kirigayahitsugi
commited on
Commit
•
d48bb7a
1
Parent(s):
26af4b7
Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,281 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
base_model:
|
4 |
+
- google/gemma-2-9b-it
|
5 |
+
---
|
6 |
+
|
7 |
+
# General Preference Representation Model (GPM)
|
8 |
+
|
9 |
+
+ **Authors** (* indicates equal contribution)
|
10 |
+
|
11 |
+
Yifan Zhang*, Ge Zhang*, Yue Wu*, Kangping Xu, Quanquan Gu
|
12 |
+
|
13 |
+
+ **Paper**: [General Preference Modeling with Preference Representations for Aligning Language Models (https://arxiv.org/abs/2410.02197)](https://arxiv.org/abs/2410.02197)
|
14 |
+
+ **As Huggingface Daily Papers**: [https://huggingface.co/papers/2410.02197](https://huggingface.co/papers/2410.02197)
|
15 |
+
+ **Code Repository**: [General-Preference-Model (https://github.com/general-preference/general-preference-model)](https://github.com/general-preference/general-preference-model)
|
16 |
+
+ **Dataset**: [natolambert/skywork-preferences-80k-v0.1-cleaned](https://huggingface.co/datasets/natolambert/skywork-preferences-80k-v0.1-cleaned)
|
17 |
+
+ **Base Model**: [google/gemma-2-9b-it](https://huggingface.co/google/gemma-2-9b-it)
|
18 |
+
|
19 |
+
## Overview
|
20 |
+
|
21 |
+
The General Preference Representation Model (GPM) improves preference-based reward modeling by embedding responses into a latent space to efficiently capture complex, intransitive human preferences. GPM achieves linear query complexity, allowing for expressive preference representation, and outperforms traditional Bradley-Terry (BT) reward models, particularly in handling cyclic preferences.
|
22 |
+
|
23 |
+
## Key Features
|
24 |
+
- **Preference Representation Learning**: Embeds responses in a multi-dimensional latent space to model intricate human preferences, including cyclic and intransitive structures.
|
25 |
+
- **Efficient Querying**: Reduces computational complexity to O(K), compared to O(K²) for traditional methods, making GPM scalable for large response sets.
|
26 |
+
- **General Preference Optimization (GPO)**: Introduces a preference score that integrates with reinforcement learning methods to optimize policy alignment with human preferences.
|
27 |
+
|
28 |
+
## Evaluation
|
29 |
+
|
30 |
+
The GPM is evaluated using the [RewardBench](https://github.com/allenai/reward-bench) leaderboard, showing significant improvements over the BT model, with a performance margin of up to 5.6%. GPM also excels in modeling cyclic preferences, achieving 100% accuracy on cyclic datasets.
|
31 |
+
|
32 |
+
## Usage
|
33 |
+
|
34 |
+
To use this model, please refer to the [General Preference Model Code Repository](https://github.com/general-preference/general-preference-model). The repository includes detailed instructions for finetuning, evaluation, and integration of the GPM with downstream tasks. Below is an example code snippet:
|
35 |
+
|
36 |
+
```python
|
37 |
+
from typing import Optional, List, Dict
|
38 |
+
import torch
|
39 |
+
import torch.nn as nn
|
40 |
+
from transformers import AutoConfig, AutoModel, AutoModelForCausalLM
|
41 |
+
import torch.nn.functional as F
|
42 |
+
from transformers import AutoTokenizer
|
43 |
+
|
44 |
+
def get_tokenizer(pretrain, model, padding_side="left", use_fast=True):
|
45 |
+
tokenizer = AutoTokenizer.from_pretrained(pretrain, trust_remote_code=True, use_fast=use_fast)
|
46 |
+
tokenizer.padding_side = padding_side
|
47 |
+
if tokenizer.pad_token is None:
|
48 |
+
tokenizer.pad_token = tokenizer.eos_token
