Upload tokenizer
Browse files- README.md +3 -3
- added_tokens.json +6 -0
- special_tokens_map.json +15 -0
- spiece.model +3 -0
- tokenization_transformerlm.py +367 -0
- tokenizer_config.json +64 -0
README.md
CHANGED
@@ -1,9 +1,7 @@
|
|
1 |
---
|
2 |
-
license: apache-2.0
|
3 |
-
datasets:
|
4 |
-
- wiki40b
|
5 |
language:
|
6 |
- ja
|
|
|
7 |
tags:
|
8 |
- ja
|
9 |
- japanese
|
@@ -12,6 +10,8 @@ tags:
|
|
12 |
- jax
|
13 |
- flax
|
14 |
- lm1b
|
|
|
|
|
15 |
---
|
16 |
# transformer-lm-japanese-0.1b
|
17 |
|
|
|
1 |
---
|
|
|
|
|
|
|
2 |
language:
|
3 |
- ja
|
4 |
+
license: apache-2.0
|
5 |
tags:
|
6 |
- ja
|
7 |
- japanese
|
|
|
10 |
- jax
|
11 |
- flax
|
12 |
- lm1b
|
13 |
+
datasets:
|
14 |
+
- wiki40b
|
15 |
---
|
16 |
# transformer-lm-japanese-0.1b
|
17 |
|
added_tokens.json
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"<pad>": 30002,
|
3 |
+
"[CLS]": 30000,
|
4 |
+
"[MASK]": 30003,
|
5 |
+
"[SEP]": 30001
|
6 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": "[CLS]",
|
3 |
+
"cls_token": "[CLS]",
|
4 |
+
"eos_token": "[SEP]",
|
5 |
+
"mask_token": {
|
6 |
+
"content": "[MASK]",
|
7 |
+
"lstrip": true,
|
8 |
+
"normalized": false,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false
|
11 |
+
},
|
12 |
+
"pad_token": "<pad>",
|
13 |
+
"sep_token": "[SEP]",
|
14 |
+
"unk_token": "<unk>"
|
15 |
+
}
|
spiece.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7fd0e5d0f09e4e7c267e06e5da939a68e9fe4d9e3708109a5da478daef16e782
|
3 |
+
size 761433
|
tokenization_transformerlm.py
ADDED
@@ -0,0 +1,367 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2018 Google AI, Google Brain and the HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" Tokenization classes for ALBERT model."""
|
16 |
+
|
17 |
+
|
18 |
+
import os
|
19 |
+
import unicodedata
|
20 |
+
from shutil import copyfile
|
21 |
+
from typing import Any, Dict, List, Optional, Tuple
|
22 |
+
|
23 |
+
import sentencepiece as spm
|
24 |
+
from transformers.tokenization_utils import AddedToken, PreTrainedTokenizer
|
25 |
+
|
26 |
+
|
27 |
+
VOCAB_FILES_NAMES = {"vocab_file": "spiece.model"}
|
28 |
+
|
29 |
+
PRETRAINED_VOCAB_FILES_MAP = {
|
30 |
+
"vocab_file": {
|
31 |
+
"albert/albert-base-v1": "https://huggingface.co/albert/albert-base-v1/resolve/main/spiece.model",
|
32 |
+
"albert/albert-large-v1": "https://huggingface.co/albert/albert-large-v1/resolve/main/spiece.model",
|
33 |
+
"albert/albert-xlarge-v1": "https://huggingface.co/albert/albert-xlarge-v1/resolve/main/spiece.model",
|
34 |
+
"albert/albert-xxlarge-v1": "https://huggingface.co/albert/albert-xxlarge-v1/resolve/main/spiece.model",
|
35 |
+
"albert/albert-base-v2": "https://huggingface.co/albert/albert-base-v2/resolve/main/spiece.model",
|
36 |
+
"albert/albert-large-v2": "https://huggingface.co/albert/albert-large-v2/resolve/main/spiece.model",
|
37 |
+
"albert/albert-xlarge-v2": "https://huggingface.co/albert/albert-xlarge-v2/resolve/main/spiece.model",
|
38 |
+
"albert/albert-xxlarge-v2": "https://huggingface.co/albert/albert-xxlarge-v2/resolve/main/spiece.model",
|
39 |
+
}
|
40 |
+
}
|
41 |
+
|
42 |
+
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
|
43 |
+
"albert/albert-base-v1": 512,
|
44 |
+
"albert/albert-large-v1": 512,
|
45 |
+
"albert/albert-xlarge-v1": 512,
|
46 |
+
"albert/albert-xxlarge-v1": 512,
|
47 |
+
"albert/albert-base-v2": 512,
|
48 |
+
"albert/albert-large-v2": 512,
|
49 |
+
"albert/albert-xlarge-v2": 512,
|
50 |
+
"albert/albert-xxlarge-v2": 512,
|
51 |
+
}
|
52 |
+
|
53 |
+
SPIECE_UNDERLINE = "▁"
|
54 |
+
|
55 |
+
|
56 |
+
class TransformerLMTokenizer(PreTrainedTokenizer):
|
57 |
+
"""
|
58 |
+
Construct an ALBERT tokenizer. Based on [SentencePiece](https://github.com/google/sentencepiece).
