|
|
|
|
|
from dataclasses import dataclass
|
|
import torch
|
|
import torch.nn as nn
|
|
from torch.nn import functional as F
|
|
from torch.nn import LayerNorm
|
|
import math
|
|
import tiktoken
|
|
import inspect
|
|
|
|
|
|
|
|
|
|
class CausalSelfAttention(nn.Module):
|
|
|
|
def __init__(self, config):
|
|
super().__init__()
|
|
assert config.n_embd % config.n_head == 0
|
|
|
|
self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd)
|
|
|
|
self.c_proj = nn.Linear(config.n_embd, config.n_embd)
|
|
self.c_proj.NANOGPT_SCALE_INIT = 1
|
|
|
|
self.n_head = config.n_head
|
|
self.n_embd = config.n_embd
|
|
|
|
def forward(self, x):
|
|
B, T, C = x.size()
|
|
qkv = self.c_attn(x)
|
|
q, k, v = qkv.split(self.n_embd, dim=2)
|
|
k = k.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
|
|
q = q.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
|
|
v = v.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
|
|
y = F.scaled_dot_product_attention(q, k, v, is_causal=True)
|
|
y = y.transpose(1, 2).contiguous().view(B, T, C)
|
|
|
|
y = self.c_proj(y)
|
|
return y
|
|
|
|
|
|
|
|
class MLP(nn.Module):
|
|
|
|
def __init__(self, config):
|
|
super().__init__()
|
|
self.c_fc = nn.Linear(config.n_embd, 4 * config.n_embd)
|
|
self.gelu = nn.GELU(approximate='tanh')
|
|
self.c_proj = nn.Linear(4 * config.n_embd, config.n_embd)
|
|
self.c_proj.NANOGPT_SCALE_INIT = 1
|
|
|
|
def forward(self, x):
|
|
x = self.c_fc(x)
|
|
x = self.gelu(x)
|
|
x = self.c_proj(x)
|
|
return x
|
|
|
|
|
|
|
|
class Block(nn.Module):
|
|
|
|
def __init__(self, config):
|
|
super().__init__()
|
|
self.ln_1 = nn.LayerNorm(config.n_embd)
|
|
self.attn = CausalSelfAttention(config)
|
|
self.ln_2 = nn.LayerNorm(config.n_embd)
|
|
self.mlp = MLP(config)
|
|
|
|
def forward(self, x):
|
|
x = x + self.attn(self.ln_1(x))
|
|
x = x + self.mlp(self.ln_2(x))
|
|
return x
|
|
|
|
|
|
@dataclass
|
|
class GPTConfig:
|
|
block_size: int = 1024
|
|
vocab_size: int = 50257
|
|
n_layer: int = 8
|
|
n_head: int = 8
|
|
n_embd: int = 256
|
|
|
|
|
|
|
|
class GPT(nn.Module):
|
|
|
|
def __init__(self, config):
|
|
super().__init__()
|
|
self.config = config
|
|
|
|
self.transformer = nn.ModuleDict(dict(
|
|
wte = nn.Embedding(config.vocab_size, config.n_embd),
|
|
wpe = nn.Embedding(config.block_size, config.n_embd),
|
|
h = nn.ModuleList([Block(config) for _ in range(config.n_layer)]),
|
|
ln_f = nn.LayerNorm(config.n_embd),
|
|
))
|
|
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
|
|
|
|
|
|
self.transformer.wte.weight = self.lm_head.weight
|
|
|
|
|
|
self.apply(self._init_weights)
|
|
|
|
def _init_weights(self, module):
|
|
if isinstance(module, nn.Linear):
|
|
std = 0.02
|
|
if hasattr(module, 'NANOGPT_SCALE_INIT'):
|
|
std *= (2 * self.config.n_layer) ** -0.5
|
|
torch.nn.init.normal_(module.weight, mean=0.0, std=std)
|
|
if module.bias is not None:
|
|
torch.nn.init.zeros_(module.bias)
|
|
elif isinstance(module, nn.Embedding):
|
|
