update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- generated_from_trainer
|
4 |
+
model-index:
|
5 |
+
- name: ArOCR
|
6 |
+
results: []
|
7 |
+
---
|
8 |
+
|
9 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
10 |
+
should probably proofread and complete it, then remove this comment. -->
|
11 |
+
|
12 |
+
# ArOCR
|
13 |
+
|
14 |
+
This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset.
|
15 |
+
It achieves the following results on the evaluation set:
|
16 |
+
- Loss: 0.0620
|
17 |
+
- Cer: 0.0446
|
18 |
+
|
19 |
+
## Model description
|
20 |
+
|
21 |
+
More information needed
|
22 |
+
|
23 |
+
## Intended uses & limitations
|
24 |
+
|
25 |
+
More information needed
|
26 |
+
|
27 |
+
## Training and evaluation data
|
28 |
+
|
29 |
+
More information needed
|
30 |
+
|
31 |
+
## Training procedure
|
32 |
+
|
33 |
+
### Training hyperparameters
|
34 |
+
|
35 |
+
The following hyperparameters were used during training:
|
36 |
+
- learning_rate: 5e-05
|
37 |
+
- train_batch_size: 4
|
38 |
+
- eval_batch_size: 4
|
39 |
+
- seed: 42
|
40 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
41 |
+
- lr_scheduler_type: linear
|
42 |
+
- num_epochs: 3.0
|
43 |
+
- mixed_precision_training: Native AMP
|
44 |
+
|
45 |
+
### Training results
|
46 |
+
|
47 |
+
| Training Loss | Epoch | Step | Validation Loss | Cer |
|
48 |
+
|:-------------:|:-----:|:-----:|:---------------:|:------:|
|
49 |
+
| 3.6633 | 0.3 | 1000 | 3.3381 | 1.0385 |
|
50 |
+
| 2.3915 | 0.59 | 2000 | 2.3581 | 0.6389 |
|
51 |
+
| 1.5061 | 0.89 | 3000 | 1.4635 | 0.4779 |
|
52 |
+
| 0.8043 | 1.18 | 4000 | 0.8260 | 0.3427 |
|
53 |
+
| 0.46 | 1.48 | 5000 | 0.5074 | 0.2242 |
|
54 |
+
| 0.3393 | 1.77 | 6000 | 0.2699 | 0.1219 |
|
55 |
+
| 0.1077 | 2.07 | 7000 | 0.1794 | 0.0933 |
|
56 |
+
| 0.063 | 2.37 | 8000 | 0.1343 | 0.0617 |
|
57 |
+
| 0.0356 | 2.66 | 9000 | 0.0790 | 0.0692 |
|
58 |
+
| 0.0292 | 2.96 | 10000 | 0.0620 | 0.0446 |
|
59 |
+
|
60 |
+
|
61 |
+
### Framework versions
|
62 |
+
|
63 |
+
- Transformers 4.18.0
|
64 |
+
- Pytorch 1.9.1
|
65 |
+
- Datasets 2.1.0
|
66 |
+
- Tokenizers 0.11.6
|