|
59 |
+
|
60 |
+
This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to
|
61 |
+
this superclass for more information regarding those methods.
|
62 |
+
|
63 |
+
Args:
|
64 |
+
vocab_file (`str`):
|
65 |
+
[SentencePiece](https://github.com/google/sentencepiece) file (generally has a *.spm* extension) that
|
66 |
+
contains the vocabulary necessary to instantiate a tokenizer.
|
67 |
+
do_lower_case (`bool`, *optional*, defaults to `True`):
|
68 |
+
Whether or not to lowercase the input when tokenizing.
|
69 |
+
remove_space (`bool`, *optional*, defaults to `True`):
|
70 |
+
Whether or not to strip the text when tokenizing (removing excess spaces before and after the string).
|
71 |
+
keep_accents (`bool`, *optional*, defaults to `False`):
|
72 |
+
Whether or not to keep accents when tokenizing.
|
73 |
+
bos_token (`str`, *optional*, defaults to `"[CLS]"`):
|
74 |
+
The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token.
|
75 |
+
|
76 |
+
<Tip>
|
77 |
+
|
78 |
+
When building a sequence using special tokens, this is not the token that is used for the beginning of
|
79 |
+
sequence. The token used is the `cls_token`.
|
80 |
+
|
81 |
+
</Tip>
|
82 |
+
|
83 |
+
eos_token (`str`, *optional*, defaults to `"[SEP]"`):
|
84 |
+
The end of sequence token.
|
85 |
+
|
86 |
+
<Tip>
|
87 |
+
|
88 |
+
When building a sequence using special tokens, this is not the token that is used for the end of sequence.
|
89 |
+
The token used is the `sep_token`.
|
90 |
+
|
91 |
+
</Tip>
|
92 |
+
|
93 |
+
unk_token (`str`, *optional*, defaults to `"<unk>"`):
|
94 |
+
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
|
95 |
+
token instead.
|
96 |
+
sep_token (`str`, *optional*, defaults to `"[SEP]"`):
|
97 |
+
The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
|
98 |
+
sequence classification or for a text and a question for question answering. It is also used as the last
|
99 |
+
token of a sequence built with special tokens.
|
100 |
+
pad_token (`str`, *optional*, defaults to `"<pad>"`):
|
101 |
+
The token used for padding, for example when batching sequences of different lengths.
|
102 |
+
cls_token (`str`, *optional*, defaults to `"[CLS]"`):
|
103 |
+
The classifier token which is used when doing sequence classification (classification of the whole sequence
|
104 |
+
instead of per-token classification). It is the first token of the sequence when built with special tokens.
|
105 |
+
mask_token (`str`, *optional*, defaults to `"[MASK]"`):
|
106 |
+
The token used for masking values. This is the token used when training this model with masked language
|
107 |
+
modeling. This is the token which the model will try to predict.
|
108 |
+
sp_model_kwargs (`dict`, *optional*):
|
109 |
+
Will be passed to the `SentencePieceProcessor.__init__()` method. The [Python wrapper for
|
110 |
+
SentencePiece](https://github.com/google/sentencepiece/tree/master/python) can be used, among other things,
|
111 |
+
to set:
|
112 |
+
|
113 |
+
- `enable_sampling`: Enable subword regularization.
|
114 |
+
- `nbest_size`: Sampling parameters for unigram. Invalid for BPE-Dropout.
|
115 |
+
|
116 |
+
- `nbest_size = {0,1}`: No sampling is performed.
|
117 |
+
- `nbest_size > 1`: samples from the nbest_size results.
