g-assismoraes
commited on
End of training
Browse files
README.md
ADDED
@@ -0,0 +1,79 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
license: mit
|
4 |
+
base_model: neuralmind/bert-base-portuguese-cased
|
5 |
+
tags:
|
6 |
+
- generated_from_trainer
|
7 |
+
model-index:
|
8 |
+
- name: bbau-semeval25_fold2
|
9 |
+
results: []
|
10 |
+
---
|
11 |
+
|
12 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
13 |
+
should probably proofread and complete it, then remove this comment. -->
|
14 |
+
|
15 |
+
# bbau-semeval25_fold2
|
16 |
+
|
17 |
+
This model is a fine-tuned version of [neuralmind/bert-base-portuguese-cased](https://huggingface.co/neuralmind/bert-base-portuguese-cased) on the None dataset.
|
18 |
+
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 0.4474
|
20 |
+
- Precision Samples: 1.0
|
21 |
+
- Recall Samples: 0.0
|
22 |
+
- F1 Samples: 0.0
|
23 |
+
- Precision Macro: 1.0
|
24 |
+
- Recall Macro: 0.3636
|
25 |
+
- F1 Macro: 0.3636
|
26 |
+
- Precision Micro: 1.0
|
27 |
+
- Recall Micro: 0.0
|
28 |
+
- F1 Micro: 0.0
|
29 |
+
- Precision Weighted: 1.0
|
30 |
+
- Recall Weighted: 0.0
|
31 |
+
- F1 Weighted: 0.0
|
32 |
+
|
33 |
+
## Model description
|
34 |
+
|
35 |
+
More information needed
|
36 |
+
|
37 |
+
## Intended uses & limitations
|
38 |
+
|
39 |
+
More information needed
|
40 |
+
|
41 |
+
## Training and evaluation data
|
42 |
+
|
43 |
+
More information needed
|
44 |
+
|
45 |
+
## Training procedure
|
46 |
+
|
47 |
+
### Training hyperparameters
|
48 |
+
|
49 |
+
The following hyperparameters were used during training:
|
50 |
+
- learning_rate: 2e-05
|
51 |
+
- train_batch_size: 32
|
52 |
+
- eval_batch_size: 32
|
53 |
+
- seed: 42
|
54 |
+
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
55 |
+
- lr_scheduler_type: linear
|
56 |
+
- num_epochs: 10
|
57 |
+
|
58 |
+
### Training results
|
59 |
+
|
60 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision Samples | Recall Samples | F1 Samples | Precision Macro | Recall Macro | F1 Macro | Precision Micro | Recall Micro | F1 Micro | Precision Weighted | Recall Weighted | F1 Weighted |
|
61 |
+
|:-------------:|:-----:|:----:|:---------------:|:-----------------:|:--------------:|:----------:|:---------------:|:------------:|:--------:|:---------------:|:------------:|:--------:|:------------------:|:---------------:|:-----------:|
|
62 |
+
| No log | 1.0 | 5 | 0.6293 | 0.0783 | 0.3868 | 0.1220 | 0.4983 | 0.5865 | 0.3159 | 0.0751 | 0.375 | 0.1252 | 0.3532 | 0.375 | 0.1464 |
|
63 |
+
| 0.6408 | 2.0 | 10 | 0.5789 | 0.0787 | 0.2286 | 0.1079 | 0.7311 | 0.4717 | 0.3440 | 0.0839 | 0.2054 | 0.1192 | 0.5702 | 0.2054 | 0.0796 |
|
64 |
+
| 0.6408 | 3.0 | 15 | 0.5425 | 0.0708 | 0.0583 | 0.0554 | 0.9220 | 0.3953 | 0.3740 | 0.0706 | 0.0536 | 0.0609 | 0.8686 | 0.0536 | 0.0258 |
|
65 |
+
| 0.552 | 4.0 | 20 | 0.5135 | 0.1125 | 0.0271 | 0.0396 | 0.9759 | 0.3864 | 0.3719 | 0.0952 | 0.0357 | 0.0519 | 0.9634 | 0.0357 | 0.0110 |
|
66 |
+
| 0.552 | 5.0 | 25 | 0.4912 | 1.0 | 0.0 | 0.0 | 1.0 | 0.3636 | 0.3636 | 1.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 |
|
67 |
+
| 0.5007 | 6.0 | 30 | 0.4745 | 1.0 | 0.0 | 0.0 | 1.0 | 0.3636 | 0.3636 | 1.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 |
|
68 |
+
| 0.5007 | 7.0 | 35 | 0.4624 | 1.0 | 0.0 | 0.0 | 1.0 | 0.3636 | 0.3636 | 1.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 |
|
69 |
+
| 0.4713 | 8.0 | 40 | 0.4543 | 1.0 | 0.0 | 0.0 | 1.0 | 0.3636 | 0.3636 | 1.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 |
|
70 |
+
| 0.4713 | 9.0 | 45 | 0.4493 | 1.0 | 0.0 | 0.0 | 1.0 | 0.3636 | 0.3636 | 1.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 |
|
71 |
+
| 0.4567 | 10.0 | 50 | 0.4474 | 1.0 | 0.0 | 0.0 | 1.0 | 0.3636 | 0.3636 | 1.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 |
|
72 |
+
|
73 |
+
|
74 |
+
### Framework versions
|
75 |
+
|
76 |
+
- Transformers 4.46.0
|
77 |
+
- Pytorch 2.3.1
|
78 |
+
- Datasets 2.21.0
|
79 |
+
- Tokenizers 0.20.1
|