forestav commited on
Commit
7168a70
·
verified ·
1 Parent(s): 8386115

Add new SentenceTransformer model

Browse files
.gitattributes CHANGED
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
37
+ unigram.json filter=lfs diff=lfs merge=lfs -text
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 384,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,310 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - sentence-transformers
4
+ - sentence-similarity
5
+ - feature-extraction
6
+ - generated_from_trainer
7
+ - dataset_size:5
8
+ - loss:CosineSimilarityLoss
9
+ base_model: sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
10
+ pipeline_tag: sentence-similarity
11
+ library_name: sentence-transformers
12
+ ---
13
+
14
+ # SentenceTransformer based on sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
15
+
16
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
17
+
18
+ ## Model Details
19
+
20
+ ### Model Description
21
+ - **Model Type:** Sentence Transformer
22
+ - **Base model:** [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2) <!-- at revision 8d6b950845285729817bf8e1af1861502c2fed0c -->
23
+ - **Maximum Sequence Length:** 128 tokens
24
+ - **Output Dimensionality:** 384 dimensions
25
+ - **Similarity Function:** Cosine Similarity
26
+ <!-- - **Training Dataset:** Unknown -->
27
+ <!-- - **Language:** Unknown -->
28
+ <!-- - **License:** Unknown -->
29
+
30
+ ### Model Sources
31
+
32
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
33
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
34
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
35
+
36
+ ### Full Model Architecture
37
+
38
+ ```
39
+ SentenceTransformer(
40
+ (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
41
+ (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
42
+ )
43
+ ```
44
+
45
+ ## Usage
46
+
47
+ ### Direct Usage (Sentence Transformers)
48
+
49
+ First install the Sentence Transformers library:
50
+
51
+ ```bash
52
+ pip install -U sentence-transformers
53
+ ```
54
+
55
+ Then you can load this model and run inference.
56
+ ```python
57
+ from sentence_transformers import SentenceTransformer
58
+
59
+ # Download from the 🤗 Hub
60
+ model = SentenceTransformer("forestav/job_matching_sentence_transformer")
61
+ # Run inference
62
+ sentences = [
63
+ 'The weather is lovely today.',
64
+ "It's so sunny outside!",
65
+ 'He drove to the stadium.',
66
+ ]
67
+ embeddings = model.encode(sentences)
68
+ print(embeddings.shape)
69
+ # [3, 384]
70
+
71
+ # Get the similarity scores for the embeddings
72
+ similarities = model.similarity(embeddings, embeddings)
73
+ print(similarities.shape)
74
+ # [3, 3]
75
+ ```
76
+
77
+ <!--
78
+ ### Direct Usage (Transformers)
79
+
80
+ <details><summary>Click to see the direct usage in Transformers</summary>
81
+
82
+ </details>
83
+ -->
84
+
85
+ <!--
86
+ ### Downstream Usage (Sentence Transformers)
87
+
88
+ You can finetune this model on your own dataset.
