Edit model card

simpletuner-lora-nvzhu2

This is a LyCORIS adapter derived from black-forest-labs/FLUX.1-dev.

The main validation prompt used during training was:

an elegant and timeless portrait of nvzhu2, exuding grace and sophistication

Validation settings

  • CFG: 3.0
  • CFG Rescale: 0.0
  • Steps: 20
  • Sampler: None
  • Seed: 427
  • Resolution: 1024x768

Note: The validation settings are not necessarily the same as the training settings.

You can find some example images in the following gallery:

Prompt
unconditional (blank prompt)
Negative Prompt
blurry, cropped, ugly
Prompt
a breathtaking anime-style portrait of <nvzhu2>, capturing her essence with vibrant colors and expressive features
Negative Prompt
blurry, cropped, ugly
Prompt
a high-quality, detailed photograph of <nvzhu2> as a sous-chef, immersed in the art of culinary creation
Negative Prompt
blurry, cropped, ugly
Prompt
a lifelike and intimate portrait of <nvzhu2>, showcasing her unique personality and charm
Negative Prompt
blurry, cropped, ugly
Prompt
a cinematic, visually stunning photo of <nvzhu2>, emphasizing her dramatic and captivating presence
Negative Prompt
blurry, cropped, ugly
Prompt
an elegant and timeless portrait of <nvzhu2>, exuding grace and sophistication
Negative Prompt
blurry, cropped, ugly
Prompt
a dynamic and adventurous photo of <nvzhu2>, captured in an exciting, action-filled moment
Negative Prompt
blurry, cropped, ugly
Prompt
a mysterious and enigmatic portrait of <nvzhu2>, shrouded in shadows and intrigue
Negative Prompt
blurry, cropped, ugly
Prompt
a vintage-style portrait of <nvzhu2>, evoking the charm and nostalgia of a bygone era
Negative Prompt
blurry, cropped, ugly
Prompt
an artistic and abstract representation of <nvzhu2>, blending creativity with visual storytelling
Negative Prompt
blurry, cropped, ugly
Prompt
a futuristic and cutting-edge portrayal of <nvzhu2>, set against a backdrop of advanced technology
Negative Prompt
blurry, cropped, ugly
Prompt
an elegant and timeless portrait of nvzhu2, exuding grace and sophistication
Negative Prompt
blurry, cropped, ugly

The text encoder was not trained. You may reuse the base model text encoder for inference.

Training settings

  • Training epochs: 5
  • Training steps: 3000
  • Learning rate: 0.0001
  • Effective batch size: 1
    • Micro-batch size: 1
    • Gradient accumulation steps: 1
    • Number of GPUs: 1
  • Prediction type: flow-matching
  • Rescaled betas zero SNR: False
  • Optimizer: optimi-stableadamwweight_decay=1e-3
  • Precision: Pure BF16
  • Quantised: Yes: int8-quanto
  • Xformers: Not used
  • LyCORIS Config:
{
    "algo": "lokr",
    "multiplier": 1.0,
    "linear_dim": 10000,
    "linear_alpha": 1,
    "factor": 16,
    "apply_preset": {
        "target_module": [
            "FluxTransformerBlock",
            "FluxSingleTransformerBlock"
        ],
        "module_algo_map": {
            "Attention": {
                "factor": 16
            },
            "FeedForward": {
                "factor": 8
            }
        }
    }
}

Datasets

nvzhu2-dataset-1536

  • Repeats: 0
  • Total number of images: 88
  • Total number of aspect buckets: 1
  • Resolution: 2.359296 megapixels
  • Cropped: False
  • Crop style: None
  • Crop aspect: None

nvzhu2-dataset-1024

  • Repeats: 0
  • Total number of images: 88
  • Total number of aspect buckets: 2
  • Resolution: 1.048576 megapixels
  • Cropped: False
  • Crop style: None
  • Crop aspect: None

nvzhu2-dataset-512

  • Repeats: 0
  • Total number of images: 88
  • Total number of aspect buckets: 1
  • Resolution: 0.262144 megapixels
  • Cropped: False
  • Crop style: None
  • Crop aspect: None

nvzhu2-dataset-1536-crop

  • Repeats: 0
  • Total number of images: 88
  • Total number of aspect buckets: 1
  • Resolution: 2.359296 megapixels
  • Cropped: True
  • Crop style: random
  • Crop aspect: square

nvzhu2-dataset_1024-crop

  • Repeats: 0
  • Total number of images: 88
  • Total number of aspect buckets: 1
  • Resolution: 1.048576 megapixels
  • Cropped: True
  • Crop style: random
  • Crop aspect: square

nvzhu2-dataset_512-crop

  • Repeats: 0
  • Total number of images: 88
  • Total number of aspect buckets: 1
  • Resolution: 0.262144 megapixels
  • Cropped: True
  • Crop style: random
  • Crop aspect: square

Inference

import torch
from diffusers import DiffusionPipeline
from lycoris import create_lycoris_from_weights

model_id = 'black-forest-labs/FLUX.1-dev'
adapter_id = 'pytorch_lora_weights.safetensors' # you will have to download this manually
lora_scale = 1.0
wrapper, _ = create_lycoris_from_weights(lora_scale, adapter_id, pipeline.transformer)
wrapper.merge_to()

prompt = "an elegant and timeless portrait of nvzhu2, exuding grace and sophistication"

pipeline.to('cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu')
image = pipeline(
    prompt=prompt,
    num_inference_steps=20,
    generator=torch.Generator(device='cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu').manual_seed(1641421826),
    width=1024,
    height=768,
    guidance_scale=3.0,
).images[0]
image.save("output.png", format="PNG")
Downloads last month
16
Inference API
Examples

Model tree for frank-chieng/simpletuner-lora-nvzhu2

Adapter
(7429)
this model