fmcurti commited on
Commit
feef9e1
·
1 Parent(s): d36c51d

First training of PPO LunarLander-v2 agent

Browse files
.gitattributes CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
28
+ *.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - metrics:
12
+ - type: mean_reward
13
+ value: 211.48 +/- 41.79
14
+ name: mean_reward
15
+ task:
16
+ type: reinforcement-learning
17
+ name: reinforcement-learning
18
+ dataset:
19
+ name: LunarLander-v2
20
+ type: LunarLander-v2
21
+ ---
22
+
23
+ # **PPO** Agent playing **LunarLander-v2**
24
+ This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
25
+
26
+ ## Usage (with Stable-baselines3)
27
+ TODO: Add your code
28
+
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f709f166f80>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f709f16f050>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f709f16f0e0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f709f16f170>", "_build": "<function ActorCriticPolicy._build at 0x7f709f16f200>", "forward": "<function ActorCriticPolicy.forward at 0x7f709f16f290>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f709f16f320>", "_predict": "<function ActorCriticPolicy._predict at 0x7f709f16f3b0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f709f16f440>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f709f16f4d0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f709f16f560>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f709f13e390>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 524288, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651766903.630376, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAABMdpT4DZ0M/U2FsPbkz1r760nc9D+QEvQAAAAAAAAAADWyhvlgwi73qG1y+LAScvQv+xT6WqSA+AAAAAAAAgD/wEd4+hAvWPub88j2jg0K+jnkdPn+oiTwAAAAAAAAAAEbnnD6oFMU9cjw/vmARQ7666nK9fcIiPAAAAAAAAAAAhvwsvgp6P7tSRD84/mUQNYuLezxqlV23AACAPwAAgD/T8j2+jlgOP56duzyJIpW+ZkU6vdAzz7wAAAAAAAAAADOFHr5XRzs8s6vBPbQ6TL7ZzDQ8ZgVKOwAAAAAAAAAAjYbVPY9aRrr9VjQ1MyQaLpTG9DrncUy0AAAAAAAAgD/NQc890kLMu6IQPb3BrAw94VYiPaCY6L0AAAAAAACAP7puZL5X6Zk/