89
+
90
+ <details><summary>Click to expand</summary>
91
+
92
+ </details>
93
+ -->
94
+
95
+ <!--
96
+ ### Out-of-Scope Use
97
+
98
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
99
+ -->
100
+
101
+ <!--
102
+ ## Bias, Risks and Limitations
103
+
104
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
105
+ -->
106
+
107
+ <!--
108
+ ### Recommendations
109
+
110
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
111
+ -->
112
+
113
+ ## Training Details
114
+
115
+ ### Training Dataset
116
+
117
+ #### Unnamed Dataset
118
+
119
+
120
+ * Size: 5 training samples
121
+ * Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>label</code>
122
+ * Approximate statistics based on the first 5 samples:
123
+ | | sentence_0 | sentence_1 | label |
124
+ |:--------|:-------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|:--------------------------------------------------------------|
125
+ | type | string | string | float |
126
+ | details | <ul><li>min: 128 tokens</li><li>mean: 128.0 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>min: 128 tokens</li><li>mean: 128.0 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.4</li><li>max: 1.0</li></ul> |
127
+ * Samples:
128
+ | sentence_0 | sentence_1 | label |
129
+ |:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------|
130
+ | <code>Filip Orestav <br>Transformatorvägen 6, Sollentuna , Sweden <br>+46 76 873 30 77 | [email protected] | LinkedIn <br> <br>Ambitious fourth -year Industrial Engineering and Management student at KTH, pursuing a Master's in Machine <br>Learning. Entrepreneurial spirit with a track record of founding a successful consulting and investment company, <br>optimizing operations at a fund company, leading people at a supermarket store and driving growth for Sweden's <br>largest youth platform. <br> <br>EDUCATION <br>KTH Royal Institute of Technology Stockholm, Sweden <br>M.Sc. Industrial Engineering and Management GPA: 4. 57/5 <br>Master in Machine Learning Expected graduation 2026 <br> <br>Rudbecksgymnasiet Stockholm , Sweden <br>Natural Sciences 21.09/22.5 <br> Graduated 2021 <br>KEY SKILLS <br>• TECHNICAL: Python, Java, JavaScript, SQL, Machine Learning, Deep Learning <br>• BUSINESS: Financial analysis, Business analysis, Consulting, Project management , Strategic planning <br>• SOFT SKILLS: Critical thinking, Problem solving, Tim...</code> | <code>Nu söker vi nya medarbetare!<br>Vänligen märk din ansökan med heltid, då vi även söker extrapersonal.<br>Söker du ett utvecklande arbete i ett expansivt företag, då kan detta vara någonting för dig! Mattvaruhuset AB är Sveriges största butikskedja för mattor och golv med enheter i Bromma, Huddinge och Danderyd. Med en internet-handel på kraftigt uppåtgående är vi en stadigt växande aktör som just nu söker nya medarbetare till vår enhet i Danderyd.<br>Som medarbetare hos oss på Mattvaruhuset är du med i teamet som ansvarar för att hantera beställningar, ta hand om våra kunder och hålla butiken i toppskick.<br>Det är viktigt att du är motiverad och engagerad och tycker om att ha mycket kundkontakt.<br>Dina huvudsakliga arbetsuppgifter är försäljning, hantera beställningar samt varuhantering.<br>För att du ska passa till arbetet så bör du ha ett gott ordningssinne, uppskatta ett högt tempo samt ha en god fysik då det förekommer tunga lyft.<br>Mattvaruhuset öppnade sitt första varuhus redan 1987 och är idag Sv...</code> | <code>0.0</code> |
131
