File size: 2,793 Bytes
610fd48
 
391590a
610fd48
 
9a18bbd
 
 
 
 
610fd48
 
 
 
 
 
 
 
 
 
391590a
9a18bbd
 
 
 
 
 
 
610fd48
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
793efc2
e514f32
610fd48
 
 
e514f32
610fd48
 
e514f32
610fd48
 
9a18bbd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
610fd48
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
---

license: apache-2.0
base_model: asapp/sew-d-tiny-100k-ft-ls100h
tags:
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: sewd_classifier
  results: []
---


<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# sewd_classifier



This model is a fine-tuned version of [asapp/sew-d-tiny-100k-ft-ls100h](https://huggingface.co/asapp/sew-d-tiny-100k-ft-ls100h) on an unknown dataset.

It achieves the following results on the evaluation set:

- Loss: 3.2176

- Accuracy: 0.1578

- Precision: 0.1069

- Recall: 0.1578

- F1: 0.1011

- Binary: 0.4046



## Model description



More information needed



## Intended uses & limitations



More information needed



## Training and evaluation data



More information needed



## Training procedure



### Training hyperparameters



The following hyperparameters were used during training:

- learning_rate: 3e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128

- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08

- lr_scheduler_type: linear

- num_epochs: 10
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1     | Binary |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|:------:|
| No log        | 0.86  | 50   | 4.3363          | 0.0340   | 0.0127    | 0.0340 | 0.0089 | 0.2745 |
| 4.403         | 1.72  | 100  | 4.0500          | 0.0364   | 0.0076    | 0.0364 | 0.0100 | 0.3073 |
| 4.1865        | 2.59  | 150  | 3.8094          | 0.0631   | 0.0352    | 0.0631 | 0.0271 | 0.3354 |
| 3.9457        | 3.45  | 200  | 3.6427          | 0.0777   | 0.0356    | 0.0777 | 0.0312 | 0.3507 |
| 3.791         | 4.31  | 250  | 3.5282          | 0.0947   | 0.0376    | 0.0947 | 0.0368 | 0.3604 |
| 3.6663        | 5.17  | 300  | 3.4610          | 0.1044   | 0.0790    | 0.1044 | 0.0529 | 0.3636 |
| 3.5798        | 6.03  | 350  | 3.3702          | 0.1238   | 0.0834    | 0.1238 | 0.0783 | 0.3801 |
| 3.5798        | 6.9   | 400  | 3.3180          | 0.1383   | 0.0987    | 0.1383 | 0.0915 | 0.3917 |
| 3.5087        | 7.76  | 450  | 3.2698          | 0.1578   | 0.1113    | 0.1578 | 0.1070 | 0.4046 |
| 3.4575        | 8.62  | 500  | 3.2399          | 0.1699   | 0.1264    | 0.1699 | 0.1176 | 0.4124 |
| 3.4108        | 9.48  | 550  | 3.2176          | 0.1578   | 0.1069    | 0.1578 | 0.1011 | 0.4046 |


### Framework versions

- Transformers 4.38.2
- Pytorch 2.3.0
- Datasets 2.19.1
- Tokenizers 0.15.1