frett commited on
Commit
5c8b278
1 Parent(s): 6dd27f1

End of training

Browse files
Files changed (5) hide show
  1. README.md +22 -2
  2. all_results.json +15 -0
  3. eval_results.json +9 -0
  4. train_results.json +9 -0
  5. trainer_state.json +98 -0
README.md CHANGED
@@ -1,12 +1,29 @@
1
  ---
2
  library_name: transformers
 
 
3
  license: apache-2.0
4
  base_model: hfl/chinese-bert-wwm-ext
5
  tags:
6
  - generated_from_trainer
 
 
 
 
7
  model-index:
8
  - name: chinese_paragraph_bert-ext
9
- results: []
 
 
 
 
 
 
 
 
 
 
 
10
  ---
11
 
12
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -14,7 +31,10 @@ should probably proofread and complete it, then remove this comment. -->
14
 
15
  # chinese_paragraph_bert-ext
16
 
17
- This model is a fine-tuned version of [hfl/chinese-bert-wwm-ext](https://huggingface.co/hfl/chinese-bert-wwm-ext) on an unknown dataset.
 
 
 
18
 
19
  ## Model description
20
 
 
1
  ---
2
  library_name: transformers
3
+ language:
4
+ - zh
5
  license: apache-2.0
6
  base_model: hfl/chinese-bert-wwm-ext
7
  tags:
8
  - generated_from_trainer
9
+ datasets:
10
+ - chinese_paragraph_relevance
11
+ metrics:
12
+ - accuracy
13
  model-index:
14
  - name: chinese_paragraph_bert-ext
15
+ results:
16
+ - task:
17
+ name: Multiple Choice
18
+ type: multiple-choice
19
+ dataset:
20
+ name: Chinese Relevance Paragraphs
21
+ type: chinese_paragraph_relevance
22
+ args: relevant_paragraph
23
+ metrics:
24
+ - name: Accuracy
25
+ type: accuracy
26
+ value: 0.9617813229560852
27
  ---
28
 
29
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
31
 
32
  # chinese_paragraph_bert-ext
33
 
34
+ This model is a fine-tuned version of [hfl/chinese-bert-wwm-ext](https://huggingface.co/hfl/chinese-bert-wwm-ext) on the Chinese Relevance Paragraphs dataset.
35
+ It achieves the following results on the evaluation set:
36
+ - Loss: 0.1717
37
+ - Accuracy: 0.9618
38
 
39
  ## Model description
40
 
all_results.json ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 3.0,
3
+ "eval_accuracy": 0.9617813229560852,
4
+ "eval_loss": 0.17168329656124115,
5
+ "eval_runtime": 75.5186,
6
+ "eval_samples": 3009,
7
+ "eval_samples_per_second": 39.844,
8
+ "eval_steps_per_second": 2.503,
9
+ "total_flos": 6.855770591553946e+16,
10
+ "train_loss": 0.08668158495607596,
11
+ "train_runtime": 5343.4587,
12
+ "train_samples": 21714,
13
+ "train_samples_per_second": 12.191,
14
+ "train_steps_per_second": 0.762
15
+ }
eval_results.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 3.0,
3
+ "eval_accuracy": 0.9617813229560852,
4
+ "eval_loss": 0.17168329656124115,
5
+ "eval_runtime": 75.5186,
6
+ "eval_samples": 3009,
7
+ "eval_samples_per_second": 39.844,
8
+ "eval_steps_per_second": 2.503
9
+ }
train_results.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 3.0,
3
+ "total_flos": 6.855770591553946e+16,
4
+ "train_loss": 0.08668158495607596,
5
+ "train_runtime": 5343.4587,
6
+ "train_samples": 21714,
7
+ "train_samples_per_second": 12.191,
8
+ "train_steps_per_second": 0.762
9
+ }
trainer_state.json ADDED
@@ -0,0 +1,98 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 3.0,
5
+ "eval_steps": 500,
6
+ "global_step": 4074,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.36818851251840945,
13
+ "grad_norm": 14.467572212219238,
14
+ "learning_rate": 2.6318114874815905e-05,
15
+ "loss": 0.198,
16
+ "step": 500
17
+ },
18
+ {
19
+ "epoch": 0.7363770250368189,
20
+ "grad_norm": 10.934176445007324,
21
+ "learning_rate": 2.263622974963181e-05,
22
+ "loss": 0.1377,
23
+ "step": 1000
24
+ },
25
+ {
26
+ "epoch": 1.1045655375552283,
27
+ "grad_norm": 0.5147254467010498,
28
+ "learning_rate": 1.8954344624447718e-05,
29
+ "loss": 0.1138,
30
+ "step": 1500
31
+ },
32
+ {
33
+ "epoch": 1.4727540500736378,
34
+ "grad_norm": 33.273719787597656,
35
+ "learning_rate": 1.5272459499263623e-05,
36
+ "loss": 0.0751,
37
+ "step": 2000
38
+ },
39
+ {
40
+ "epoch": 1.8409425625920472,
41
+ "grad_norm": 7.599516868591309,
42
+ "learning_rate": 1.1590574374079529e-05,
43
+ "loss": 0.0707,
44
+ "step": 2500
45
+ },
46
+ {
47
+ "epoch": 2.2091310751104567,
48
+ "grad_norm": 13.896529197692871,
49
+ "learning_rate": 7.908689248895435e-06,
50
+ "loss": 0.0569,
51
+ "step": 3000
52
+ },
53
+ {
54
+ "epoch": 2.5773195876288657,
55
+ "grad_norm": 12.114886283874512,
56
+ "learning_rate": 4.2268041237113405e-06,
57
+ "loss": 0.024,
58
+ "step": 3500
59
+ },
60
+ {
61
+ "epoch": 2.9455081001472756,
62
+ "grad_norm": 0.2183772623538971,
63
+ "learning_rate": 5.44918998527246e-07,
64
+ "loss": 0.0249,
65
+ "step": 4000
66
+ },
67
+ {
68
+ "epoch": 3.0,
69
+ "step": 4074,
70
+ "total_flos": 6.855770591553946e+16,
71
+ "train_loss": 0.08668158495607596,
72
+ "train_runtime": 5343.4587,
73
+ "train_samples_per_second": 12.191,
74
+ "train_steps_per_second": 0.762
75
+ }
76
+ ],
77
+ "logging_steps": 500,
78
+ "max_steps": 4074,
79
+ "num_input_tokens_seen": 0,
80
+ "num_train_epochs": 3,
81
+ "save_steps": 500,
82
+ "stateful_callbacks": {
83
+ "TrainerControl": {
84
+ "args": {
85
+ "should_epoch_stop": false,
86
+ "should_evaluate": false,
87
+ "should_log": false,
88
+ "should_save": true,
89
+ "should_training_stop": true
90
+ },
91
+ "attributes": {}
92
+ }
93
+ },
94
+ "total_flos": 6.855770591553946e+16,
95
+ "train_batch_size": 16,
96
+ "trial_name": null,
97
+ "trial_params": null
98
+ }