File size: 1,631 Bytes
ffb365b
 
 
 
 
5d9eaff
 
 
 
 
 
 
 
 
ffb365b
 
 
 
0bf35a9
 
ffb365b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
---
license: apache-2.0
tags:
- moe
- mixtral
language:
- ar
- en
- fr
- es
- de
- hi
- id
- zh
---

# Multirial

MultiRial is the first ever multilingual Mixture of experts model. 

* [fblgit/UNA-TheBeagle-7b-v1](https://huggingface.co/fblgit/UNA-TheBeagle-7b-v1)
* [openchat/openchat-3.5-0106](https://huggingface.co/openchat/openchat-3.5-0106)
* [azale-ai/Starstreak-7b-beta](https://huggingface.co/azale-ai/Starstreak-7b-beta)
* [gagan3012/Mistral_arabic_dpo](https://huggingface.co/gagan3012/Mistral_arabic_dpo)
* [davidkim205/komt-mistral-7b-v1](https://huggingface.co/davidkim205/komt-mistral-7b-v1)
* [OpenBuddy/openbuddy-zephyr-7b-v14.1](https://huggingface.co/OpenBuddy/openbuddy-zephyr-7b-v14.1)
* [manishiitg/open-aditi-hi-v1](https://huggingface.co/manishiitg/open-aditi-hi-v1)
* [VAGOsolutions/SauerkrautLM-7b-v1-mistral](https://huggingface.co/VAGOsolutions/SauerkrautLM-7b-v1-mistral)

## 💻 Usage

```python
!pip install -qU transformers bitsandbytes accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "gagan3012/Multirial"

tokenizer = AutoTokenizer.from_pretrained(model)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    model_kwargs={"torch_dtype": torch.float16, "load_in_4bit": True},
)

messages = [{"role": "user", "content": "Explain what a Mixture of Experts is in less than 100 words."}]
prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
```