|
49 |
+
tokenizer.pad_token_id = tokenizer.eos_token_id
|
50 |
+
model.config.pad_token_id = tokenizer.pad_token_id
|
51 |
+
return tokenizer
|
52 |
+
|
53 |
+
def get_reward_model(base_causal_model, base_llm_model, is_general_preference: bool=False, add_prompt_head: bool=False, value_head_dim: int=2):
|
54 |
+
class CustomRewardModel(base_causal_model):
|
55 |
+
|
56 |
+
def __init__(self, config: AutoConfig):
|
57 |
+
super().__init__(config)
|
58 |
+
setattr(self, self.base_model_prefix, base_llm_model(config))
|
59 |
+
if not is_general_preference:
|
60 |
+
self.value_head = nn.Linear(config.hidden_size, 1, bias=False)
|
61 |
+
else:
|
62 |
+
self.value_head = nn.Linear(config.hidden_size, value_head_dim, bias=False)
|
63 |
+
if add_prompt_head:
|
64 |
+
self.prompt_head = nn.Linear(config.hidden_size, value_head_dim // 2, bias=False)
|
65 |
+
|
66 |
+
self.is_general_preference = is_general_preference
|
67 |
+
|
68 |
+
self.post_init()
|
69 |
+
|
70 |
+
def custom_forward(
|
71 |
+
self,
|
72 |
+
input_ids: torch.LongTensor = None,
|
73 |
+
attention_mask: Optional[torch.Tensor] = None,
|
74 |
+
return_output=False,
|
75 |
+
) -> torch.Tensor:
|
76 |
+
position_ids = attention_mask.long().cumsum(-1) - 1
|
77 |
+
position_ids.masked_fill_(attention_mask == 0, 1)
|
78 |
+
outputs = getattr(self, self.base_model_prefix)(
|
79 |
+
input_ids, attention_mask=attention_mask, position_ids=position_ids
|
80 |
+
)
|
81 |
+
last_hidden_states = outputs["last_hidden_state"]
|
82 |
+
|
83 |
+
if not self.is_general_preference:
|
84 |
+
values = self.value_head(last_hidden_states).squeeze(-1)
|
85 |
+
# left padding in training mode
|
86 |
+
if self.training:
|
87 |
+
reward = values[:, -1]
|
88 |
+
else:
|
89 |
+
eos_indices = attention_mask.size(1) - 1 - attention_mask.long().fliplr().argmax(dim=1, keepdim=True)
|
90 |
+
reward = values.gather(dim=1, index=eos_indices).squeeze(1)
|
91 |
+
if return_output:
|
92 |
+
return reward, outputs
|
93 |
+
else:
|
94 |
+
return reward, None
|
95 |
+
else:
|
96 |
+
values = self.value_head(last_hidden_states)
|
97 |
+
# left padding in training mode
|
98 |
+
if self.training:
|
99 |
+
reward = values[:, -1, :]
|
100 |
+
reward = F.normalize(reward, p=2, dim=-1) # Shape will be [batch_size, value_head_dim]
|
101 |
+
else:
|
102 |
+
eos_indices = attention_mask.size(1) - 1 - attention_mask.long().fliplr().argmax(dim=1)
|
103 |
+
eos_indices = eos_indices.unsqueeze(1) # Change shape to [batch_size, 1]
|
104 |
+
reward_list = []
|
105 |
+
for dim in range(value_head_dim):
|
106 |
+
reward_list.append(values[:,:,dim].gather(dim=1, index=eos_indices))
|
107 |
+
reward = torch.cat(reward_list, dim=1)
|
108 |
+
reward = F.normalize(reward, p=2, dim=-1) # Shape will be [batch_size, value_head_dim]
|
109 |
+
if return_output:
|
110 |
+
return reward, outputs
|
111 |
+
else:
|
112 |
+
return reward, None
|
113 |
+
|
114 |
+
def create_skew_symmetric_block_matrix(self, dim, device, dtype, prompt_hidden_states):
|
115 |
+
"""
|
116 |
+
Create a batch of skew-symmetric block matrices where each matrix is data-dependent on
|
117 |
+
the corresponding prompt_hidden_states. Only the relevant block diagonal parts are generated.
|
118 |
+
|
119 |
+
Args:
|
120 |
+
- dim: Dimension of the square matrix (must be even).
|
121 |
+
- prompt_hidden_states: Tensor of shape [batch_size, hidden_dim].
|
122 |
+
|
123 |
+
Returns:
|
124 |
+
- batch_R_matrices: Tensor of shape [batch_size, dim, dim], with skew-symmetric block entries.