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
|
|
|
|
|
|
def forward(self, idx, targets=None):
|
|
|
|
B, T = idx.size()
|
|
assert T <= self.config.block_size, f"Cannot forward sequence of length {T}, block size is only {self.config.block_size}"
|
|
|
|
pos = torch.arange(0, T, dtype=torch.long, device= 'cuda' if torch.cuda.is_available() else "cpu")
|
|
pos_emb = self.transformer.wpe(pos)
|
|
tok_emb = self.transformer.wte(idx)
|
|
x = tok_emb + pos_emb
|
|
|
|
for block in self.transformer.h:
|
|
x = block(x)
|
|
|
|
x = self.transformer.ln_f(x)
|
|
logits = self.lm_head(x)
|
|
loss = None
|
|
if targets is not None:
|
|
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1))
|
|
return logits, loss
|
|
|
|
|
|
|
|
|
|
def configure_optimizers(self, weight_decay, learning_rate, device_type):
|
|
|
|
param_dict = {pn: p for pn, p in self.named_parameters()}
|
|
param_dict = {pn: p for pn, p in param_dict.items() if p.requires_grad}
|
|
|
|
|
|
decay_params = [p for n, p in param_dict.items() if p.dim() >= 2]
|
|
nodecay_params = [p for n, p in param_dict.items() if p.dim() < 2]
|
|
optim_groups = [
|
|
{'params': decay_params, 'weight_decay': weight_decay},
|
|
{'params': nodecay_params, 'weight_decay': 0.0}
|
|
]
|
|
num_decay_params = sum(p.numel() for p in decay_params)
|
|
num_nodecay_params = sum(p.numel() for p in nodecay_params)
|
|
|
|
print(f"num decayed parameter tensors: {len(decay_params)}, with {num_decay_params:,} parameters")
|
|
print(f"num non-decayed parameter tensors: {len(nodecay_params)}, with {num_nodecay_params:,} parameters")
|
|
|
|
|
|
fused_available = 'fused' in inspect.signature(torch.optim.AdamW).parameters
|
|
use_fused = fused_available and device_type == "cuda"
|
|
print(f"using fused AdamW: {use_fused}")
|
|
optimizer = torch.optim.AdamW(optim_groups, lr=learning_rate, betas=(0.9, 0.95), eps=1e-8, fused=use_fused)
|
|
return optimizer
|
|
|
|
|
|
device = 'cpu'
|
|
model = GPT(GPTConfig())
|
|
|
|
import torch
|
|
|
|
|
|
model.load_state_dict(torch.load("model.pth", map_location=torch.device('cpu')))
|
|
model.eval()
|
|
import tiktoken
|
|
enc = tiktoken.get_encoding("gpt2")
|
|
num_return_sequences = 5
|
|
max_length = 100
|
|
tokens = enc.encode("love in the air")
|
|
tokens = torch.tensor(tokens, dtype=torch.long)
|
|
tokens = tokens.unsqueeze(0).repeat(num_return_sequences, 1)
|
|
xgen = tokens.to(device)
|
|
sample_rng = torch.Generator(device=device)
|
|
sample_rng.manual_seed(42)
|
|
while xgen.size(1) < max_length:
|
|
with torch.no_grad():
|
|
logits, loss = model(xgen)
|
|
logits = logits[:, -1, :]
|
|
probs = F.softmax(logits, dim=-1)
|
|
topk_probs, topk_indices = torch.topk(probs, 50, dim=-1)
|
|
ix = torch.multinomial(topk_probs, 1, generator=sample_rng)
|
|
xcol = torch.gather(topk_indices, -1, ix)
|
|
xgen = torch.cat((xgen, xcol), dim=1)
|
|
for i in range(num_return_sequences):
|
|
tokens = xgen[i, :max_length].tolist()
|
|
decoded = enc.decode(tokens)
|
|
print(f"sample {i}: {decoded}") |