+ | <code>Filip Orestav <br>Transformatorvägen 6, Sollentuna , Sweden <br>+46 76 873 30 77 | [email protected] | LinkedIn <br> <br>Ambitious fourth -year Industrial Engineering and Management student at KTH, pursuing a Master's in Machine <br>Learning. Entrepreneurial spirit with a track record of founding a successful consulting and investment company, <br>optimizing operations at a fund company, leading people at a supermarket store and driving growth for Sweden's <br>largest youth platform. <br> <br>EDUCATION <br>KTH Royal Institute of Technology Stockholm, Sweden <br>M.Sc. Industrial Engineering and Management GPA: 4. 57/5 <br>Master in Machine Learning Expected graduation 2026 <br> <br>Rudbecksgymnasiet Stockholm , Sweden <br>Natural Sciences 21.09/22.5 <br> Graduated 2021 <br>KEY SKILLS <br>• TECHNICAL: Python, Java, JavaScript, SQL, Machine Learning, Deep Learning <br>• BUSINESS: Financial analysis, Business analysis, Consulting, Project management , Strategic planning <br>• SOFT SKILLS: Critical thinking, Problem solving, Tim...</code> | <code>Vill du jobba på ett av Sveriges mest attraktiva företag som erbjuder en inkluderande kultur och personlig utveckling? Är du intresserad av att arbeta i en teamorienterad organisation där du får stöd och vägledning från erfarna kollegor? Starta din karriär som junior konsult inom vår Technology risk avdelning på EY! <br> <br>Vi söker nu juniora konsulter till vårt kontor i Stockholm och Göteborg med start i augusti 2025 och riktar oss mot dig som är nyutexaminerad inom områdena, ekonomi, IT-säkerhet, systemvetenskap, ingenjör eller motsvarande från universitet eller högskola. <br> <br><br><br>Din roll som konsult hos oss <br><br><br>Är du redo att ta dig an utmaningen att hjälpa organisationer att navigera genom det ständigt föränderliga landskapet av teknologiska risker? Vi söker nu drivna, analytiska och detaljorienterade konsulter som kan ansluta sig till vårt dynamiska team inom Technology Risk. Hos oss kommer du att arbeta med en mångsidig klientportfölj som sträcker sig över både den privata och offentliga...</code> | <code>1.0</code> |
132
+ | <code>Filip Orestav <br>Transformatorvägen 6, Sollentuna , Sweden <br>+46 76 873 30 77 | [email protected] | LinkedIn <br> <br>Ambitious fourth -year Industrial Engineering and Management student at KTH, pursuing a Master's in Machine <br>Learning. Entrepreneurial spirit with a track record of founding a successful consulting and investment company, <br>optimizing operations at a fund company, leading people at a supermarket store and driving growth for Sweden's <br>largest youth platform. <br> <br>EDUCATION <br>KTH Royal Institute of Technology Stockholm, Sweden <br>M.Sc. Industrial Engineering and Management GPA: 4. 57/5 <br>Master in Machine Learning Expected graduation 2026 <br> <br>Rudbecksgymnasiet Stockholm , Sweden <br>Natural Sciences 21.09/22.5 <br> Graduated 2021 <br>KEY SKILLS <br>• TECHNICAL: Python, Java, JavaScript, SQL, Machine Learning, Deep Learning <br>• BUSINESS: Financial analysis, Business analysis, Consulting, Project management , Strategic planning <br>• SOFT SKILLS: Critical thinking, Problem solving, Tim...</code> | <code>Jæren Kulde söker en erfaren och driven kyltekniker som vill ta nästa steg i karriären och kombinera tekniskt arbete med strategiskt ledarskap. Vi erbjuder en unik möjlighet att utvecklas både tekniskt och som ledare, med en tydlig målsättning att överta rollen som företagets framtida VD.<br>Om Jæren Kulde<br>Jæren Kulde är specialiserade på projektering, installation och underhåll av kyl- och frysanläggningar i varierande storlekar, från mindre lösningar till stora industriella system. Med ett starkt fokus på energieffektivitet och återvinning av överskottsvärme levererar vi hållbara lösningar till kunder inom livsmedelsindustrin och VVS-branschen. Vi är stolta över vårt innovativa arbetssätt och vårt starka engagemang för kvalitet.<br>Om tjänsten<br>I rollen som ledande kyltekniker kommer du att arbeta i nära samarbete med vår erfarna VD, som har över 50 års branscherfarenhet. Du får möjlighet att kombinera teknisk expertis med gradvis ökat ansvar för företagets strategiska utveckling. Dina huvu...</code> | <code>0.0</code> |