|
125 |
+
"""
|
126 |
+
if hasattr(self, 'prompt_head'):
|
127 |
+
batch_size = prompt_hidden_states.shape[0]
|
128 |
+
|
129 |
+
# Ensure that dim is even, as we're creating blocks of size 2x2
|
130 |
+
assert dim % 2 == 0, "dim must be even for skew-symmetric block generation"
|
131 |
+
|
132 |
+
# Pass through the linear layer to get the block diagonal entries (half of the matrix's off-diagonal blocks)
|
133 |
+
block_values = self.prompt_head(prompt_hidden_states).view(batch_size, dim // 2)
|
134 |
+
block_values = torch.softmax(block_values, dim=-1)
|
135 |
+
|
136 |
+
# Create a batch of zero matrices [batch_size, dim, dim]
|
137 |
+
batch_R_matrices = torch.zeros((batch_size, dim, dim), device=device, dtype=dtype)
|
138 |
+
|
139 |
+
# Fill only the block diagonal entries with the learned values
|
140 |
+
for i in range(0, dim, 2):
|
141 |
+
batch_R_matrices[:, i, i + 1] = -block_values[:, i // 2]
|
142 |
+
batch_R_matrices[:, i + 1, i] = block_values[:, i // 2] # Skew-symmetric condition
|
143 |
+
else:
|
144 |
+
raise AttributeError("prompt_head is not defined. Ensure 'add_prompt_head' is set to True during initialization.")
|
145 |
+
|
146 |
+
return batch_R_matrices
|
147 |
+
|
148 |
+
return CustomRewardModel
|
149 |
+
|
150 |
+
def generate_high_dim_result_with_prompt(model, value_head_dim, chosen_reward, rejected_reward, prompt_hidden_states):
|
151 |
+
R_matrix = model.create_skew_symmetric_block_matrix(value_head_dim, chosen_reward.device, chosen_reward.dtype, prompt_hidden_states)
|
152 |
+
if chosen_reward.device == rejected_reward.device == R_matrix.device:
|
153 |
+
transformed_chosen = torch.bmm(chosen_reward.view(chosen_reward.shape[0], 1, value_head_dim), R_matrix.transpose(1, 2))
|
154 |
+
result = torch.bmm(transformed_chosen, rejected_reward.view(rejected_reward.shape[0], value_head_dim, 1))
|
155 |
+
result = result.view(chosen_reward.shape[0])
|
156 |
+
return result
|
157 |
+
|
158 |
+
class GPMPipeline:
|
159 |
+
def __init__(self, model_name_or_path, device=torch.device("cuda:0"), is_general_preference: bool=True, add_prompt_head: bool=True, value_head_dim: int=2, bf16: bool=True, truncation: bool=True, max_length: int=4096, padding: bool=True, tau: float=0.1):
|
160 |
+
self.device = device
|
161 |
+
self.is_general_preference = is_general_preference
|
162 |
+
self.add_prompt_head = add_prompt_head
|
163 |
+
self.value_head_dim = value_head_dim
|
164 |
+
self.truncation = truncation
|
165 |
+
self.max_length = max_length
|
166 |
+
self.padding = padding
|
167 |
+
self.tau = tau
|
168 |
+
|
169 |
+
config = AutoConfig.from_pretrained(model_name_or_path, trust_remote_code=True)
|
170 |
+
config._attn_implementation = "flash_attention_2"
|
171 |
+
base_class = AutoModel._model_mapping[type(config)]
|
172 |
+
base_causal_class = AutoModelForCausalLM._model_mapping.get(type(config), None)
|
173 |
+
cls_class = get_reward_model(base_causal_class, base_class, is_general_preference, add_prompt_head, value_head_dim)
|
174 |
+
|
175 |
+
# configure model
|
176 |
+
self.model = cls_class.from_pretrained(
|
177 |
+
model_name_or_path,
|
178 |
+
config=config,
|
179 |
+
trust_remote_code=True,
|
180 |
+
torch_dtype=torch.bfloat16 if bf16 else "auto",
|
181 |
+
)
|
182 |
+
# configure tokenizer
|
183 |
+
self.tokenizer = get_tokenizer(model_name_or_path, self.model, "left", use_fast=True)
|
184 |
+
self.tokenizer.truncation_side = "right"
|
185 |
+
|
186 |
+
# prepare model
|
187 |
+
self.model.to(device)
|
188 |
+
self.model.eval()
|
189 |
+
|
190 |
+
def __call__(self, samples: List[List[Dict[str, str]]], return_prompt=False):
|
191 |
+
input_texts = [self.tokenizer.apply_chat_template(sample, tokenize=False) for sample in samples]
|
192 |
+
|
193 |
+
inputs = self.tokenizer(
|
194 |
+
input_texts,
|
195 |
+
truncation=True,
|
196 |
+
max_length=self.max_length,
|
197 |
+
padding=True,
|
198 |
+
return_tensors="pt",
|
199 |
+
).to(self.device)
|
200 |
+
|
201 |
+
inputs["input_ids"][:, -1] = self.tokenizer.eos_token_id
|
202 |
+
inputs["attention_mask"][:, -1] = 1
|
203 |
+
|
204 |
+
with torch.no_grad():
|
205 |
+
rewards, outputs = self.model.custom_forward(**inputs, return_output=return_prompt)
|
206 |
+
|
207 |
+
chosen_response_len_list = []
|
208 |
+
if return_prompt:
|
209 |
+
prompt_texts = [self.tokenizer.apply_chat_template([sample[0]], tokenize=False) for sample in samples]
|
210 |
+
for i in range(len(input_texts)):
|
211 |
+
prompt_token = self.tokenizer(
|
212 |
+
prompt_texts[i],
|
213 |
+
max_length=self.max_length,
|
214 |
+
padding=False,
|
215 |
+
truncation=True,
|
216 |
+
return_tensors="pt",
|
217 |
+
)
|
218 |
+
chosen_token = self.tokenizer(
|
219 |
+
input_texts[i],
|
220 |
+
max_length=self.max_length,
|
221 |
+
padding=False,
|
222 |
+
truncation=True,
|
223 |
+
return_tensors="pt",
|
224 |
+
)
|
225 |
+
chosen_response_len = chosen_token["attention_mask"].sum() - prompt_token["attention_mask"].sum()
|
226 |
+
chosen_response_len_list.append(chosen_response_len)
|
227 |
+
chosen_response_len = torch.tensor(chosen_response_len_list).view(-1, 1).to(self.device)
|
228 |
+
if return_prompt:
|
229 |
+
chosen_last_hidden_states = outputs["last_hidden_state"]
|
230 |
+
prompt_end_index = chosen_last_hidden_states.size(1) - chosen_response_len - 1
|
231 |
+
prompt_end_index_expanded = prompt_end_index.unsqueeze(-1).expand(-1, -1, chosen_last_hidden_states.size(-1))
|
232 |
+
prompt_hidden_state = torch.gather(chosen_last_hidden_states, dim=1, index=prompt_end_index_expanded).squeeze(1)
|
233 |
+
return rewards, prompt_hidden_state
|
234 |
+
else:
|
235 |
+
return rewards
|
236 |
+
|
237 |
+
|
238 |
+
prompt_text = "Describe the importance of reading books in today's digital age."
|
239 |
+
response1 = "Books remain crucial in the digital era, offering in-depth knowledge and fostering critical thinking. They provide a unique, immersive experience that digital media can't replicate, contributing significantly to personal and intellectual growth."
|
240 |
+
response2 = "Books are still useful for learning new things. They help you relax and can be a good break from screens."
|
241 |
+
|
242 |
+
context1 = [
|
243 |
+
{"role": "user", "content": prompt_text},
|
244 |
+
{"role": "assistant", "content": response1}
|
245 |
+
]
|
246 |
+
|
247 |
+
context2 = [
|
248 |
+
{"role": "user", "content": prompt_text},
|
249 |
+
{"role": "assistant", "content": response2}
|
250 |
+
]
|
251 |
+
|
252 |
+
rm = GPMPipeline("general-preference/GPM-Gemma-2-9B-it", value_head_dim=4)
|
253 |
+
|
254 |
+
reward1, prompt_hidden_state = rm([context1], return_prompt=True)
|
255 |
+
reward2 = rm([context2])
|
256 |
+
|
257 |
+
result = generate_high_dim_result_with_prompt(rm.model, rm.value_head_dim, reward1, reward2, prompt_hidden_state)
|
258 |
+
|
259 |
+
result_batch = result.float().cpu().detach().numpy().tolist()
|
260 |
+
|
261 |
+
results = []
|
262 |
+
[
|
263 |
+
results.append(1) if result > 0 else results.append(0)
|
264 |
+
for result in result_batch
|
265 |
+
]
|
266 |
+
|
267 |
+
print(result_batch)
|
268 |
+
```
|
269 |
+
|
270 |
+
## Citation
|
271 |
+
|
272 |
+
If you find this work useful for your research, please consider citing:
|
273 |
+
|
274 |
+
```
|
275 |
+
@article{zhang2024general,
|
276 |
+
title={General Preference Modeling with Preference Representations for Aligning Language Models},
|
277 |
+
author={Zhang, Yifan and Zhang, Ge and Wu, Yue and Xu, Kangping and Gu, Quanquan},
|
278 |
+
journal={arXiv preprint arXiv:2410.02197},
|
279 |
+
year={2024}
|
280 |
+
}
|
281 |
+
```
|