update model card README.md
Browse files
README.md
CHANGED
@@ -7,16 +7,6 @@ metrics:
|
|
7 |
model-index:
|
8 |
- name: wav2vec2-base-finetune-vi-v2
|
9 |
results: []
|
10 |
-
widget:
|
11 |
-
- example_title: SOICT 2023 - SLU public test 1
|
12 |
-
src: >-
|
13 |
-
https://huggingface.co/foxxy-hm/wav2vec2-base-finetune-vi/raw/main/audio-test/055R7BruAa333g9teFfamQH.wav
|
14 |
-
- example_title: SOICT 2023 - SLU public test 2
|
15 |
-
src: >-
|
16 |
-
https://huggingface.co/foxxy-hm/wav2vec2-base-finetune-vi/raw/main/audio-test/0BLHhoJexE8THB8BrsZxWbh.wav
|
17 |
-
- example_title: SOICT 2023 - SLU public test 3
|
18 |
-
src: >-
|
19 |
-
https://huggingface.co/foxxy-hm/wav2vec2-base-finetune-vi/raw/main/audio-test/1ArUTGWJQ9YALH2xaNhU6GV.wav
|
20 |
---
|
21 |
|
22 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -26,8 +16,8 @@ should probably proofread and complete it, then remove this comment. -->
|
|
26 |
|
27 |
This model is a fine-tuned version of [nguyenvulebinh/wav2vec2-base-vietnamese-250h](https://huggingface.co/nguyenvulebinh/wav2vec2-base-vietnamese-250h) on the None dataset.
|
28 |
It achieves the following results on the evaluation set:
|
29 |
-
- Loss:
|
30 |
-
- Wer: 0.
|
31 |
|
32 |
## Model description
|
33 |
|
@@ -46,23 +36,48 @@ More information needed
|
|
46 |
### Training hyperparameters
|
47 |
|
48 |
The following hyperparameters were used during training:
|
49 |
-
- learning_rate:
|
50 |
- train_batch_size: 8
|
51 |
- eval_batch_size: 8
|
52 |
- seed: 42
|
53 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
54 |
- lr_scheduler_type: linear
|
55 |
- lr_scheduler_warmup_steps: 1000
|
56 |
-
- num_epochs:
|
57 |
|
58 |
### Training results
|
59 |
|
60 |
-
| Training Loss | Epoch | Step
|
61 |
-
|
62 |
-
|
|
63 |
-
|
|
64 |
-
|
|
65 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
|
67 |
|
68 |
### Framework versions
|
|
|
7 |
model-index:
|
8 |
- name: wav2vec2-base-finetune-vi-v2
|
9 |
results: []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
---
|
11 |
|
12 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
16 |
|
17 |
This model is a fine-tuned version of [nguyenvulebinh/wav2vec2-base-vietnamese-250h](https://huggingface.co/nguyenvulebinh/wav2vec2-base-vietnamese-250h) on the None dataset.
|
18 |
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 0.2294
|
20 |
+
- Wer: 0.1457
|
21 |
|
22 |
## Model description
|
23 |
|
|
|
36 |
### Training hyperparameters
|
37 |
|
38 |
The following hyperparameters were used during training:
|
39 |
+
- learning_rate: 0.0001
|
40 |
- train_batch_size: 8
|
41 |
- eval_batch_size: 8
|
42 |
- seed: 42
|
43 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
44 |
- lr_scheduler_type: linear
|
45 |
- lr_scheduler_warmup_steps: 1000
|
46 |
+
- num_epochs: 20
|
47 |
|
48 |
### Training results
|
49 |
|
50 |
+
| Training Loss | Epoch | Step | Validation Loss | Wer |
|
51 |
+
|:-------------:|:-----:|:-----:|:---------------:|:------:|
|
52 |
+
| 13.1354 | 0.67 | 500 | 3.0881 | 1.0186 |
|
53 |
+
| 2.2088 | 1.34 | 1000 | 0.9805 | 0.4257 |
|
54 |
+
| 1.122 | 2.0 | 1500 | 0.4928 | 0.2850 |
|
55 |
+
| 0.7567 | 2.67 | 2000 | 0.4217 | 0.2466 |
|
56 |
+
| 0.627 | 3.34 | 2500 | 0.3889 | 0.2212 |
|
57 |
+
| 0.5369 | 4.01 | 3000 | 0.3496 | 0.2131 |
|
58 |
+
| 0.4485 | 4.67 | 3500 | 0.3239 | 0.1994 |
|
59 |
+
| 0.4478 | 5.34 | 4000 | 0.3143 | 0.1944 |
|
60 |
+
| 0.4013 | 6.01 | 4500 | 0.2989 | 0.1871 |
|
61 |
+
| 0.4542 | 6.68 | 5000 | 0.2996 | 0.1871 |
|
62 |
+
| 0.351 | 7.34 | 5500 | 0.2719 | 0.1736 |
|
63 |
+
| 0.3236 | 8.01 | 6000 | 0.2865 | 0.1702 |
|
64 |
+
| 0.2954 | 8.68 | 6500 | 0.2708 | 0.1636 |
|
65 |
+
| 0.3533 | 9.35 | 7000 | 0.2712 | 0.1639 |
|
66 |
+
| 0.2996 | 10.01 | 7500 | 0.2609 | 0.1621 |
|
67 |
+
| 0.2595 | 10.68 | 8000 | 0.2450 | 0.1627 |
|
68 |
+
| 0.2914 | 11.35 | 8500 | 0.2748 | 0.1596 |
|
69 |
+
| 0.253 | 12.02 | 9000 | 0.2496 | 0.1552 |
|
70 |
+
| 0.2314 | 12.68 | 9500 | 0.2496 | 0.1549 |
|
71 |
+
| 0.2232 | 13.35 | 10000 | 0.2594 | 0.1557 |
|
72 |
+
| 0.2206 | 14.02 | 10500 | 0.2485 | 0.1529 |
|
73 |
+
| 0.2026 | 14.69 | 11000 | 0.2365 | 0.1522 |
|
74 |
+
| 0.2009 | 15.35 | 11500 | 0.2396 | 0.1513 |
|
75 |
+
| 0.205 | 16.02 | 12000 | 0.2433 | 0.1499 |
|
76 |
+
| 0.207 | 16.69 | 12500 | 0.2363 | 0.1496 |
|
77 |
+
| 0.1895 | 17.36 | 13000 | 0.2280 | 0.1481 |
|
78 |
+
| 0.1991 | 18.02 | 13500 | 0.2352 | 0.1481 |
|
79 |
+
| 0.2109 | 18.69 | 14000 | 0.2353 | 0.1477 |
|
80 |
+
| 0.1959 | 19.36 | 14500 | 0.2294 | 0.1457 |
|
81 |
|
82 |
|
83 |
### Framework versions
|