First training of PPO LunarLander-v2 agent
Browse files- .gitattributes +1 -0
- README.md +28 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +94 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 211.48 +/- 41.79
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: LunarLander-v2
|
20 |
+
type: LunarLander-v2
|
21 |
+
---
|
22 |
+
|
23 |
+
# **PPO** Agent playing **LunarLander-v2**
|
24 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
25 |
+
|
26 |
+
## Usage (with Stable-baselines3)
|
27 |
+
TODO: Add your code
|
28 |
+
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f709f166f80>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f709f16f050>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f709f16f0e0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f709f16f170>", "_build": "<function ActorCriticPolicy._build at 0x7f709f16f200>", "forward": "<function ActorCriticPolicy.forward at 0x7f709f16f290>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f709f16f320>", "_predict": "<function ActorCriticPolicy._predict at 0x7f709f16f3b0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f709f16f440>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f709f16f4d0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f709f16f560>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f709f13e390>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 524288, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651766903.630376, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAABMdpT4DZ0M/U2FsPbkz1r760nc9D+QEvQAAAAAAAAAADWyhvlgwi73qG1y+LAScvQv+xT6WqSA+AAAAAAAAgD/wEd4+hAvWPub88j2jg0K+jnkdPn+oiTwAAAAAAAAAAEbnnD6oFMU9cjw/vmARQ7666nK9fcIiPAAAAAAAAAAAhvwsvgp6P7tSRD84/mUQNYuLezxqlV23AACAPwAAgD/T8j2+jlgOP56duzyJIpW+ZkU6vdAzz7wAAAAAAAAAADOFHr5XRzs8s6vBPbQ6TL7ZzDQ8ZgVKOwAAAAAAAAAAjYbVPY9aRrr9VjQ1MyQaLpTG9DrncUy0AAAAAAAAgD/NQc890kLMu6IQPb3BrAw94VYiPaCY6L0AAAAAAACAP7puZL5X6Zk/7deuvqSkBL+H+Re+9pRfPAAAAAAAAAAAwARVPsKxoj/vmKs+v66nvhb7BD5K2g69AAAAAAAAAAAClfu+oSg2P2+Brr2PLry+C6givnNr8LoAAAAAAAAAAMajgD60V7682C9Du9p6nzm0eie+jcVzOgAAgD8AAIA/BixePhtuWT/ApWI+9zCTvstSAz4bE/w8AAAAAAAAAACN5YU++lZCvaXTirraq3A59XSpvigOwjkAAIA/AACAP7DM3z5YrfA+JkQrPnqPmr7uquI9EUiFPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.04857599999999995, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVbBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIF0m70QcVcUCUhpRSlIwBbJRNDAGMAXSUR0CLaq00m+j/dX2UKGgGaAloD0MIWYl5VlIAcUCUhpRSlGgVTQYBaBZHQItryUC7sfJ1fZQoaAZoCWgPQwge4bTgxXBvQJSGlFKUaBVNQAFoFkdAi20HTZxrBXV9lChoBmgJaA9DCDz2s1iKI1FAlIaUUpRoFU3oA2gWR0CLbbuejEehdX2UKGgGaAloD0MIxHx5AfatNUCUhpRSlGgVS8toFkdAi2479If8uXV9lChoBmgJaA9DCCZTBaMSim5AlIaUUpRoFU0MAWgWR0CLbk73fyf+dX2UKGgGaAloD0MImzxlNV0nN0CUhpRSlGgVS9toFkdAi26C704BFXV9lChoBmgJaA9DCJ5A2ClWWG9AlIaUUpRoFU0vAWgWR0CLcluuzQeFdX2UKGgGaAloD0MIWKoLeJmcYkCUhpRSlGgVTegDaBZHQItzZdD6WPd1fZQoaAZoCWgPQwhU4jrGlWZwQJSGlFKUaBVNLAFoFkdAi3fAoG6f8XV9lChoBmgJaA9DCENWt3rOgW9AlIaUUpRoFU0aAWgWR0CLeZsrupjudX2UKGgGaAloD0MIHZJaKJnNXUCUhpRSlGgVTegDaBZHQIt+tcMVk+Z1fZQoaAZoCWgPQwjA6zNn/fdvQJSGlFKUaBVNMwFoFkdAjDuHwG4ZuXV9lChoBmgJaA9DCLGH9rGCzGtAlIaUUpRoFU0NAWgWR0CMO8NQ0oBrdX2UKGgGaAloD0MIiXlW0orwbkCUhpRSlGgVTSMBaBZHQIw8NKK508x1fZQoaAZoCWgPQwgjFFtBU3VgQJSGlFKUaBVN6ANoFkdAjDyYXwb2lHV9lChoBmgJaA9DCHdOs0A7AG5AlIaUUpRoFU1SAWgWR0CMQXyTY/VzdX2UKGgGaAloD0MIsDvdeeK58j+UhpRSlGgVTRgBaBZHQIxCcy+HrQh1fZQoaAZoCWgPQwg8vr1r0KttQJSGlFKUaBVNNgFoFkdAjEPIOpbUw3V9lChoBmgJaA9DCGmn5nKDVm1AlIaUUpRoFU3FAWgWR0CMSvczImw8dX2UKGgGaAloD0MIZOdtbHbTXkCUhpRSlGgVTegDaBZHQIxMeE/Spit1fZQoaAZoCWgPQwjNrKWAtMFEQJSGlFKUaBVLxWgWR0CMU+4TbnHOdX2UKGgGaAloD0MIucfSh64abUCUhpRSlGgVTQ4BaBZHQIxUWVJL/S91fZQoaAZoCWgPQwgeUDblCttsQJSGlFKUaBVNzQJoFkdAjFUF6Z6Uq3V9lChoBmgJaA9DCG5rC8/L0m9AlIaUUpRoFU0ZAWgWR0CMVoyckMTfdX2UKGgGaAloD0MI6YAk7FslakCUhpRSlGgVTVcCaBZHQIxXXiaRZEF1fZQoaAZoCWgPQwhne/SGe4xsQJSGlFKUaBVNKQFoFkdAjFd1Z9uxbHV9lChoBmgJaA9DCAyuuaP/LTpAlIaUUpRoFUvRaBZHQIxXgKD01651fZQoaAZoCWgPQwggJ0wYzR9wQJSGlFKUaBVNAgFoFkdAjFnVIy0rsnV9lChoBmgJaA9DCOIBZVNuxnBAlIaUUpRoFU3MAWgWR0CMX1MjeKsNdX2UKGgGaAloD0MIMILGTCL6Z0CUhpRSlGgVTUkCaBZHQIxiUByS3b51fZQoaAZoCWgPQwiPGhNirnxuQJSGlFKUaBVNGAFoFkdAjGMXQdCE6HV9lChoBmgJaA9DCHvXoC99OHBAlIaUUpRoFU0hAWgWR0CMZNxVAAyVdX2UKGgGaAloD0MIFCAKZkxzWkCUhpRSlGgVTegDaBZHQIxm+CuloDh1fZQoaAZoCWgPQwhbXrneNjRxQJSGlFKUaBVL9WgWR0CMZzO1v2oOdX2UKGgGaAloD0MImdnnMcpz87+UhpRSlGgVS8doFkdAjGjOgpSaVnV9lChoBmgJaA9DCEljtI6qeW1AlIaUUpRoFU0fAWgWR0CMariHZbpvdX2UKGgGaAloD0MIM/0S8da7bkCUhpRSlGgVTQYBaBZHQIxq/IXCTEB1fZQoaAZoCWgPQwgdVrjlo5VuQJSGlFKUaBVNNQFoFkdAjGuplBhQWXV9lChoBmgJaA9DCIXv/Q3aImxAlIaUUpRoFU1HAWgWR0CMbqiblRxcdX2UKGgGaAloD0MIl445z9jLMUCUhpRSlGgVS+ZoFkdAjHOtXPqs2nV9lChoBmgJaA9DCAOWXMXiLm9AlIaUUpRoFU0cAWgWR0CMdD6kZaV2dX2UKGgGaAloD0MIkDLiAtDaXUCUhpRSlGgVTegDaBZHQIx3Vhd+ocd1fZQoaAZoCWgPQwh5B3jSwkNwQJSGlFKUaBVL5WgWR0CMeAsH0K7adX2UKGgGaAloD0MIWWlSCjoVbkCUhpRSlGgVTdgBaBZHQIx6dGXokiV1fZQoaAZoCWgPQwj0qWOVUvpvQJSGlFKUaBVL62gWR0CMfDZeRgZ1dX2UKGgGaAloD0MICWzOwTM3cECUhpRSlGgVTQIBaBZHQIx/BP/JeVt1fZQoaAZoCWgPQwgIV0Ch3j9wQJSGlFKUaBVNLwFoFkdAjH+K814xDnV9lChoBmgJaA9DCIUi3c9pAXBAlIaUUpRoFU1uAWgWR0CMgCSvkiljdX2UKGgGaAloD0MIwoanV0rAYUCUhpRSlGgVTegDaBZHQIyC0YVIqb11fZQoaAZoCWgPQwjDgCVXMVtuQJSGlFKUaBVNEAFoFkdAjIMZfD1oQHV9lChoBmgJaA9DCABV3LiFiHJAlIaUUpRoFU1vAWgWR0CMhdqqOtGNdX2UKGgGaAloD0MIdNNmnMYycECUhpRSlGgVTQ8BaBZHQIyHs5+6RQt1fZQoaAZoCWgPQwgDsAER4iNfQJSGlFKUaBVN6ANoFkdAjIruYplSTHV9lChoBmgJaA9DCGK7e4BuWG1AlIaUUpRoFU0nAWgWR0CMjTvb48EFdX2UKGgGaAloD0MIAoI5evycbECUhpRSlGgVTVoBaBZHQIyOGj2zv7Z1fZQoaAZoCWgPQwg6deWzvKRuQJSGlFKUaBVNLgFoFkdAjJKp0wJw9HV9lChoBmgJaA9DCJyLv+0JqjZAlIaUUpRoFUvkaBZHQIyULRjSXt11fZQoaAZoCWgPQwgykGeX74ZtQJSGlFKUaBVNfAFoFkdAjJdw1BMSK3V9lChoBmgJaA9DCExUbw1s92xAlIaUUpRoFU1DAWgWR0CMmC814xDcdX2UKGgGaAloD0MIY0UNpmHpbECUhpRSlGgVTT0BaBZHQIyYXAZbY9R1fZQoaAZoCWgPQwj/P06YsK1sQJSGlFKUaBVNuwFoFkdAjJnl1B+nZXV9lChoBmgJaA9DCCKrWz2nInFAlIaUUpRoFU1GAWgWR0CMnA8wHqu9dX2UKGgGaAloD0MIzNHj9zYVL0CUhpRSlGgVS+BoFkdAjJyhHCoCMnV9lChoBmgJaA9DCMlZ2NMODlRAlIaUUpRoFU3oA2gWR0CMorP9DQZ5dX2UKGgGaAloD0MIc6JdhZT/EMCUhpRSlGgVTRQBaBZHQIyjtJOFg2J1fZQoaAZoCWgPQwiCOuXRDX9tQJSGlFKUaBVNaQFoFkdAjKP1BdD6WXV9lChoBmgJaA9DCHe+nxovA21AlIaUUpRoFU0mAWgWR0CMpD0I1LrYdX2UKGgGaAloD0MIz