7deuvqSkBL+H+Re+9pRfPAAAAAAAAAAAwARVPsKxoj/vmKs+v66nvhb7BD5K2g69AAAAAAAAAAAClfu+oSg2P2+Brr2PLry+C6givnNr8LoAAAAAAAAAAMajgD60V7682C9Du9p6nzm0eie+jcVzOgAAgD8AAIA/BixePhtuWT/ApWI+9zCTvstSAz4bE/w8AAAAAAAAAACN5YU++lZCvaXTirraq3A59XSpvigOwjkAAIA/AACAP7DM3z5YrfA+JkQrPnqPmr7uquI9EUiFPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.04857599999999995, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVbBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIF0m70QcVcUCUhpRSlIwBbJRNDAGMAXSUR0CLaq00m+j/dX2UKGgGaAloD0MIWYl5VlIAcUCUhpRSlGgVTQYBaBZHQItryUC7sfJ1fZQoaAZoCWgPQwge4bTgxXBvQJSGlFKUaBVNQAFoFkdAi20HTZxrBXV9lChoBmgJaA9DCDz2s1iKI1FAlIaUUpRoFU3oA2gWR0CLbbuejEehdX2UKGgGaAloD0MIxHx5AfatNUCUhpRSlGgVS8toFkdAi2479If8uXV9lChoBmgJaA9DCCZTBaMSim5AlIaUUpRoFU0MAWgWR0CLbk73fyf+dX2UKGgGaAloD0MImzxlNV0nN0CUhpRSlGgVS9toFkdAi26C704BFXV9lChoBmgJaA9DCJ5A2ClWWG9AlIaUUpRoFU0vAWgWR0CLcluuzQeFdX2UKGgGaAloD0MIWKoLeJmcYkCUhpRSlGgVTegDaBZHQItzZdD6WPd1fZQoaAZoCWgPQwhU4jrGlWZwQJSGlFKUaBVNLAFoFkdAi3fAoG6f8XV9lChoBmgJaA9DCENWt3rOgW9AlIaUUpRoFU0aAWgWR0CLeZsrupjudX2UKGgGaAloD0MIHZJaKJnNXUCUhpRSlGgVTegDaBZHQIt+tcMVk+Z1fZQoaAZoCWgPQwjA6zNn/fdvQJSGlFKUaBVNMwFoFkdAjDuHwG4ZuXV9lChoBmgJaA9DCLGH9rGCzGtAlIaUUpRoFU0NAWgWR0CMO8NQ0oBrdX2UKGgGaAloD0MIiXlW0orwbkCUhpRSlGgVTSMBaBZHQIw8NKK508x1fZQoaAZoCWgPQwgjFFtBU3VgQJSGlFKUaBVN6ANoFkdAjDyYXwb2lHV9lChoBmgJaA9DCHdOs0A7AG5AlIaUUpRoFU1SAWgWR0CMQXyTY/VzdX2UKGgGaAloD0MIsDvdeeK58j+UhpRSlGgVTRgBaBZHQIxCcy+HrQh1fZQoaAZoCWgPQwg8vr1r0KttQJSGlFKUaBVNNgFoFkdAjEPIOpbUw3V9lChoBmgJaA9DCGmn5nKDVm1AlIaUUpRoFU3FAWgWR0CMSvczImw8dX2UKGgGaAloD0MIZOdtbHbTXkCUhpRSlGgVTegDaBZHQIxMeE/Spit1fZQoaAZoCWgPQwjNrKWAtMFEQJSGlFKUaBVLxWgWR0CMU+4TbnHOdX2UKGgGaAloD0MIucfSh64abUCUhpRSlGgVTQ4BaBZHQIxUWVJL/S91fZQoaAZoCWgPQwgeUDblCttsQJSGlFKUaBVNzQJoFkdAjFUF6Z6Uq3V9lChoBmgJaA9DCG5rC8/L0m9AlIaUUpRoFU0ZAWgWR0CMVoyckMTfdX2UKGgGaAloD0MI6YAk7FslakCUhpRSlGgVTVcCaBZHQIxXXiaRZEF1fZQoaAZoCWgPQwhne/SGe4xsQJSGlFKUaBVNKQFoFkdAjFd1Z9uxbHV9lChoBmgJaA9DCAyuuaP/LTpAlIaUUpRoFUvRaBZHQIxXgKD01651fZQoaAZoCWgPQwggJ0wYzR9wQJSGlFKUaBVNAgFoFkdAjFnVIy0rsnV9lChoBmgJaA9DCOIBZVNuxnBAlIaUUpRoFU3MAWgWR0CMX1MjeKsNdX2UKGgGaAloD0MIMILGTCL6Z0CUhpRSlGgVTUkCaBZHQIxiUByS3b51fZQoaAZoCWgPQwiPGhNirnxuQJSGlFKUaBVNGAFoFkdAjGMXQdCE6HV9lChoBmgJaA9DCHvXoC99OHBAlIaUUpRoFU0hAWgWR0CMZNxVAAyVdX2UKGgGaAloD0MIFCAKZkxzWkCUhpRSlGgVTegDaBZHQIxm+CuloDh1fZQoaAZoCWgPQwhbXrneNjRxQJSGlFKUaBVL9WgWR0CMZzO1v2oOdX2UKGgGaAloD0MImdnnMcpz87+UhpRSlGgVS8doFkdAjGjOgpSaVnV9lChoBmgJaA9DCEljtI6qeW1AlIaUUpRoFU0fAWgWR0CMariHZbpvdX2UKGgGaAloD0MIM/0S8da7bkCUhpRSlGgVTQYBaBZHQIxq/IXCTEB1fZQoaAZoCWgPQwgdVrjlo5VuQJSGlFKUaBVNNQFoFkdAjGuplBhQWXV9lChoBmgJaA9DCIXv/Q3aImxAlIaUUpRoFU1HAWgWR0CMbqiblRxcdX2UKGgGaAloD0MIl445z9jLMUCUhpRSlGgVS+ZoFkdAjHOtXPqs2nV9lChoBmgJaA9DCAOWXMXiLm9AlIaUUpRoFU0cAWgWR0CMdD6kZaV2dX2UKGgGaAloD0MIkDLiAtDaXUCUhpRSlGgVTegDaBZHQIx3Vhd+ocd1fZQoaAZoCWgPQwh5B3jSwkNwQJSGlFKUaBVL5WgWR0CMeAsH0K7adX2UKGgGaAloD0MIWWlSCjoVbkCUhpRSlGgVTdgBaBZHQIx6dGXokiV1fZQoaAZoCWgPQwj0qWOVUvpvQJSGlFKUaBVL62gWR0CMfDZeRgZ1dX2UKGgGaAloD0MICWzOwTM3cECUhpRSlGgVTQIBaBZHQIx/BP/JeVt1fZQoaAZoCWgPQwgIV0Ch3j9wQJSGlFKUaBVNLwFoFkdAjH+K814xDnV9lChoBmgJaA9DCIUi3c9pAXBAlIaUUpRoFU1uAWgWR0CMgCSvkiljdX2UKGgGaAloD0MIwoanV0rAYUCUhpRSlGgVTegDaBZHQIyC0YVIqb11fZQoaAZoCWgPQwjDgCVXMVtuQJSGlFKUaBVNEAFoFkdAjIMZfD1oQHV9lChoBmgJaA9DCABV3LiFiHJAlIaUUpRoFU1vAWgWR0CMhdqqOtGNdX2UKGgGaAloD0MIdNNmnMYycECUhpRSlGgVTQ8BaBZHQIyHs5+6RQt1fZQoaAZoCWgPQwgDsAER4iNfQJSGlFKUaBVN6ANoFkdAjIruYplSTHV9lChoBmgJaA9DCGK7e4BuWG1AlIaUUpRoFU0nAWgWR0CMjTvb48EFdX2UKGgGaAloD0MIAoI5evycbECUhpRSlGgVTVoBaBZHQIyOGj2zv7Z1fZQoaAZoCWgPQwg6deWzvKRuQJSGlFKUaBVNLgFoFkdAjJKp0wJw9HV9lChoBmgJaA9DCJyLv+0JqjZAlIaUUpRoFUvkaBZHQIyULRjSXt11fZQoaAZoCWgPQwgykGeX74ZtQJSGlFKUaBVNfAFoFkdAjJdw1BMSK3V9lChoBmgJaA9DCExUbw1s92xAlIaUUpRoFU1DAWgWR0CMmC814xDcdX2UKGgGaAloD0MIY0UNpmHpbECUhpRSlGgVTT0BaBZHQIyYXAZbY9R1fZQoaAZoCWgPQwj/P06YsK1sQJSGlFKUaBVNuwFoFkdAjJnl1B+nZXV9lChoBmgJaA9DCCKrWz2nInFAlIaUUpRoFU1GAWgWR0CMnA8wHqu9dX2UKGgGaAloD0MIzNHj9zYVL0CUhpRSlGgVS+BoFkdAjJyhHCoCMnV9lChoBmgJaA9DCMlZ2NMODlRAlIaUUpRoFU3oA2gWR0CMorP9DQZ5dX2UKGgGaAloD0MIc6JdhZT/EMCUhpRSlGgVTRQBaBZHQIyjtJOFg2J1fZQoaAZoCWgPQwiCOuXRDX9tQJSGlFKUaBVNaQFoFkdAjKP1BdD6WXV9lChoBmgJaA9DCHe+nxovA21AlIaUUpRoFU0mAWgWR0CMpD0I1LrYdX2UKGgGaAloD0MIz7wcdt/3a0CUhpRSlGgVTQABaBZHQIynykTHsC11fZQoaAZoCWgPQwhan3JMFodCQJSGlFKUaBVLsWgWR0CMqYONo8ISdX2UKGgGaAloD0MIRBZp4h1mbECUhpRSlGgVTRwBaBZHQIyuLFId2gZ1fZQoaAZoCWgPQwioUrMHWsVQQJSGlFKUaBVN6ANoFkdAjK5DvmYBvXV9lChoBmgJaA9DCJlIaTYPAW9AlIaUUpRoFU0KAWgWR0CMsXdweeWfdX2UKGgGaAloD0MIHxDoTFocbECUhpRSlGgVTTUBaBZHQIyxx3/xUed1fZQoaAZoCWgPQwipwp/hzU9uQJSGlFKUaBVNkAFoFkdAjLIKU3XI2nV9lChoBmgJaA9DCNnQzf5AcFhAlIaUUpRoFU3oA2gWR0CMss9CeEqUdX2UKGgGaAloD0MIuRYtQFvVbECUhpRSlGgVTXoBaBZHQIy0PYzzmOl1fZQoaAZoCWgPQwhqh78mq3JwQJSGlFKUaBVL2WgWR0CMtFBqsU7CdX2UKGgGaAloD0MIs7YpHpeJb0CUhpRSlGgVTRgBaBZHQIy4zzbvgFZ1fZQoaAZoCWgPQwiFKF/QwgZtQJSGlFKUaBVNMAFoFkdAjLlrRBu4w3V9lChoBmgJaA9DCKJ/gosVHTFAlIaUUpRoFUvQaBZHQIy8mbutwJh1fZQoaAZoCWgPQwgYJH1aRe1tQJSGlFKUaBVNUgFoFkdAjL0Nz8xbjnV9lChoBmgJaA9DCMQj8fL0Cm5AlIaUUpRoFU0OAWgWR0CMvT9l2/zrdX2UKGgGaAloD0MIGCKnr6d6cECUhpRSlGgVTS4BaBZHQIy912JSBLB1fZQoaAZoCWgPQwgAOPbsucwyQJSGlFKUaBVL12gWR0CMv7/WlMyrdX2UKGgGaAloD0MIaHke3F0ncECUhpRSlGgVS/JoFkdAjMGwz1schnV9lChoBmgJaA9DCMkgdxGmIXFAlIaUUpRoFUvnaBZHQIzB/N3W4Ex1fZQoaAZoCWgPQwh+bmjKzvJvQJSGlFKUaBVNJgFoFkdAjMUuCGvfTHV9lChoBmgJaA9DCG/1nPT+FnFAlIaUUpRoFU0rAWgWR0CMx9C+lCTmdX2UKGgGaAloD0MIH4SAfAmwX0CUhpRSlGgVTegDaBZHQIzH95D7ZWd1fZQoaAZoCWgPQwhMcVXZ955vQJSGlFKUaBVNMQFoFkdAjMhMByS3b3V9lChoBmgJaA9DCLtE9dbATG9AlIaUUpRoFUv7aBZHQIzJCD9Oymh1fZQoaAZoCWgPQwgY6rDCLS1wQJSGlFKUaBVNMwFoFkdAjM2J66asqHV9lChoBmgJaA9DCORNfovON25AlIaUUpRoFU0MAWgWR0CMzjd+G47SdX2UKGgGaAloD0MIvW2mQjwyLkCUhpRSlGgVS71oFkdAjM52D6Fds3V9lChoBmgJaA9DCHRGlPZGVHBAlIaUUpRoFUv9aBZHQIzOdL39JjF1fZQoaAZoCWgPQwiDMSJRaKJgQJSGlFKUaBVN6ANoFkdAjM7dFvybx3V9lChoBmgJaA9DCIfguIwbNG9AlIaUUpRoFU01AWgWR0CM0Y+xGDtgdX2UKGgGaAloD0MIh78ma9RPbkCUhpRSlGgVTQ0BaBZHQIzRskMTewd1fZQoaAZoCWgPQwj0UNuGUb1uQJSGlFKUaBVL8GgWR0CM0hYDklu4dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 170, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d31acb782c81dbd514545c0952aba595f284def4355b8ad5b7f20dd8d1baf89c
3
+ size 144081
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.5.0