|
118 |
+
- `nbest_size < 0`: assuming that nbest_size is infinite and samples from the all hypothesis (lattice)
|
119 |
+
using forward-filtering-and-backward-sampling algorithm.
|
120 |
+
|
121 |
+
- `alpha`: Smoothing parameter for unigram sampling, and dropout probability of merge operations for
|
122 |
+
BPE-dropout.
|
123 |
+
|
124 |
+
Attributes:
|
125 |
+
sp_model (`SentencePieceProcessor`):
|
126 |
+
The *SentencePiece* processor that is used for every conversion (string, tokens and IDs).
|
127 |
+
"""
|
128 |
+
|
129 |
+
vocab_files_names = VOCAB_FILES_NAMES
|
130 |
+
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
|
131 |
+
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
|
132 |
+
|
133 |
+
def __init__(
|
134 |
+
self,
|
135 |
+
vocab_file,
|
136 |
+
do_lower_case=True,
|
137 |
+
remove_space=True,
|
138 |
+
keep_accents=False,
|
139 |
+
bos_token="[CLS]",
|
140 |
+
eos_token="[SEP]",
|
141 |
+
unk_token="<unk>",
|
142 |
+
sep_token="[SEP]",
|
143 |
+
pad_token="<pad>",
|
144 |
+
cls_token="[CLS]",
|
145 |
+
mask_token="[MASK]",
|
146 |
+
sp_model_kwargs: Optional[Dict[str, Any]] = None,
|
147 |
+
**kwargs,
|
148 |
+
) -> None:
|
149 |
+
# Mask token behave like a normal word, i.e. include the space before it and
|
150 |
+
# is included in the raw text, there should be a match in a non-normalized sentence.
|
151 |
+
mask_token = (
|
152 |
+
AddedToken(mask_token, lstrip=True, rstrip=False, normalized=False)
|
153 |
+
if isinstance(mask_token, str)
|
154 |
+
else mask_token
|
155 |
+
)
|
156 |
+
|
157 |
+
self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
|
158 |
+
|
159 |
+
self.do_lower_case = do_lower_case
|
160 |
+
self.remove_space = remove_space
|
161 |
+
self.keep_accents = keep_accents
|
162 |
+
self.vocab_file = vocab_file
|
163 |
+
|
164 |
+
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
|
165 |
+
self.sp_model.Load(vocab_file)
|
166 |
+
|
167 |
+
super().__init__(
|
168 |
+
do_lower_case=do_lower_case,
|
169 |
+
remove_space=remove_space,
|
170 |
+
keep_accents=keep_accents,
|
171 |
+
bos_token=bos_token,
|
172 |
+
eos_token=eos_token,
|
173 |
+
unk_token=unk_token,
|
174 |
+
sep_token=sep_token,
|
175 |
+
pad_token=pad_token,
|
176 |
+
cls_token=cls_token,
|
177 |
+
mask_token=mask_token,
|
178 |
+
sp_model_kwargs=self.sp_model_kwargs,
|
179 |
+
**kwargs,
|
180 |
+
)
|
181 |
+
|
182 |
+
@property
|
183 |
+
def vocab_size(self) -> int:
|
184 |
+
return len(self.sp_model)
|
185 |
+
|
186 |
+
def get_vocab(self) -> Dict[str, int]:
|
187 |
+
vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
|
188 |
+
vocab.update(self.added_tokens_encoder)
|
189 |
+
return vocab
|
190 |
+
|
191 |
+
def __getstate__(self):
|
192 |
+
state = self.__dict__.copy()
|
193 |
+
state["sp_model"] = None
|
194 |
+
return state
|
195 |
+
|
196 |
+
def __setstate__(self, d):
|
197 |
+
self.__dict__ = d
|
198 |
+
|
199 |
+
# for backward compatibility
|
200 |
+
if not hasattr(self, "sp_model_kwargs"):
|
201 |
+
self.sp_model_kwargs = {}
|
202 |
+
|
203 |
+
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
|
204 |
+
self.sp_model.Load(self.vocab_file)
|
205 |
+
|
206 |
+
def preprocess_text(self, inputs):
|
207 |
+
if self.remove_space:
|
208 |
+
outputs = " ".join(inputs.strip().split())
|
209 |
+
else:
|
210 |
+
outputs = inputs
|
211 |
+
outputs = outputs.replace("``", '"').replace("''", '"')
|
212 |
+
|
213 |
+
if not self.keep_accents:
|
214 |
+
outputs = unicodedata.normalize("NFKD", outputs)
|
215 |
+
outputs = "".join([c for c in outputs if not unicodedata.combining(c)])
|
216 |
+
if self.do_lower_case:
|
217 |
+
outputs = outputs.lower()
|
218 |
+
|
219 |
+
return outputs
|
220 |
+
|
221 |
+
def _tokenize(self, text: str) -> List[str]:
|
222 |
+
"""Tokenize a string."""
|
223 |
+
text = self.preprocess_text(text)
|
224 |
+
pieces = self.sp_model.encode(text, out_type=str)
|
225 |
+
new_pieces = []
|
226 |
+
for piece in pieces:
|
227 |
+
if len(piece) > 1 and piece[-1] == str(",") and piece[-2].isdigit():
|
228 |
+
# Logic to handle special cases see https://github.com/google-research/bert/blob/master/README.md#tokenization
|
229 |
+
# `9,9` -> ['▁9', ',', '9'] instead of [`_9,`, '9']
|
230 |
+
cur_pieces = self.sp_model.EncodeAsPieces(piece[:-1].replace(SPIECE_UNDERLINE, ""))
|
231 |
+
if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE:
|
232 |
+
if len(cur_pieces[0]) == 1:
|
233 |
+
cur_pieces = cur_pieces[1:]
|
234 |
+
else:
|
235 |
+
cur_pieces[0] = cur_pieces[0][1:]
|
236 |
+
cur_pieces.append(piece[-1])
|
237 |
+
new_pieces.extend(cur_pieces)
|
238 |
+
else:
|
239 |
+
new_pieces.append(piece)
|
240 |
+
|
241 |
+
return new_pieces
|
242 |
+
|
243 |
+
def _convert_token_to_id(self, token):
|
244 |
+
"""Converts a token (str) in an id using the vocab."""
|
245 |
+
return self.sp_model.PieceToId(token)
|
246 |
+
|
247 |
+
def _convert_id_to_token(self, index):
|
248 |
+
"""Converts an index (integer) in a token (str) using the vocab."""
|
249 |
+
return self.sp_model.IdToPiece(index)
|
250 |
+
|
251 |
+
def convert_tokens_to_string(self, tokens):
|
252 |
+
"""Converts a sequence of tokens (string) in a single string."""
|
253 |
+
current_sub_tokens = []
|
254 |
+
out_string = ""
|
255 |
+
prev_is_special = False
|
256 |
+
for token in tokens:
|
257 |
+
# make sure that special tokens are not decoded using sentencepiece model
|
258 |
+
if token in self.all_special_tokens:
|
259 |
+
if not prev_is_special:
|
260 |
+
out_string += " "
|
261 |
+
out_string += self.sp_model.decode(current_sub_tokens) + token
|
262 |
+
prev_is_special = True
|
263 |
+
current_sub_tokens = []
|
264 |
+
else:
|
265 |
+
current_sub_tokens.append(token)
|
266 |
+
prev_is_special = False
|
267 |
+
out_string += self.sp_model.decode(current_sub_tokens)
|
268 |
+
return out_string.strip()
|
269 |
+
|
270 |
+
def build_inputs_with_special_tokens(
|
271 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
272 |
+
) -> List[int]:
|
273 |
+
"""
|
274 |
+
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
|
275 |
+
adding special tokens. An ALBERT sequence has the following format:
|
276 |
+
|
277 |
+
- single sequence: `[CLS] X [SEP]`
|
278 |
+
- pair of sequences: `[CLS] A [SEP] B [SEP]`
|
279 |
+
|
280 |
+
Args:
|
281 |
+
token_ids_0 (`List[int]`):
|
282 |
+
List of IDs to which the special tokens will be added.
|
283 |
+
token_ids_1 (`List[int]`, *optional*):
|
284 |
+
Optional second list of IDs for sequence pairs.
|
285 |
+
|
286 |
+
Returns:
|
287 |
+
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
|
288 |
+
"""
|
289 |
+
sep = [self.sep_token_id]
|
290 |
+
cls = [self.cls_token_id]
|
291 |
+
if token_ids_1 is None:
|
292 |
+
return cls + token_ids_0 + sep
|
293 |
+
return cls + token_ids_0 + sep + token_ids_1 + sep
|
294 |
+
|
295 |
+
def get_special_tokens_mask(
|
296 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
|
297 |
+
) -> List[int]:
|
298 |
+
"""
|
299 |
+
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
|
300 |
+
special tokens using the tokenizer `prepare_for_model` method.