7wcdt/3a0CUhpRSlGgVTQABaBZHQIynykTHsC11fZQoaAZoCWgPQwhan3JMFodCQJSGlFKUaBVLsWgWR0CMqYONo8ISdX2UKGgGaAloD0MIRBZp4h1mbECUhpRSlGgVTRwBaBZHQIyuLFId2gZ1fZQoaAZoCWgPQwioUrMHWsVQQJSGlFKUaBVN6ANoFkdAjK5DvmYBvXV9lChoBmgJaA9DCJlIaTYPAW9AlIaUUpRoFU0KAWgWR0CMsXdweeWfdX2UKGgGaAloD0MIHxDoTFocbECUhpRSlGgVTTUBaBZHQIyxx3/xUed1fZQoaAZoCWgPQwipwp/hzU9uQJSGlFKUaBVNkAFoFkdAjLIKU3XI2nV9lChoBmgJaA9DCNnQzf5AcFhAlIaUUpRoFU3oA2gWR0CMss9CeEqUdX2UKGgGaAloD0MIuRYtQFvVbECUhpRSlGgVTXoBaBZHQIy0PYzzmOl1fZQoaAZoCWgPQwhqh78mq3JwQJSGlFKUaBVL2WgWR0CMtFBqsU7CdX2UKGgGaAloD0MIs7YpHpeJb0CUhpRSlGgVTRgBaBZHQIy4zzbvgFZ1fZQoaAZoCWgPQwiFKF/QwgZtQJSGlFKUaBVNMAFoFkdAjLlrRBu4w3V9lChoBmgJaA9DCKJ/gosVHTFAlIaUUpRoFUvQaBZHQIy8mbutwJh1fZQoaAZoCWgPQwgYJH1aRe1tQJSGlFKUaBVNUgFoFkdAjL0Nz8xbjnV9lChoBmgJaA9DCMQj8fL0Cm5AlIaUUpRoFU0OAWgWR0CMvT9l2/zrdX2UKGgGaAloD0MIGCKnr6d6cECUhpRSlGgVTS4BaBZHQIy912JSBLB1fZQoaAZoCWgPQwgAOPbsucwyQJSGlFKUaBVL12gWR0CMv7/WlMyrdX2UKGgGaAloD0MIaHke3F0ncECUhpRSlGgVS/JoFkdAjMGwz1schnV9lChoBmgJaA9DCMkgdxGmIXFAlIaUUpRoFUvnaBZHQIzB/N3W4Ex1fZQoaAZoCWgPQwh+bmjKzvJvQJSGlFKUaBVNJgFoFkdAjMUuCGvfTHV9lChoBmgJaA9DCG/1nPT+FnFAlIaUUpRoFU0rAWgWR0CMx9C+lCTmdX2UKGgGaAloD0MIH4SAfAmwX0CUhpRSlGgVTegDaBZHQIzH95D7ZWd1fZQoaAZoCWgPQwhMcVXZ955vQJSGlFKUaBVNMQFoFkdAjMhMByS3b3V9lChoBmgJaA9DCLtE9dbATG9AlIaUUpRoFUv7aBZHQIzJCD9Oymh1fZQoaAZoCWgPQwgY6rDCLS1wQJSGlFKUaBVNMwFoFkdAjM2J66asqHV9lChoBmgJaA9DCORNfovON25AlIaUUpRoFU0MAWgWR0CMzjd+G47SdX2UKGgGaAloD0MIvW2mQjwyLkCUhpRSlGgVS71oFkdAjM52D6Fds3V9lChoBmgJaA9DCHRGlPZGVHBAlIaUUpRoFUv9aBZHQIzOdL39JjF1fZQoaAZoCWgPQwiDMSJRaKJgQJSGlFKUaBVN6ANoFkdAjM7dFvybx3V9lChoBmgJaA9DCIfguIwbNG9AlIaUUpRoFU01AWgWR0CM0Y+xGDtgdX2UKGgGaAloD0MIh78ma9RPbkCUhpRSlGgVTQ0BaBZHQIzRskMTewd1fZQoaAZoCWgPQwj0UNuGUb1uQJSGlFKUaBVL8GgWR0CM0hYDklu4dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 170, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d31acb782c81dbd514545c0952aba595f284def4355b8ad5b7f20dd8d1baf89c
|
3 |
+
size 144081
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.0
