A2C-LunarLander-v2 / config.json
fmcurti's picture
Increasing training steps, playing with hyperparameters
efb7b9d
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f709f166f80>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f709f16f050>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f709f16f0e0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f709f16f170>", "_build": "<function ActorCriticPolicy._build at 0x7f709f16f200>", "forward": "<function ActorCriticPolicy.forward at 0x7f709f16f290>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f709f16f320>", "_predict": "<function ActorCriticPolicy._predict at 0x7f709f16f3b0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f709f16f440>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f709f16f4d0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f709f16f560>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f709f13e390>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1250000, "_total_timesteps": 1250000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651770662.5923681, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAHPnJb4D1Yg/kinAOZA4wrwXIFe8OmBovQAAAAAAAAAA09tPPs14jT8r3fg9SVOtvgE6Mz+SNtM+AAAAAAAAAABzRDi+xQRvP6+5L70dkiy9Nb1MvQk+ir0AAAAAAAAAALPfW71aUYs/nsVhPKCwmb1YtZM9qceVPQAAAAAAAAAA9kNYvspaKD/1IbS9MnUcvdPOxr0nPB+9AAAAAAAAAABtHxC+u3VbP8wShb2LWfi8UkRsvfZeVT0AAAAAAAAAAG2PF74ODt4+3lDtvLFrML1bNXq9y2nfPQAAAAAAAAAAJiE7vgf45D56os27G7ypvCc5uDzGLwA+AAAAAAAAAADgHUS+2AzXPhwRjzxrK6e8nGINPSh2v70AAAAAAAAAAEbA2L4sh4y9SOmMvdm0UrxKQpI+ea6ZPAAAgD8AAIA/wBSmvTOHZD/bFn68/1ZLvRhan7zeCWK9AAAAAAAAAABNaXC9kVt5P/oAQr31apE7Kl2VvFlOujwAAAAAAAAAAJovvr3DY7Q+444vOwSARL1Y9Ik8cjrwuwAAAAAAAAAAwHr2vYZDFj+QQzu9bxQ2vUWtJbxwmsu9AAAAAAAAAADz+rC9b4soP3JvibwKQUK9bcMoPYRzMT0AAAAAAAAAAKYg9L0xOis/DslOvSf6M71dwlI9Oi3tvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVbxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIzm3CvTIEUMCUhpRSlIwBbJRN6AOMAXSUR0Cz7U9BKL88dX2UKGgGaAloD0MImzdOCvPfYUCUhpRSlGgVTY8CaBZHQLPuJ8x9G7V1fZQoaAZoCWgPQwglzLT9KzNIQJSGlFKUaBVLpmgWR0Cz7kfNmlImdX2UKGgGaAloD0MIgUI9fQQJU8CUhpRSlGgVTegDaBZHQLPuXsXizcB1fZQoaAZoCWgPQwjTEiujEVBkQJSGlFKUaBVNpANoFkdAs+8GPGQ0XXV9lChoBmgJaA9DCLZpbK8F0FPAlIaUUpRoFU3oA2gWR0Cz7z4U8FINdX2UKGgGaAloD0MIJy7HKxBfcUCUhpRSlGgVTREBaBZHQLPwNgBcRlJ1fZQoaAZoCWgPQwg6PITx0yg2wJSGlFKUaBVLrmgWR0Cz8QOr6tT2dX2UKGgGaAloD0MI+RG/Yg1FV8CUhpRSlGgVTegDaBZHQLPynhsImgJ1fZQoaAZoCWgPQwh56pEGdxNxQJSGlFKUaBVNMwFoFkdAs/Rz5ylvZXV9lChoBmgJaA9DCJnU0AYgE3BAlIaUUpRoFU1qAWgWR0Cz9MKUiY9gdX2UKGgGaAloD0MIC0J5H0eIYsCUhpRSlGgVS41oFkdAs/VvRnezlnV9lChoBmgJaA9DCF2MgXUcwzVAlIaUUpRoFU3oA2gWR0Cz9e/mcOLBdX2UKGgGaAloD0MIhh+cTx0FWcCUhpRSlGgVTegDaBZHQLP3O6Ae7tl1fZQoaAZoCWgPQwhKYkm5+6pBwJSGlFKUaBVLcmgWR0Cz+G7Lt/nXdX2UKGgGaAloD0MIIm3jT1QDYUCUhpRSlGgVTUkDaBZHQLP7hcophF51fZQoaAZoCWgPQwgWwmosYf06wJSGlFKUaBVN6ANoFkdAs/x7JMg2ZXV9lChoBmgJaA9DCOv822W/5i1AlIaUUpRoFU1QAWgWR0Cz/LMlw97odX2UKGgGaAloD0MIZqNzforRVcCUhpRSlGgVTegDaBZHQLP9lcwg1WN1fZQoaAZoCWgPQwj8GkmCcEFDwJSGlFKUaBVLeGgWR0Cz/qXqNZNgdX2UKGgGaAloD0MIZqTeUzlmUMCUhpRSlGgVTegDaBZHQLQAsi0v4/N1fZQoaAZoCWgPQwguy9dl+M5SwJSGlFKUaBVN6ANoFkdAtALOO3lS0nV9lChoBmgJaA9DCOWXwRiRNFzAlIaUUpRoFU3ZA2gWR0C0Atr7GecydX2UKGgGaAloD0MInwJgPIPsQMCUhpRSlGgVS2NoFkdAtANA5YHPeHV9lChoBmgJaA9DCFVP5h995zvAlIaUUpRoFU3oA2gWR0C0A3MdPtUodX2UKGgGaAloD0MIqRPQRNg4W8CUhpRSlGgVTegDaBZHQLQEcuEVWS51fZQoaAZoCWgPQwhffxKfO31TwJSGlFKUaBVN6ANoFkdAtAVp2Rq46XV9lChoBmgJaA9DCJpBfGDHfwVAlIaUUpRoFU1HAWgWR0C0BkGIGhVVdX2UKGgGaAloD0MIgEdUqG4qSsCUhpRSlGgVTegDaBZHQLQGlQNCqp91fZQoaAZoCWgPQwi6pGq7CRtsQJSGlFKUaBVNjQJoFkdAtAa8AIY3vXV9lChoBmgJaA9DCCEE5EuoiFbAlIaUUpRoFU3oA2gWR0C0B20CeVcEdX2UKGgGaAloD0MImS7E6g/6YMCUhpRSlGgVS6JoFkdAtAql3B55aHV9lChoBmgJaA9DCBb59UNs6EHAlIaUUpRoFU3oA2gWR0C0CxH8CPp7dX2UKGgGaAloD0MIHD9UGjGAY0CUhpRSlGgVTbQBaBZHQLQLcK0lZ5l1fZQoaAZoCWgPQwhe9BWkGbdfQJSGlFKUaBVN6ANoFkdAtAwh4jbBXXV9lChoBmgJaA9DCJRsdTlloXFAlIaUUpRoFU1zAWgWR0C0DmZCKJl8dX2UKGgGaAloD0MIELOXbSfOa0CUhpRSlGgVTcgBaBZHQLQO3s2vStx1fZQoaAZoCWgPQwiEDOTZ5VlTQJSGlFKUaBVLqWgWR0C0DxLr9l3AdX2UKGgGaAloD0MIEsKjjSO1VcCUhpRSlGgVTegDaBZHQLQPbbvw3Hd1fZQoaAZoCWgPQwgxBtZx/OhmQJSGlFKUaBVNUQJoFkdAtA+fEXLvC3V9lChoBmgJaA9DCNU+HY8ZKFFAlIaUUpRoFUvAaBZHQLQP+SUC7sh1fZQoaAZoCWgPQwjRlJ1+0LJzQJSGlFKUaBVLyGgWR0C0EMWAf+0gdX2UKGgGaAloD0MILZRMTu2pUsCUhpRSlGgVTegDaBZHQLQS/yrxRVJ1fZQoaAZoCWgPQwjXvoBeuD86wJSGlFKUaBVN6ANoFkdAtBMsuFpPAXV9lChoBmgJaA9DCPWAeciULlnAlIaUUpRoFU3oA2gWR0C0E+HhS9/SdX2UKGgGaAloD0MIn3djQWGwHsCUhpRSlGgVS91oFkdAtBSpePaL43V9lChoBmgJaA9DCESi0LLu9UPAlIaUUpRoFU3oA2gWR0C0F+GpQ1rJdX2UKGgGaAloD0MIfUCgM2nCUsCUhpRSlGgVTegDaBZHQLQYeBT4tYl1fZQoaAZoCWgPQwipFhHF5ItOwJSGlFKUaBVN6ANoFkdAtBmUb6xgRnV9lChoBmgJaA9DCJeQD3o2OW1AlIaUUpRoFU0CAmgWR0C0GZsDr7fpdX2UKGgGaAloD0MI4rGfxVLES8CUhpRSlGgVTegDaBZHQLQbsaCL/CJ1fZQoaAZoCWgPQwjIluXrMtpQwJSGlFKUaBVN6ANoFkdAtBxLitJWenV9lChoBmgJaA9DCG75SEp6Zm5AlIaUUpRoFU2BAWgWR0C0HQP3JxNqdX2UKGgGaAloD0MINlZinlXFckCUhpRSlGgVTSgBaBZHQLQgbdoFmnR1fZQoaAZoCWgPQwgOEqJ8QR5YQJSGlFKUaBVLsmgWR0C0IJMfRu0kdX2UKGgGaAloD0MIFOl+TkE2OsCUhpRSlGgVTegDaBZHQLQhMU/wAlx1fZQoaAZoCWgPQwhBECBDx21pQJSGlFKUaBVNrwFoFkdAtCKqrQw9JXV9lChoBmgJaA9DCL4tWKqLJ2xAlIaUUpRoFU2TAWgWR0C0Jf1WGRFJdX2UKGgGaAloD0MIqdkDrcCgPMCUhpRSlGgVTegDaBZHQLQmKeTV2A51fZQoaAZoCWgPQwhTJF8JpEhCwJSGlFKUaBVN6ANoFkdAtCZbI91U2nV9lChoBmgJaA9DCELuIkxRu1LAlIaUUpRoFU3oA2gWR0C0Jq62OQyRdX2UKGgGaAloD0MIh1EQPL5JQsCUhpRSlGgVTegDaBZHQLQm3wl0HQh1fZQoaAZoCWgPQwiDwwsiUmBWwJSGlFKUaBVN6ANoFkdAtCf1rwe/6HV9lChoBmgJaA9DCLX8wFUeVm5AlIaUUpRoFU2/AWgWR0C0KD3dj5KwdX2UKGgGaAloD0MI6Ba6EoHGOsCUhpRSlGgVTUABaBZHQLQpBo5xR2t1fZQoaAZoCWgPQwiX5IBdTQpvQJSGlFKUaBVNcwFoFkdAtCmOaoddV3V9lChoBmgJaA9DCDuKc9TRGF9AlIaUUpRoFU23A2gWR0C0KatxEORUdX2UKGgGaAloD0MIROBIoMEiPsCUhpRSlGgVTegDaBZHQLQpxtNBWxR1fZQoaAZoCWgPQwgTDVLwFHIEQJSGlFKUaBVLv2gWR0C0KdhTjvNNdX2UKGgGaAloD0MIliL5SiCNRsCUhpRSlGgVTegDaBZHQLQp4wJgLJF1fZQoaAZoCWgPQwhAijpzD0kBQJSGlFKUaBVL2GgWR0C0KoF7IDHPdX2UKGgGaAloD0MIRtPZyWAta0CUhpRSlGgVTewBaBZHQLQrIy4FzMl1fZQoaAZoCWgPQwgcz2dAvYU6QJSGlFKUaBVL0GgWR0C0K0MGxD9gdX2UKGgGaAloD0MIdF34wflSYUCUhpRSlGgVTUgDaBZHQLQr2cEeQuF1fZQoaAZoCWgPQwjkEdxI2cduQJSGlFKUaBVNgwFoFkdAtCyyL1mJ33V9lChoBmgJaA9DCN7KEp1lt1TAlIaUUpRoFU3oA2gWR0C0LRVIiC8OdX2UKGgGaAloD0MIlPqytFPCXsCUhpRSlGgVS8JoFkdAtC09OsT37HV9lChoBmgJaA9DCE2espouLHBAlIaUUpRoFU1bAWgWR0C0LqFlCkXUdX2UKGgGaAloD0MIOQt72uHocECUhpRSlGgVTXoBaBZHQLQvEwOOKfp1fZQoaAZoCWgPQwgyWdx/ZPI6QJSGlFKUaBVNDQFoFkdAtDJS/SH/LnV9lChoBmgJaA9DCAjJAiZwKzrAlIaUUpRoFU3oA2gWR0C0N13xe9i+dX2UKGgGaAloD0MIj46rkV3eakCUhpRSlGgVTWACaBZHQLQ4Dz06HTJ1fZQoaAZoCWgPQwgqApzexQlaQJSGlFKUaBVNqQNoFkdAtDoSnNxEOXV9lChoBmgJaA9DCHqlLEMcGlXAlIaUUpRoFU3oA2gWR0C0OxLRfF72dX2UKGgGaAloD0MIy7+WV66WVUCUhpRSlGgVS65oFkdAtDyWnuRcNnV9lChoBmgJaA9DCBqiCn+G/UHAlIaUUpRoFU3oA2gWR0C0Ph0zsQd0dX2UKGgGaAloD0MIxK9Yw0WSS8CUhpRSlGgVTegDaBZHQLQ/UNorWiF1fZQoaAZoCWgPQwjnU8cqpeVVwJSGlFKUaBVN6ANoFkdAtEBhNL127nV9lChoBmgJaA9DCK/RcqCHQErAlIaUUpRoFU3oA2gWR0C0QH/U4JeFdX2UKGgGaAloD0MICw3Espk7MMCUhpRSlGgVTegDaBZHQLRAkSgGr0d1fZQoaAZoCWgPQwi5N79hoqtkQJSGlFKUaBVNIwNoFkdAtEC/EOy3TnV9lChoBmgJaA9DCHtLOV/sZ1JAlIaUUpRoFUvkaBZHQLRBTrTpgTh1fZQoaAZoCWgPQwhpVyHlJyURwJSGlFKUaBVN6ANoFkdAtEJkWpIcznV9lChoBmgJaA9DCGE2AYblTz3AlIaUUpRoFU3oA2gWR0C0Q16RU3n7dX2UKGgGaAloD0MICHO7l/sgTsCUhpRSlGgVTegDaBZHQLRFEICU5dZ1fZQoaAZoCWgPQwjv/+OECdRkwJSGlFKUaBVNGAFoFkdAtEUR1klNUXV9lChoBmgJaA9DCGtiga9oGWBAlIaUUpRoFU2SA2gWR0C0RVhU3n6mdX2UKGgGaAloD0MIfGEyVTDqC0CUhpRSlGgVTV4BaBZHQLRFkrqdH2B1fZQoaAZoCWgPQwgQIEPHDsBNwJSGlFKUaBVN6ANoFkdAtEdFn5BToHV9lChoBmgJaA9DCC/7dac7KULAlIaUUpRoFU3oA2gWR0C0SqQ0XP7fdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 15625, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}