ggerganov commited on
Commit
ed61a0f
·
verified ·
1 Parent(s): 23fcca6

readme : ggerganov -> ggml-org

Browse files
Files changed (1) hide show
  1. README.md +7 -7
README.md CHANGED
@@ -16,7 +16,7 @@ tags:
16
  - gguf-my-repo
17
  ---
18
 
19
- # ggerganov/Qwen2.5-Coder-14B-Instruct-Q8_0-GGUF
20
  This model was converted to GGUF format from [`Qwen/Qwen2.5-Coder-14B-Instruct`](https://huggingface.co/Qwen/Qwen2.5-Coder-14B-Instruct) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
21
  Refer to the [original model card](https://huggingface.co/Qwen/Qwen2.5-Coder-14B-Instruct) for more details on the model.
22
 
@@ -31,19 +31,19 @@ Invoke the llama.cpp server or the CLI.
31
 
32
  ### CLI:
33
  ```bash
34
- llama-cli --hf-repo ggerganov/Qwen2.5-Coder-14B-Instruct-Q8_0-GGUF --hf-file qwen2.5-coder-14b-instruct-q8_0.gguf -p "The meaning to life and the universe is"
35
  ```
36
 
37
  ### Server:
38
  ```bash
39
- llama-server --hf-repo ggerganov/Qwen2.5-Coder-14B-Instruct-Q8_0-GGUF --hf-file qwen2.5-coder-14b-instruct-q8_0.gguf -c 2048
40
  ```
41
 
42
- Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
43
 
44
  Step 1: Clone llama.cpp from GitHub.
45
  ```
46
- git clone https://github.com/ggerganov/llama.cpp
47
  ```
48
 
49
  Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
@@ -53,9 +53,9 @@ cd llama.cpp && LLAMA_CURL=1 make
53
 
54
  Step 3: Run inference through the main binary.
55
  ```
56
- ./llama-cli --hf-repo ggerganov/Qwen2.5-Coder-14B-Instruct-Q8_0-GGUF --hf-file qwen2.5-coder-14b-instruct-q8_0.gguf -p "The meaning to life and the universe is"
57
  ```
58
  or
59
  ```
60
- ./llama-server --hf-repo ggerganov/Qwen2.5-Coder-14B-Instruct-Q8_0-GGUF --hf-file qwen2.5-coder-14b-instruct-q8_0.gguf -c 2048
61
  ```
 
16
  - gguf-my-repo
17
  ---
18
 
19
+ # ggml-org/Qwen2.5-Coder-14B-Instruct-Q8_0-GGUF
20
  This model was converted to GGUF format from [`Qwen/Qwen2.5-Coder-14B-Instruct`](https://huggingface.co/Qwen/Qwen2.5-Coder-14B-Instruct) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
21
  Refer to the [original model card](https://huggingface.co/Qwen/Qwen2.5-Coder-14B-Instruct) for more details on the model.
22
 
 
31
 
32
  ### CLI:
33
  ```bash
34
+ llama-cli --hf-repo ggml-org/Qwen2.5-Coder-14B-Instruct-Q8_0-GGUF --hf-file qwen2.5-coder-14b-instruct-q8_0.gguf -p "The meaning to life and the universe is"
35
  ```
36
 
37
  ### Server:
38
  ```bash
39
+ llama-server --hf-repo ggml-org/Qwen2.5-Coder-14B-Instruct-Q8_0-GGUF --hf-file qwen2.5-coder-14b-instruct-q8_0.gguf -c 2048
40
  ```
41
 
42
+ Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggml-org/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
43
 
44
  Step 1: Clone llama.cpp from GitHub.
45
  ```
46
+ git clone https://github.com/ggml-org/llama.cpp
47
  ```
48
 
49
  Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
 
53
 
54
  Step 3: Run inference through the main binary.
55
  ```
56
+ ./llama-cli --hf-repo ggml-org/Qwen2.5-Coder-14B-Instruct-Q8_0-GGUF --hf-file qwen2.5-coder-14b-instruct-q8_0.gguf -p "The meaning to life and the universe is"
57
  ```
58
  or
59
  ```
60
+ ./llama-server --hf-repo ggml-org/Qwen2.5-Coder-14B-Instruct-Q8_0-GGUF --hf-file qwen2.5-coder-14b-instruct-q8_0.gguf -c 2048
61
  ```