133
+ * Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
134
+ ```json
135
+ {
136
+ "loss_fct": "torch.nn.modules.loss.MSELoss"
137
+ }
138
+ ```
139
+
140
+ ### Training Hyperparameters
141
+ #### Non-Default Hyperparameters
142
+
143
+ - `per_device_train_batch_size`: 16
144
+ - `per_device_eval_batch_size`: 16
145
+ - `multi_dataset_batch_sampler`: round_robin
146
+
147
+ #### All Hyperparameters
148
+ <details><summary>Click to expand</summary>
149
+
150
+ - `overwrite_output_dir`: False
151
+ - `do_predict`: False
152
+ - `eval_strategy`: no
153
+ - `prediction_loss_only`: True
154
+ - `per_device_train_batch_size`: 16
155
+ - `per_device_eval_batch_size`: 16
156
+ - `per_gpu_train_batch_size`: None
157
+ - `per_gpu_eval_batch_size`: None
158
+ - `gradient_accumulation_steps`: 1
159
+ - `eval_accumulation_steps`: None
160
+ - `torch_empty_cache_steps`: None
161
+ - `learning_rate`: 5e-05
162
+ - `weight_decay`: 0.0
163
+ - `adam_beta1`: 0.9
164
+ - `adam_beta2`: 0.999
165
+ - `adam_epsilon`: 1e-08
166
+ - `max_grad_norm`: 1
167
+ - `num_train_epochs`: 3
168
+ - `max_steps`: -1
169
+ - `lr_scheduler_type`: linear
170
+ - `lr_scheduler_kwargs`: {}
171
+ - `warmup_ratio`: 0.0
172
+ - `warmup_steps`: 0
173
+ - `log_level`: passive
174
+ - `log_level_replica`: warning
175
+ - `log_on_each_node`: True
176
+ - `logging_nan_inf_filter`: True
177
+ - `save_safetensors`: True
178
+ - `save_on_each_node`: False
179
+ - `save_only_model`: False
180
+ - `restore_callback_states_from_checkpoint`: False
181
+ - `no_cuda`: False
182
+ - `use_cpu`: False
183
+ - `use_mps_device`: False
184
+ - `seed`: 42
185
+ - `data_seed`: None
186
+ - `jit_mode_eval`: False
187
+ - `use_ipex`: False
188
+ - `bf16`: False
189
+ - `fp16`: False
190
+ - `fp16_opt_level`: O1
191
+ - `half_precision_backend`: auto
192
+ - `bf16_full_eval`: False
193
+ - `fp16_full_eval`: False
194
+ - `tf32`: None
195
+ - `local_rank`: 0
196
+ - `ddp_backend`: None
197
+ - `tpu_num_cores`: None
198
+ - `tpu_metrics_debug`: False
199
+ - `debug`: []
200
+ - `dataloader_drop_last`: False
201
+ - `dataloader_num_workers`: 0
202
+ - `dataloader_prefetch_factor`: None
203
+ - `past_index`: -1
204
+ - `disable_tqdm`: False
205
+ - `remove_unused_columns`: True
206
+ - `label_names`: None
207
+ - `load_best_model_at_end`: False
208
+ - `ignore_data_skip`: False
209
+ - `fsdp`: []
210
+ - `fsdp_min_num_params`: 0
211
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
212
+ - `fsdp_transformer_layer_cls_to_wrap`: None
213
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
214
+ - `deepspeed`: None
215
+ - `label_smoothing_factor`: 0.0
216
+ - `optim`: adamw_torch
217
+ - `optim_args`: None
218
+ - `adafactor`: False
219
+ - `group_by_length`: False
220
+ - `length_column_name`: length
221
+ - `ddp_find_unused_parameters`: None
222
+ - `ddp_bucket_cap_mb`: None
223
+ - `ddp_broadcast_buffers`: False
224
+ - `dataloader_pin_memory`: True
225
+ - `dataloader_persistent_workers`: False
226
+ - `skip_memory_metrics`: True
227
+ - `use_legacy_prediction_loop`: False
228
+ - `push_to_hub`: False
229
+ - `resume_from_checkpoint`: None
230
+ - `hub_model_id`: None
231
+ - `hub_strategy`: every_save
232
+ - `hub_private_repo`: None
233
+ - `hub_always_push`: False
234
+ - `gradient_checkpointing`: False
235
+ - `gradient_checkpointing_kwargs`: None
236
+ - `include_inputs_for_metrics`: False
237
+ - `include_for_metrics`: []
238
+ - `eval_do_concat_batches`: True
239
+ - `fp16_backend`: auto
240
+ - `push_to_hub_model_id`: None
241
+ - `push_to_hub_organization`: None
242
+ - `mp_parameters`:
243
+ - `auto_find_batch_size`: False
244