|
301 |
+
|
302 |
+
Args:
|
303 |
+
token_ids_0 (`List[int]`):
|
304 |
+
List of IDs.
|
305 |
+
token_ids_1 (`List[int]`, *optional*):
|
306 |
+
Optional second list of IDs for sequence pairs.
|
307 |
+
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
|
308 |
+
Whether or not the token list is already formatted with special tokens for the model.
|
309 |
+
|
310 |
+
Returns:
|
311 |
+
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
|
312 |
+
"""
|
313 |
+
|
314 |
+
if already_has_special_tokens:
|
315 |
+
return super().get_special_tokens_mask(
|
316 |
+
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
|
317 |
+
)
|
318 |
+
|
319 |
+
if token_ids_1 is not None:
|
320 |
+
return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1]
|
321 |
+
return [1] + ([0] * len(token_ids_0)) + [1]
|
322 |
+
|
323 |
+
def create_token_type_ids_from_sequences(
|
324 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
325 |
+
) -> List[int]:
|
326 |
+
"""
|
327 |
+
Create a mask from the two sequences passed to be used in a sequence-pair classification task. An ALBERT
|
328 |
+
sequence pair mask has the following format:
|
329 |
+
|
330 |
+
```
|
331 |
+
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
|
332 |
+
| first sequence | second sequence |
|
333 |
+
```
|
334 |
+
|
335 |
+
If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s).
|
336 |
+
|
337 |
+
Args:
|
338 |
+
token_ids_0 (`List[int]`):
|
339 |
+
List of IDs.
|
340 |
+
token_ids_1 (`List[int]`, *optional*):
|
341 |
+
Optional second list of IDs for sequence pairs.
|
342 |
+
|
343 |
+
Returns:
|
344 |
+
`List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
|
345 |
+
"""
|
346 |
+
sep = [self.sep_token_id]
|
347 |
+
cls = [self.cls_token_id]
|
348 |
+
|
349 |
+
if token_ids_1 is None:
|
350 |
+
return len(cls + token_ids_0 + sep) * [0]
|
351 |
+
return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1]
|
352 |
+
|
353 |
+
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
354 |
+
if not os.path.isdir(save_directory):
|
355 |
+
return
|
356 |
+
out_vocab_file = os.path.join(
|
357 |
+
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
|
358 |
+
)
|
359 |
+
|
360 |
+
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file):
|
361 |
+
copyfile(self.vocab_file, out_vocab_file)
|
362 |
+
elif not os.path.isfile(self.vocab_file):
|
363 |
+
with open(out_vocab_file, "wb") as fi:
|
364 |
+
content_spiece_model = self.sp_model.serialized_model_proto()
|
365 |
+
fi.write(content_spiece_model)
|
366 |
+
|
367 |
+
return (out_vocab_file,)
|
tokenizer_config.json
ADDED
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "<unk>",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"30000": {
|
12 |
+
"content": "[CLS]",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"30001": {
|
20 |
+
"content": "[SEP]",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"30002": {
|
28 |
+
"content": "<pad>",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"30003": {
|
36 |
+
"content": "[MASK]",
|
37 |
+
"lstrip": true,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"auto_map": {
|
45 |
+
"AutoTokenizer": [
|
46 |
+
"tokenization_transformerlm.TransformerLMTokenizer",
|
47 |
+
null
|
48 |
+
]
|
49 |
+
},
|
50 |
+
"bos_token": "[CLS]",
|
51 |
+
"clean_up_tokenization_spaces": true,
|
52 |
+
"cls_token": "[CLS]",
|
53 |
+
"do_lower_case": true,
|
54 |
+
"eos_token": "[SEP]",
|
55 |
+
"keep_accents": false,
|
56 |
+
"mask_token": "[MASK]",
|
57 |
+
"model_max_length": 1000000000000000019884624838656,
|
58 |
+
"pad_token": "<pad>",
|
59 |
+
"remove_space": true,
|
60 |
+
"sep_token": "[SEP]",
|
61 |
+
"sp_model_kwargs": {},
|
62 |
+
"tokenizer_class": "TransformerLMTokenizer",
|
63 |
+
"unk_token": "<unk>"
|
64 |
+
}
|