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f709f166f80>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f709f16f050>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f709f16f0e0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f709f16f170>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f709f16f200>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f709f16f290>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f709f16f320>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f709f16f3b0>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f709f16f440>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f709f16f4d0>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f709f16f560>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f709f13e390>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 524288,
|
46 |
+
"_total_timesteps": 500000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1651766903.630376,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAABMdpT4DZ0M/U2FsPbkz1r760nc9D+QEvQAAAAAAAAAADWyhvlgwi73qG1y+LAScvQv+xT6WqSA+AAAAAAAAgD/wEd4+hAvWPub88j2jg0K+jnkdPn+oiTwAAAAAAAAAAEbnnD6oFMU9cjw/vmARQ7666nK9fcIiPAAAAAAAAAAAhvwsvgp6P7tSRD84/mUQNYuLezxqlV23AACAPwAAgD/T8j2+jlgOP56duzyJIpW+ZkU6vdAzz7wAAAAAAAAAADOFHr5XRzs8s6vBPbQ6TL7ZzDQ8ZgVKOwAAAAAAAAAAjYbVPY9aRrr9VjQ1MyQaLpTG9DrncUy0AAAAAAAAgD/NQc890kLMu6IQPb3BrAw94VYiPaCY6L0AAAAAAACAP7puZL5X6Zk/7deuvqSkBL+H+Re+9pRfPAAAAAAAAAAAwARVPsKxoj/vmKs+v66nvhb7BD5K2g69AAAAAAAAAAAClfu+oSg2P2+Brr2PLry+C6givnNr8LoAAAAAAAAAAMajgD60V7682C9Du9p6nzm0eie+jcVzOgAAgD8AAIA/BixePhtuWT/ApWI+9zCTvstSAz4bE/w8AAAAAAAAAACN5YU++lZCvaXTirraq3A59XSpvigOwjkAAIA/AACAP7DM3z5YrfA+JkQrPnqPmr7uquI9EUiFPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.04857599999999995,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVbBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIF0m70QcVcUCUhpRSlIwBbJRNDAGMAXSUR0CLaq00m+j/dX2UKGgGaAloD0MIWYl5VlIAcUCUhpRSlGgVTQYBaBZHQItryUC7sfJ1fZQoaAZoCWgPQwge4bTgxXBvQJSGlFKUaBVNQAFoFkdAi20HTZxrBXV9lChoBmgJaA9DCDz2s1iKI1FAlIaUUpRoFU3oA2gWR0CLbbuejEehdX2UKGgGaAloD0MIxHx5AfatNUCUhpRSlGgVS8toFkdAi2479If8uXV9lChoBmgJaA9DCCZTBaMSim5AlIaUUpRoFU0MAWgWR0CLbk73fyf+dX2UKGgGaAloD0MImzxlNV0nN0CUhpRSlGgVS9toFkdAi26C704BFXV9lChoBmgJaA9DCJ5A2ClWWG9AlIaUUpRoFU0vAWgWR0CLcluuzQeFdX2UKGgGaAloD0MIWKoLeJmcYkCUhpRSlGgVTegDaBZHQItzZdD6WPd1fZQoaAZoCWgPQwhU4jrGlWZwQJSGlFKUaBVNLAFoFkdAi3fAoG6f8XV9lChoBmgJaA9DCENWt3rOgW9AlIaUUpRoFU0aAWgWR0CLeZsrupjudX2UKGgGaAloD0MIHZJaKJnNXUCUhpRSlGgVTegDaBZHQIt+tcMVk+Z1fZQoaAZoCWgPQwjA6zNn/fdvQJSGlFKUaBVNMwFoFkdAjDuHwG4ZuXV9lChoBmgJaA9DCLGH9rGCzGtAlIaUUpRoFU0NAWgWR0CMO8NQ0oBrdX2UKGgGaAloD0MIiXlW0orwbkCUhpRSlGgVTSMBaBZHQIw8NKK508x1fZQoaAZoCWgPQwgjFFtBU3VgQJSGlFKUaBVN6ANoFkdAjDyYXwb2lHV9lChoBmgJaA9DCHdOs0A7AG5AlIaUUpRoFU1SAWgWR0CMQXyTY/VzdX2UKGgGaAloD0MIsDvdeeK58j+UhpRSlGgVTRgBaBZHQIxCcy+HrQh1fZQoaAZoCWgPQwg8vr1r0KttQJSGlFKUaBVNNgFoFkdAjEPIOpbUw3V9lChoBmgJaA9DCGmn5nKDVm1AlIaUUpRoFU3FAWgWR0CMSvczImw8dX2UKGgGaAloD0MIZOdtbHbTXkCUhpRSlGgVTegDaBZHQIxMeE/Spit1fZQoaAZoCWgPQwjNrKWAtMFEQJSGlFKUaBVLxWgWR0CMU+4TbnHOdX2UKGgGaAloD0MIucfSh64abUCUhpRSlGgVTQ4BaBZHQIxUWVJL/S91fZQoaAZoCWgPQwgeUDblCttsQJSGlFKUaBVNzQJoFkdAjFUF6Z6Uq3V9lChoBmgJaA9DCG5rC8/L0m9AlIaUUpRoFU0ZAWgWR0CMVoyckMTfdX2UKGgGaAloD0MI6YAk7FslakCUhpRSlGgVTVcCaBZHQIxXXiaRZEF1fZQoaAZoCWgPQwhne/SGe4xsQJSGlFKUaBVNKQFoFkdAjFd1Z9uxbHV9lChoBmgJaA9DCAyuuaP/LTpAlIaUUpRoFUvRaBZHQIxXgKD01651fZQoaAZoCWgPQwggJ0wYzR9wQJSGlFKUaBVNAgFoFkdAjFnVIy0rsnV9lChoBmgJaA9DCOIBZVNuxnBAlIaUUpRoFU3MAWgWR0CMX1MjeKsNdX2UKGgGaAloD0MIMILGTCL6Z0CUhpRSlGgVTUkCaBZHQIxiUByS3b51fZQoaAZoCWgPQwiPGhNirnxuQJSGlFKUaBVNGAFoFkdAjGMXQdCE6HV9lChoBmgJaA9DCHvXoC99OHBAlIaUUpRoFU0hAWgWR0CMZNxVAAyVdX2UKGgGaAloD0MIFCAKZkxzWkCUhpRSlGgVTegDaBZHQIxm+CuloDh1fZQoaAZoCWgPQwhbXrneNjRxQJSGlFKUaBVL9WgWR0CMZzO1v2oOdX2UKGgGaAloD0MImdnnMcpz87+UhpRSlGgVS8doFkdAjGjOgpSaVnV9lChoBmgJaA9DCEljtI6qeW1AlIaUUpRoFU0fAWgWR0CMariHZbpvdX2UKGgGaAloD0MIM/0S8da7bkCUhpRSlGgVTQYBaBZHQIxq/IXCTEB1fZQoaAZoCWgPQwgdVrjlo5VuQJSGlFKUaBVNNQFoFkdAjGuplBhQWXV9lChoBmgJaA9DCIXv/Q3aImxAlIaUUpRoFU1HAWgWR0CMbqiblRxcdX2UKGgGaAloD0MIl445z9jLMUCUhpRSlGgVS+ZoFkdAjHOtXPqs2nV9lChoBmgJaA9DCAOWXMXiLm9AlIaUUpRoFU0cAWgWR0CMdD6kZaV2dX2UKGgGaAloD0MIkDLiAtDaXUCUhpRSlGgVTegDaBZHQIx3Vhd+ocd1fZQoaAZoCWgPQwh5B3jSwkNwQJSGlFKUaBVL5WgWR0CMeAsH0K7adX2UKGgGaAloD0MIWWlSCjoVbkCUhpRSlGgVTdgBaBZHQIx6dGXokiV1fZQoaAZoCWgPQwj0qWOVUvpvQJSGlFKUaBVL62gWR0CMfDZeRgZ1dX2UKGgGaAloD0MICWzOwTM3cECUhpRSlGgVTQIBaBZHQIx/BP/JeVt1fZQoaAZoCWgPQwgIV0Ch3j9wQJSGlFKUaBVNLwFoFkdAjH+K814xDnV9lChoBmgJaA9DCIUi3c9pAXBAlIaUUpRoFU1uAWgWR0CMgCSvkiljdX2UKGgGaAloD0MIwoanV0rAYUCUhpRSlGgVTegDaBZHQIyC0YVIqb11fZQoaAZoCWgPQwjDgCVXMVtuQJSGlFKUaBVNEAFoFkdAjIMZfD1oQHV9lChoBmgJaA9DCABV3LiFiHJAlIaUUpRoFU1vAWgWR0CMhdqqOtGNdX2UKGgGaAloD0MIdNNmnMYycECUhpRSlGgVTQ8BaBZHQIyHs5+6RQt1fZQoaAZoCWgPQwgDsAER4iNfQJSGlFKUaBVN6ANoFkdAjIruYplSTHV9lChoBmgJaA9DCGK7e4BuWG1AlIaUUpRoFU0nAWgWR0CMjTvb48EFdX2UKGgGaAloD0MIAoI5evycbECUhpRSlGgVTVoBaBZHQIyOGj2zv7Z1fZQoaAZoCWgPQwg6deWzvKRuQJSGlFKUaBVNLgFoFkdAjJKp0wJw9HV9lChoBmgJaA9DCJyLv+0JqjZAlIaUUpRoFUvkaBZHQIyULRjSXt11fZQoaAZoCWgPQwgykGeX74ZtQJSGlFKUaBVNfAFoFkdAjJdw1BMSK3V9lChoBmgJaA9DCExUbw1s92xAlIaUUpRoFU1DAWgWR0CMmC814xDcdX2UKGgGaAloD0MIY0UNpmHpbECUhpRSlGgVTT0BaBZHQIyYXAZbY9R1fZQoaAZoCWgPQwj/P06YsK1sQJSGlFKUaBVNuwFoFkdAjJnl1B+nZXV9lChoBmgJaA9DCCKrWz2nInFAlIaUUpRoFU1GAWgWR0CMnA8wHqu9dX2UKGgGaAloD0MIzNHj9zYVL0CUhpRSlGgVS+BoFkdAjJyhHCoCMnV9lChoBmgJaA9DCMlZ2NMODlRAlIaUUpRoFU3oA2gWR0CMorP9DQZ5dX2UKGgGaAloD0MIc6JdhZT/EMCUhpRSlGgVTRQBaBZHQIyjtJOFg2J1fZQoaAZoCWgPQwiCOuXRDX9tQJSGlFKUaBVNaQFoFkdAjKP1BdD6WXV9lChoBmgJaA9DCHe+nxovA21AlIaUUpRoFU0mAWgWR0CMpD0I1LrYdX2UKGgGaAloD0MIz7wcdt/3a0CUhpRSlGgVTQABaBZHQIynykTHsC11fZQoaAZoCWgPQwhan3JMFodCQJSGlFKUaBVLsWgWR0CMqYONo8ISdX2UKGgGaAloD0MIRBZp4h1mbECUhpRSlGgVTRwBaBZHQIyuLFId2gZ1fZQoaAZoCWgPQwioUrMHWsVQQJSGlFKUaBVN6ANoFkdAjK5DvmYBvXV9lChoBmgJaA9DCJlIaTYPAW9AlIaUUpRoFU0KAWgWR0CMsXdweeWfdX2UKGgGaAloD0MIHxDoTFocbECUhpRSlGgVTTUBaBZHQIyxx3/xUed1fZQoaAZoCWgPQwipwp/hzU9uQJSGlFKUaBVNkAFoFkdAjLIKU3XI2nV9lChoBmgJaA9DCNnQzf5AcFhAlIaUUpRoFU3oA2gWR0CMss9CeEqUdX2UKGgGaAloD0MIuRYtQFvVbECUhpRSlGgVTXoBaBZHQIy0PYzzmOl1fZQoaAZoCWgPQwhqh78mq3JwQJSGlFKUaBVL2WgWR0CMtFBqsU7CdX2UKGgGaAloD0MIs7YpHpeJb0CUhpRSlGgVTRgBaBZHQIy4zzbvgFZ1fZQoaAZoCWgPQwiFKF/QwgZtQJSGlFKUaBVNMAFoFkdAjLlrRBu4w3V9lChoBmgJaA9DCKJ/gosVHTFAlIaUUpRoFUvQaBZHQIy8mbutwJh1fZQoaAZoCWgPQwgYJH1aRe1tQJSGlFKUaBVNUgFoFkdAjL0Nz8xbjnV9lChoBmgJaA9DCMQj8fL0Cm5AlIaUUpRoFU0OAWgWR0CMvT9l2/zrdX2UKGgGaAloD0MIGCKnr6d6cECUhpRSlGgVTS4BaBZHQIy912JSBLB1fZQoaAZoCWgPQwgAOPbsucwyQJSGlFKUaBVL12gWR0CMv7/WlMyrdX2UKGgGaAloD0MIaHke3F0ncECUhpRSlGgVS/JoFkdAjMGwz1schnV9lChoBmgJaA9DCMkgdxGmIXFAlIaUUpRoFUvnaBZHQIzB/N3W4Ex1fZQoaAZoCWgPQwh+bmjKzvJvQJSGlFKUaBVNJgFoFkdAjMUuCGvfTHV9lChoBmgJaA9DCG/1nPT+FnFAlIaUUpRoFU0rAWgWR0CMx9C+lCTmdX2UKGgGaAloD0MIH4SAfAmwX0CUhpRSlGgVTegDaBZHQIzH95D7ZWd1fZQoaAZoCWgPQwhMcVXZ955vQJSGlFKUaBVNMQFoFkdAjMhMByS3b3V9lChoBmgJaA9DCLtE9dbATG9AlIaUUpRoFUv7aBZHQIzJCD9Oymh1fZQoaAZoCWgPQwgY6rDCLS1wQJSGlFKUaBVNMwFoFkdAjM2J66asqHV9lChoBmgJaA9DCORNfovON25AlIaUUpRoFU0MAWgWR0CMzjd+G47SdX2UKGgGaAloD0MIvW2mQjwyLkCUhpRSlGgVS71oFkdAjM52D6Fds3V9lChoBmgJaA9DCHRGlPZGVHBAlIaUUpRoFUv9aBZHQIzOdL39JjF1fZQoaAZoCWgPQwiDMSJRaKJgQJSGlFKUaBVN6ANoFkdAjM7dFvybx3V9lChoBmgJaA9DCIfguIwbNG9AlIaUUpRoFU01AWgWR0CM0Y+xGDtgdX2UKGgGaAloD0MIh78ma9RPbkCUhpRSlGgVTQ0BaBZHQIzRskMTewd1fZQoaAZoCWgPQwj0UNuGUb1uQJSGlFKUaBVL8GgWR0CM0hYDklu4dWUu"
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 170,
|
79 |
+
"n_steps": 2048,
|
80 |
+
"gamma": 0.99,
|
81 |
+
"gae_lambda": 0.95,
|
82 |
+
"ent_coef": 0.0,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 10,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8119e88e9352a5fbf9c3cabb6a2efd824fd862631dbdfaf95e3e098b7c84b8df
|
3 |
+
size 84893
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3769bc10c3c786e952da4a44bbda1a3618efeb0bb6086cfcdc4b47ad7647196f
|
3 |
+
size 43201
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.11.0+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b78b279007234223992871221ee15218d44f28ad399009fdd0f4245ae223bfcc
|
3 |
+
size 221787
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 211.4841621120451, "std_reward": 41.78766401127083, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-05T16:22:46.376179"}
|