for some tasks, and it does a good job). It's okay with both Vietnamese and English languages. It would be great to hear feedback about the experience, feel free to leave information in the discussion section.
Setting up the system prompt will have a great impact on the performance and quality of the content generated by the model. Keep this in mind to always ensure the model is used for your intended purpose, the goal is to achieve good results but.
It's best to always set system, you can still leave it empty if you always want to set it.
## π₯ Evaluation
### [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_lamhieu__ghost-7b-v0.9.1)
| Metric |Value|
|---------------------------------|----:|
|Avg. |55.10|
|AI2 Reasoning Challenge (25-Shot)|55.38|
|HellaSwag (10-Shot) |77.03|
|MMLU (5-Shot) |54.78|
|TruthfulQA (0-shot) |43.96|
|Winogrande (5-shot) |72.53|
|GSM8k (5-shot) |26.91|
### VMLU
A Vietnamese Multitask Language Understanding Benchmark Suite for Large Language Models.
With the score achieved, the model can rank **3rd** in VMLU's "Leaderboard of fine-tuned models" list, as of the date of evaluation.
![image/png](https://cdn-uploads.huggingface.co/production/uploads/600ae38cc92b79f54efd4556/yuDiym9y_o_tlRVr90pGX.png)
<details>
<summary>Details</summary>
```json
{
"humanity": {
"administrative_law": 52.22,
"business_law": 40.22,
"civil_law": 46.11,
"criminal_law": 49.08,
"economic_law": 39.75,
"education_law": 42.17,
"elementary_history": 55.37,
"high_school_history": 36.67,
"high_school_literature": 37.78,
"history_of_world_civilization": 46.67,
"idealogical_and_moral_cultivation": 50,
"introduction_to_laws": 45.24,
"vietnamese_language_and_literature": 34.48,
"total": 43.3,
"revolutionary_policy_of_the_vietnamese_commununist_part": 51.11,
"introduction_to_vietnam_culture": 30.56,
"logic": 27.01,
"middle_school_history": 44.44,
"middle_school_literature": 50.57
},
"stem": {
"total": 34.73,
"applied_informatics": 50.56,
"computer_architecture": 33.89,
"computer_network": 43.02,
"discrete_mathematics": 31.52,
"electrical_engineering": 30.68,
"elementary_mathematics": 30,
"elementary_science": 58.89,
"high_school_biology": 38.33,
"high_school_chemistry": 28.89,
"high_school_mathematics": 26.35,
"high_school_physics": 29.44,
"introduction_to_chemistry": 27.37,
"introduction_to_physics": 31.79,
"introduction_to_programming": 36.31,
"metrology_engineer": 31.21,
"middle_school_biology": 46.47,
"middle_school_chemistry": 30.56,
"middle_school_mathematics": 30.56,
"middle_school_physics": 30,
"operating_system": 40.56,
"statistics_and_probability": 22.99
},
"total": 39.58,
"other": {
"accountant": 31.55,
"civil_servant": 42.11,
"clinical_pharmacology": 33.89,
"driving_license_certificate": 59.06,
"environmental_engineering": 28.07,
"internal_basic_medicine": 39.77,
"preschool_pedagogy": 46.08,
"tax_accountant": 22.41,
"tax_civil_servant": 47.95,
"total": 38.99
},
"social_science": {
"business_administration": 41.38,
"high_school_civil_education": 45,
"high_school_geography": 34.57,
"ho_chi_minh_ideology": 48.04,
"macroeconomics": 31.11,
"microeconomics": 37.22,
"middle_school_civil_education": 66.29,
"middle_school_geography": 48.3,
"principles_of_marxism_and_leninism": 30,
"sociology": 53.93,
"total": 43.58
}
}
```
</details>
## π More Information
Note, this is a personal research project with a limited budget, so the model only stops at the evaluation level with the developed approach. Apart from that, I think I can definitely build a model with better quality in terms of language and other performance using this approach.
### Thanks for the support
Model trained with **Unsloth**, many thanks.
<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/made with unsloth.png" width="200px" align="center" />
## π¨ Model Card Contact
**Lam Hieu** ([email protected])
|