+ - `full_determinism`: False
245
+ - `torchdynamo`: None
246
+ - `ray_scope`: last
247
+ - `ddp_timeout`: 1800
248
+ - `torch_compile`: False
249
+ - `torch_compile_backend`: None
250
+ - `torch_compile_mode`: None
251
+ - `dispatch_batches`: None
252
+ - `split_batches`: None
253
+ - `include_tokens_per_second`: False
254
+ - `include_num_input_tokens_seen`: False
255
+ - `neftune_noise_alpha`: None
256
+ - `optim_target_modules`: None
257
+ - `batch_eval_metrics`: False
258
+ - `eval_on_start`: False
259
+ - `use_liger_kernel`: False
260
+ - `eval_use_gather_object`: False
261
+ - `average_tokens_across_devices`: False
262
+ - `prompts`: None
263
+ - `batch_sampler`: batch_sampler
264
+ - `multi_dataset_batch_sampler`: round_robin
265
+
266
+ </details>
267
+
268
+ ### Framework Versions
269
+ - Python: 3.12.2
270
+ - Sentence Transformers: 3.3.1
271
+ - Transformers: 4.47.1
272
+ - PyTorch: 2.5.1+cpu
273
+ - Accelerate: 1.2.1
274
+ - Datasets: 3.2.0
275
+ - Tokenizers: 0.21.0
276
+
277
+ ## Citation
278
+
279
+ ### BibTeX
280
+
281
+ #### Sentence Transformers
282
+ ```bibtex
283
+ @inproceedings{reimers-2019-sentence-bert,
284
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
285
+ author = "Reimers, Nils and Gurevych, Iryna",
286
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
287
+ month = "11",
288
+ year = "2019",
289
+ publisher = "Association for Computational Linguistics",
290
+ url = "https://arxiv.org/abs/1908.10084",
291
+ }
292
+ ```
293
+
294
+ <!--
295
+ ## Glossary
296
+
297
+ *Clearly define terms in order to be accessible across audiences.*
298
+ -->
299
+
300
+ <!--
301
+ ## Model Card Authors
302
+
303
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
304
+ -->
305
+
306
+ <!--
307
+ ## Model Card Contact
308
+
309
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
310
+ -->
config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 384,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 1536,
14
+ "layer_norm_eps": 1e-12,
15
+ "max_position_embeddings": 512,
16
+ "model_type": "bert",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 12,
19
+ "pad_token_id": 0,
20
+ "position_embedding_type": "absolute",
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.47.1",
23
+ "type_vocab_size": 2,
24
+ "use_cache": true,
25
+ "vocab_size": 250037
26
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.3.1",
4
+ "transformers": "4.47.1",
5
+ "pytorch": "2.5.1+cpu"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7f4f89d628f87ade0e0b57c40affb6402cd77abc8110584d8d35dc86da514ee8
3
+ size 470637416
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 128,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<unk>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cad551d5600a84242d0973327029452a1e3672ba6313c2a3c3d69c4310e12719
3
+ size 17082987
tokenizer_config.json ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "250001": {
36
+ "content": "<mask>",
37
+ "lstrip": true,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "<s>",
45
+ "clean_up_tokenization_spaces": false,
46
+ "cls_token": "<s>",
47
+ "do_lower_case": true,
48
+ "eos_token": "</s>",
49
+ "extra_special_tokens": {},
50
+ "mask_token": "<mask>",
51
+ "max_length": 128,
52
+ "model_max_length": 128,
53
+ "pad_to_multiple_of": null,
54
+ "pad_token": "<pad>",
55
+ "pad_token_type_id": 0,
56
+ "padding_side": "right",
57
+ "sep_token": "</s>",
58
+ "stride": 0,
59
+ "strip_accents": null,
60
+ "tokenize_chinese_chars": true,
61
+ "tokenizer_class": "BertTokenizer",
62
+ "truncation_side": "right",
63
+ "truncation_strategy": "longest_first",
64
+ "unk_token": "<unk>"
65
+ }
unigram.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:da145b5e7700ae40f16691ec32a0b1fdc1ee3298db22a31ea55f57a966c4a65d
3
+ size 14763260