update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: cc-by-nc-4.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
metrics:
|
6 |
+
- wer
|
7 |
+
model-index:
|
8 |
+
- name: wav2vec2-base-finetune-vi-v6
|
9 |
+
results: []
|
10 |
+
---
|
11 |
+
|
12 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
13 |
+
should probably proofread and complete it, then remove this comment. -->
|
14 |
+
|
15 |
+
# wav2vec2-base-finetune-vi-v6
|
16 |
+
|
17 |
+
This model is a fine-tuned version of [nguyenvulebinh/wav2vec2-large-vi](https://huggingface.co/nguyenvulebinh/wav2vec2-large-vi) on the None dataset.
|
18 |
+
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 0.1796
|
20 |
+
- Wer: 0.1328
|
21 |
+
|
22 |
+
## Model description
|
23 |
+
|
24 |
+
More information needed
|
25 |
+
|
26 |
+
## Intended uses & limitations
|
27 |
+
|
28 |
+
More information needed
|
29 |
+
|
30 |
+
## Training and evaluation data
|
31 |
+
|
32 |
+
More information needed
|
33 |
+
|
34 |
+
## Training procedure
|
35 |
+
|
36 |
+
### Training hyperparameters
|
37 |
+
|
38 |
+
The following hyperparameters were used during training:
|
39 |
+
- learning_rate: 0.0001
|
40 |
+
- train_batch_size: 16
|
41 |
+
- eval_batch_size: 8
|
42 |
+
- seed: 42
|
43 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
44 |
+
- lr_scheduler_type: linear
|
45 |
+
- lr_scheduler_warmup_steps: 1000
|
46 |
+
- num_epochs: 22
|
47 |
+
|
48 |
+
### Training results
|
49 |
+
|
50 |
+
| Training Loss | Epoch | Step | Validation Loss | Wer |
|
51 |
+
|:-------------:|:-----:|:----:|:---------------:|:------:|
|
52 |
+
| 16.006 | 1.18 | 500 | 3.8945 | 0.9994 |
|
53 |
+
| 3.4476 | 2.37 | 1000 | 3.3364 | 0.9994 |
|
54 |
+
| 2.1366 | 3.55 | 1500 | 0.4973 | 0.3117 |
|
55 |
+
| 0.4721 | 4.74 | 2000 | 0.2702 | 0.1827 |
|
56 |
+
| 0.288 | 5.92 | 2500 | 0.2183 | 0.1578 |
|
57 |
+
| 0.2313 | 7.11 | 3000 | 0.2134 | 0.1498 |
|
58 |
+
| 0.2001 | 8.29 | 3500 | 0.1951 | 0.1448 |
|
59 |
+
| 0.1673 | 9.48 | 4000 | 0.1923 | 0.1391 |
|
60 |
+
| 0.1575 | 10.66 | 4500 | 0.1835 | 0.1419 |
|
61 |
+
| 0.1437 | 11.85 | 5000 | 0.1859 | 0.1382 |
|
62 |
+
| 0.1293 | 13.03 | 5500 | 0.1936 | 0.1371 |
|
63 |
+
| 0.121 | 14.22 | 6000 | 0.1915 | 0.1359 |
|
64 |
+
| 0.1159 | 15.4 | 6500 | 0.1814 | 0.1344 |
|
65 |
+
| 0.1093 | 16.59 | 7000 | 0.1820 | 0.1342 |
|
66 |
+
| 0.1015 | 17.77 | 7500 | 0.1789 | 0.1350 |
|
67 |
+
| 0.097 | 18.96 | 8000 | 0.1881 | 0.1337 |
|
68 |
+
| 0.093 | 20.14 | 8500 | 0.1841 | 0.1331 |
|
69 |
+
| 0.0928 | 21.33 | 9000 | 0.1796 | 0.1328 |
|
70 |
+
|
71 |
+
|
72 |
+
### Framework versions
|
73 |
+
|
74 |
+
- Transformers 4.30.2
|
75 |
+
- Pytorch 2.0.0
|
76 |
+
- Datasets 2.8.0
|
77 |
+
- Tokenizers 0.13.3
|