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f709f166f80>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f709f16f050>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f709f16f0e0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f709f16f170>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f709f16f200>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f709f16f290>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f709f16f320>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f709f16f3b0>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f709f16f440>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f709f16f4d0>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f709f16f560>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7f709f13e390>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 524288,
46
+ "_total_timesteps": 500000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1651766903.630376,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAABMdpT4DZ0M/U2FsPbkz1r760nc9D+QEvQAAAAAAAAAADWyhvlgwi73qG1y+LAScvQv+xT6WqSA+AAAAAAAAgD/wEd4+hAvWPub88j2jg0K+jnkdPn+oiTwAAAAAAAAAAEbnnD6oFMU9cjw/vmARQ7666nK9fcIiPAAAAAAAAAAAhvwsvgp6P7tSRD84/mUQNYuLezxqlV23AACAPwAAgD/T8j2+jlgOP56duzyJIpW+ZkU6vdAzz7wAAAAAAAAAADOFHr5XRzs8s6vBPbQ6TL7ZzDQ8ZgVKOwAAAAAAAAAAjYbVPY9aRrr9VjQ1MyQaLpTG9DrncUy0AAAAAAAAgD/NQc890kLMu6IQPb3BrAw94VYiPaCY6L0AAAAAAACAP7puZL5X6Zk/7deuvqSkBL+H+Re+9pRfPAAAAAAAAAAAwARVPsKxoj/vmKs+v66nvhb7BD5K2g69AAAAAAAAAAAClfu+oSg2P2+Brr2PLry+C6givnNr8LoAAAAAAAAAAMajgD60V7682C9Du9p6nzm0eie+jcVzOgAAgD8AAIA/BixePhtuWT/ApWI+9zCTvstSAz4bE/w8AAAAAAAAAACN5YU++lZCvaXTirraq3A59XSpvigOwjkAAIA/AACAP7DM3z5YrfA+JkQrPnqPmr7uquI9EUiFPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.04857599999999995,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVbBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIF0m70QcVcUCUhpRSlIwBbJRNDAGMAXSUR0CLaq00m+j/dX2UKGgGaAloD0MIWYl5VlIAcUCUhpRSlGgVTQYBaBZHQItryUC7sfJ1fZQoaAZoCWgPQwge4bTgxXBvQJSGlFKUaBVNQAFoFkdAi20HTZxrBXV9lChoBmgJaA9DCDz2s1iKI1FAlIaUUpRoFU3oA2gWR0CLbbuejEehdX2UKGgGaAloD0MIxHx5AfatNUCUhpRSlGgVS8toFkdAi2479If8uXV9lChoBmgJaA9DCCZTBaMSim5AlIaUUpRoFU0MAWgWR0CLbk73fyf+dX2UKGgGaAloD0MImzxlNV0nN0CUhpRSlGgVS9toFkdAi26C704BFXV9lChoBmgJaA9DCJ5A2ClWWG9AlIaUUpRoFU0vAWgWR0CLcluuzQeFdX2UKGgGaAloD0MIWKoLeJmcYkCUhpRSlGgVTegDaBZHQItzZdD6WPd1fZQoaAZoCWgPQwhU4jrGlWZwQJSGlFKUaBVNLAFoFkdAi3fAoG6f8XV9lChoBmgJaA9DCENWt3rOgW9AlIaUUpRoFU0aAWgWR0CLeZsrupjudX2UKGgGaAloD0MIHZJaKJnNXUCUhpRSlGgVTegDaBZHQIt+tcMVk+Z1fZQoaAZoCWgPQwjA6zNn/fdvQJSGlFKUaBVNMwFoFkdAjDuHwG4ZuXV9lChoBmgJaA9DCLGH9rGCzGtAlIaUUpRoFU0NAWgWR0CMO8NQ0oBrdX2UKGgGaAloD0MIiXlW0orwbkCUhpRSlGgVTSMBaBZHQIw8NKK508x1fZQoaAZoCWgPQwgjFFtBU3VgQJSGlFKUaBVN6ANoFkdAjDyYXwb2lHV9lChoBmgJaA9DCHdOs0A7AG5AlIaUUpRoFU1SAWgWR0CMQXyTY/VzdX2UKGgGaAloD0MIsDvdeeK58j+UhpRSlGgVTRgBaBZHQIxCcy+HrQh1fZQoaAZoCWgPQwg8vr1r0KttQJSGlFKUaBVNNgFoFkdAjEPIOpbUw3V9lChoBmgJaA9DCGmn5nKDVm1AlIaUUpRoFU3FAWgWR0CMSvczImw8dX2UKGgGaAloD0MIZOdtbHbTXkCUhpRSlGgVTegDaBZHQIxMeE/Spit1fZQoaAZoCWgPQwjNrKWAtMFEQJSGlFKUaBVLxWgWR0CMU+4TbnHOdX2UKGgGaAloD0MIucfSh64abUCUhpRSlGgVTQ4BaBZHQIxUWVJL/S91fZQoaAZoCWgPQwgeUDblCttsQJSGlFKUaBVNzQJoFkdAjFUF6Z6Uq3V9lChoBmgJaA9DCG5rC8/L0m9AlIaUUpRoFU0ZAWgWR0CMVoyckMTfdX2UKGgGaAloD0MI6YAk7FslakCUhpRSlGgVTVcCaBZHQIxXXiaRZEF1fZQoaAZoCWgPQwhne/SGe4xsQJSGlFKUaBVNKQFoFkdAjFd1Z9uxbHV9lChoBmgJaA9DCAyuuaP/LTpAlIaUUpRoFUvRaBZHQIxXgKD01651fZQoaAZoCWgPQwggJ0wYzR9wQJSGlFKUaBVNAgFoFkdAjFnVIy0rsnV9lChoBmgJaA9DCOIBZVNuxnBAlIaUUpRoFU3MAWgWR0CMX1MjeKsNdX2UKGgGaAloD0MIMILGTCL6Z0CUhpRSlGgVTUkCaBZHQIxiUByS3b51fZQoaAZoCWgPQwiPGhNirnxuQJSGlFKUaBVNGAFoFkdAjGMXQdCE6HV9lChoBmgJaA9DCHvXoC99OHBAlIaUUpRoFU0hAWgWR0CMZNxVAAyVdX2UKGgGaAloD0MIFCAKZkxzWkCUhpRSlGgVTegDaBZHQIxm+CuloDh1fZQoaAZoCWgPQwhbXrneNjRxQJSGlFKUaBVL9WgWR0CMZzO1v2oOdX2UKGgGaAloD0MImdnnMcpz87+UhpRSlGgVS8doFkdAjGjOgpSaVnV9lChoBmgJaA9DCEljtI6qeW1AlIaUUpRoFU0fAWgWR0CMariHZbpvdX2UKGgGaAloD0MIM/0S8da7bkCUhpRSlGgVTQYBaBZHQIxq/IXCTEB1fZQoaAZoCWgPQwgdVrjlo5VuQJSGlFKUaBVNNQFoFkdAjGuplBhQWXV9lChoBmgJaA9DCIXv/Q3aImxAlIaUUpRoFU1HAWgWR0CMbqiblRxcdX2UKGgGaAloD0MIl445z9jLMUCUhpRSlGgVS+ZoFkdAjHOtXPqs2nV9lChoBmgJaA9DCAOWXMXiLm9AlIaUUpRoFU0cAWgWR0CMdD6kZaV2dX2UKGgGaAloD0MIkDLiAtDaXUCUhpRSlGgVTegDaBZHQIx3Vhd+ocd1fZQoaAZoCWgPQwh5B3jSwkNwQJSGlFKUaBVL5WgWR0CMeAsH0K7adX2UKGgGaAloD0MIWWlSCjoVbkCUhpRSlGgVTdgBaBZHQIx6dGXokiV1fZQoaAZoCWgPQwj0qWOVUvpvQJSGlFKUaBVL62gWR0CMfDZeRgZ1dX2UKGgGaAloD0MICWzOwTM3cECUhpRSlGgVTQIBaBZHQIx/BP/JeVt1fZQoaAZoCWgPQwgIV0Ch3j9wQJSGlFKUaBVNLwFoFkdAjH+K814xDnV9lChoBmgJaA9DCIUi3c9pAXBAlIaUUpRoFU1uAWgWR0CMgCSvkiljdX2UKGgGaAloD0MIwoanV0rAYUCUhpRSlGgVTegDaBZHQIyC0YVIqb11fZQoaAZoCWgPQwjDgCVXMVtuQJSGlFKUaBVNEAFoFkdAjIMZfD1oQHV9lChoBmgJaA9DCABV3LiFiHJAlIaUUpRoFU1vAWgWR0CMhdqqOtGNdX2UKGgGaAloD0MIdNNmnMYycECUhpRSlGgVTQ8BaBZHQIyHs5+6RQt1fZQoaAZoCWgPQwgDsAER4iNfQJSGlFKUaBVN6ANoFkdAjIruYplSTHV9lChoBmgJaA9DCGK7e4BuWG1AlIaUUpRoFU0nAWgWR0CMjTvb48EFdX2UKGgGaAloD0MIAoI5evycbECUhpRSlGgVTVoBaBZHQIyOGj2zv7Z1fZQoaAZoCWgPQwg6deWzvKRuQJSGlFKUaBVNLgFoFkdAjJKp0wJw9HV9lChoBmgJaA9DCJyLv+0JqjZAlIaUUpRoFUvkaBZHQIyULRjSXt11fZQoaAZoCWgPQwgykGeX74ZtQJSGlFKUaBVNfAFoFkdAjJdw1BMSK3V9lChoBmgJaA9DCExUbw1s92xAlIaUUpRoFU1DAWgWR0CMmC814xDcdX2UKGgGaAloD0MIY0UNpmHpbECUhpRSlGgVTT0BaBZHQIyYXAZbY9R1fZQoaAZoCWgPQwj/P06YsK1sQJSGlFKUaBVNuwFoFkdAjJnl1B+nZXV9lChoBmgJaA9DCCKrWz2nInFAlIaUUpRoFU1GAWgWR0CMnA8wHqu9dX2UKGgGaAloD0MIzNHj9zYVL0CUhpRSlGgVS+BoFkdAjJyhHCoCMnV9lChoBmgJaA9DCMlZ2NMODlRAlIaUUpRoFU3oA2gWR0CMorP9DQZ5dX2UKGgGaAloD0MIc6JdhZT/EMCUhpRSlGgVTRQBaBZHQIyjtJOFg2J1fZQoaAZoCWgPQwiCOuXRDX9tQJSGlFKUaBVNaQFoFkdAjKP1BdD6WXV9lChoBmgJaA9DCHe+nxovA21AlIaUUpRoFU0mAWgWR0CMpD0I1LrYdX2UKGgGaAloD0MIz7wcdt/3a0CUhpRSlGgVTQABaBZHQIynykTHsC11fZQoaAZoCWgPQwhan3JMFodCQJSGlFKUaBVLsWgWR0CMqYONo8ISdX2UKGgGaAloD0MIRBZp4h1mbECUhpRSlGgVTRwBaBZHQIyuLFId2gZ1fZQoaAZoCWgPQwioUrMHWsVQQJSGlFKUaBVN6ANoFkdAjK5DvmYBvXV9lChoBmgJaA9DCJlIaTYPAW9AlIaUUpRoFU0KAWgWR0CMsXdweeWfdX2UKGgGaAloD0MIHxDoTFocbECUhpRSlGgVTTUBaBZHQIyxx3/xUed1fZQoaAZoCWgPQwipwp/hzU9uQJSGlFKUaBVNkAFoFkdAjLIKU3XI2nV9lChoBmgJaA9DCNnQzf5AcFhAlIaUUpRoFU3oA2gWR0CMss9CeEqUdX2UKGgGaAloD0MIuRYtQFvVbECUhpRSlGgVTXoBaBZHQIy0PYzzmOl1fZQoaAZoCWgPQwhqh78mq3JwQJSGlFKUaBVL2WgWR0CMtFBqsU7CdX2UKGgGaAloD0MIs7YpHpeJb0CUhpRSlGgVTRgBaBZHQIy4zzbvgFZ1fZQoaAZoCWgPQwiFKF/QwgZtQJSGlFKUaBVNMAFoFkdAjLlrRBu4w3V9lChoBmgJaA9DCKJ/gosVHTFAlIaUUpRoFUvQaBZHQIy8mbutwJh1fZQoaAZoCWgPQwgYJH1aRe1tQJSGlFKUaBVNUgFoFkdAjL0Nz8xbjnV9lChoBmgJaA9DCMQj8fL0Cm5AlIaUUpRoFU0OAWgWR0CMvT9l2/zrdX2UKGgGaAloD0MIGCKnr6d6cECUhpRSlGgVTS4BaBZHQIy912JSBLB1fZQoaAZoCWgPQwgAOPbsucwyQJSGlFKUaBVL12gWR0CMv7/WlMyrdX2UKGgGaAloD0MIaHke3F0ncECUhpRSlGgVS/JoFkdAjMGwz1schnV9lChoBmgJaA9DCMkgdxGmIXFAlIaUUpRoFUvnaBZHQIzB/N3W4Ex1fZQoaAZoCWgPQwh+bmjKzvJvQJSGlFKUaBVNJgFoFkdAjMUuCGvfTHV9lChoBmgJaA9DCG/1nPT+FnFAlIaUUpRoFU0rAWgWR0CMx9C+lCTmdX2UKGgGaAloD0MIH4SAfAmwX0CUhpRSlGgVTegDaBZHQIzH95D7ZWd1fZQoaAZoCWgPQwhMcVXZ955vQJSGlFKUaBVNMQFoFkdAjMhMByS3b3V9lChoBmgJaA9DCLtE9dbATG9AlIaUUpRoFUv7aBZHQIzJCD9Oymh1fZQoaAZoCWgPQwgY6rDCLS1wQJSGlFKUaBVNMwFoFkdAjM2J66asqHV9lChoBmgJaA9DCORNfovON25AlIaUUpRoFU0MAWgWR0CMzjd+G47SdX2UKGgGaAloD0MIvW2mQjwyLkCUhpRSlGgVS71oFkdAjM52D6Fds3V9lChoBmgJaA9DCHRGlPZGVHBAlIaUUpRoFUv9aBZHQIzOdL39JjF1fZQoaAZoCWgPQwiDMSJRaKJgQJSGlFKUaBVN6ANoFkdAjM7dFvybx3V9lChoBmgJaA9DCIfguIwbNG9AlIaUUpRoFU01AWgWR0CM0Y+xGDtgdX2UKGgGaAloD0MIh78ma9RPbkCUhpRSlGgVTQ0BaBZHQIzRskMTewd1fZQoaAZoCWgPQwj0UNuGUb1uQJSGlFKUaBVL8GgWR0CM0hYDklu4dWUu"
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 170,
79
+ "n_steps": 2048,
80
+ "gamma": 0.99,
81
+ "gae_lambda": 0.95,
82
+ "ent_coef": 0.0,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 10,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8119e88e9352a5fbf9c3cabb6a2efd824fd862631dbdfaf95e3e098b7c84b8df
3
+ size 84893
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3769bc10c3c786e952da4a44bbda1a3618efeb0bb6086cfcdc4b47ad7647196f
3
+ size 43201
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
2
+ Python: 3.7.13
3
+ Stable-Baselines3: 1.5.0
4
+ PyTorch: 1.11.0+cu113
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b78b279007234223992871221ee15218d44f28ad399009fdd0f4245ae223bfcc
3
+ size 221787
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 211.4841621120451, "std_reward": 41.78766401127083, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-05T16:22:46.376179"}