gayanin commited on
Commit
4e130b7
1 Parent(s): 75741ba

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +22 -14
README.md CHANGED
@@ -14,10 +14,10 @@ should probably proofread and complete it, then remove this comment. -->
14
 
15
  This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on an unknown dataset.
16
  It achieves the following results on the evaluation set:
17
- - Loss: 1.7626
18
- - Rouge2 Precision: 0.3149
19
- - Rouge2 Recall: 0.2118
20
- - Rouge2 Fmeasure: 0.2349
21
 
22
  ## Model description
23
 
@@ -37,25 +37,33 @@ More information needed
37
 
38
  The following hyperparameters were used during training:
39
  - learning_rate: 2e-05
40
- - train_batch_size: 16
41
- - eval_batch_size: 16
42
  - seed: 42
43
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
44
  - lr_scheduler_type: linear
45
- - num_epochs: 3
 
46
 
47
  ### Training results
48
 
49
- | Training Loss | Epoch | Step | Validation Loss | Rouge2 Precision | Rouge2 Recall | Rouge2 Fmeasure |
50
- |:-------------:|:-----:|:----:|:---------------:|:----------------:|:-------------:|:---------------:|
51
- | No log | 1.0 | 100 | 1.7898 | 0.3222 | 0.2373 | 0.2535 |
52
- | No log | 2.0 | 200 | 1.7738 | 0.3125 | 0.2167 | 0.2402 |
53
- | No log | 3.0 | 300 | 1.7626 | 0.3149 | 0.2118 | 0.2349 |
 
 
 
 
 
 
 
54
 
55
 
56
  ### Framework versions
57
 
58
- - Transformers 4.12.2
59
  - Pytorch 1.9.0+cu111
60
- - Datasets 1.14.0
61
  - Tokenizers 0.10.3
 
14
 
15
  This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on an unknown dataset.
16
  It achieves the following results on the evaluation set:
17
+ - Loss: 1.5363
18
+ - Rouge2 Precision: 0.3459
19
+ - Rouge2 Recall: 0.2455
20
+ - Rouge2 Fmeasure: 0.2731
21
 
22
  ## Model description
23
 
 
37
 
38
  The following hyperparameters were used during training:
39
  - learning_rate: 2e-05
40
+ - train_batch_size: 8
41
+ - eval_batch_size: 8
42
  - seed: 42
43
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
44
  - lr_scheduler_type: linear
45
+ - num_epochs: 10
46
+ - mixed_precision_training: Native AMP
47
 
48
  ### Training results
49
 
50
+ | Training Loss | Epoch | Step | Validation Loss | Rouge2 Precision | Rouge2 Recall | Rouge2 Fmeasure |
51
+ |:-------------:|:-----:|:-----:|:---------------:|:----------------:|:-------------:|:---------------:|
52
+ | 1.652 | 1.0 | 1125 | 1.5087 | 0.3647 | 0.2425 | 0.2772 |
53
+ | 1.4695 | 2.0 | 2250 | 1.5039 | 0.3448 | 0.2457 | 0.2732 |
54
+ | 1.3714 | 3.0 | 3375 | 1.4842 | 0.3509 | 0.2474 | 0.277 |
55
+ | 1.2734 | 4.0 | 4500 | 1.4901 | 0.3452 | 0.2426 | 0.2716 |
56
+ | 1.1853 | 5.0 | 5625 | 1.5152 | 0.3658 | 0.2371 | 0.2744 |
57
+ | 1.0975 | 6.0 | 6750 | 1.5133 | 0.3529 | 0.2417 | 0.2729 |
58
+ | 1.0448 | 7.0 | 7875 | 1.5203 | 0.3485 | 0.2464 | 0.275 |
59
+ | 0.9999 | 8.0 | 9000 | 1.5316 | 0.3437 | 0.2435 | 0.2719 |
60
+ | 0.9732 | 9.0 | 10125 | 1.5338 | 0.3464 | 0.2446 | 0.2732 |
61
+ | 0.954 | 10.0 | 11250 | 1.5363 | 0.3459 | 0.2455 | 0.2731 |
62
 
63
 
64
  ### Framework versions
65
 
66
+ - Transformers 4.12.3
67
  - Pytorch 1.9.0+cu111
68
+ - Datasets 1.15.1
69
  - Tokenizers 0.10.3