flyyufelix commited on
Commit
9787ab0
·
verified ·
1 Parent(s): 41d1278

Model save

Browse files
README.md CHANGED
@@ -1,5 +1,5 @@
1
  ---
2
- base_model: Qwen/Qwen2.5-Math-7B
3
  library_name: transformers
4
  model_name: Qwen-2.5-7B-Simple-RL
5
  tags:
@@ -11,7 +11,7 @@ licence: license
11
 
12
  # Model Card for Qwen-2.5-7B-Simple-RL
13
 
14
- This model is a fine-tuned version of [Qwen/Qwen2.5-Math-7B](https://huggingface.co/Qwen/Qwen2.5-Math-7B).
15
  It has been trained using [TRL](https://github.com/huggingface/trl).
16
 
17
  ## Quick start
 
1
  ---
2
+ base_model: Qwen/Qwen2.5-0.5B
3
  library_name: transformers
4
  model_name: Qwen-2.5-7B-Simple-RL
5
  tags:
 
11
 
12
  # Model Card for Qwen-2.5-7B-Simple-RL
13
 
14
+ This model is a fine-tuned version of [Qwen/Qwen2.5-0.5B](https://huggingface.co/Qwen/Qwen2.5-0.5B).
15
  It has been trained using [TRL](https://github.com/huggingface/trl).
16
 
17
  ## Quick start
adapter_config.json CHANGED
@@ -1,7 +1,7 @@
1
  {
2
  "alpha_pattern": {},
3
  "auto_mapping": null,
4
- "base_model_name_or_path": "Qwen/Qwen2.5-Math-7B",
5
  "bias": "none",
6
  "eva_config": null,
7
  "exclude_modules": null,
@@ -23,13 +23,13 @@
23
  "rank_pattern": {},
24
  "revision": null,
25
  "target_modules": [
26
- "up_proj",
27
- "o_proj",
28
- "v_proj",
29
- "gate_proj",
30
- "k_proj",
31
  "q_proj",
32
- "down_proj"
 
 
 
 
 
33
  ],
34
  "task_type": "CAUSAL_LM",
35
  "use_dora": false,
 
1
  {
2
  "alpha_pattern": {},
3
  "auto_mapping": null,
4
+ "base_model_name_or_path": "Qwen/Qwen2.5-0.5B",
5
  "bias": "none",
6
  "eva_config": null,
7
  "exclude_modules": null,
 
23
  "rank_pattern": {},
24
  "revision": null,
25
  "target_modules": [
 
 
 
 
 
26
  "q_proj",
27
+ "k_proj",
28
+ "gate_proj",
29
+ "o_proj",
30
+ "up_proj",
31
+ "down_proj",
32
+ "v_proj"
33
  ],
34
  "task_type": "CAUSAL_LM",
35
  "use_dora": false,
adapter_model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:8d1299b48026bfa4882d567b9562ebfc2772388a281c3593858b688dd0446f7c
3
- size 161533192
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:287246a45303c5a200b655409bf837910a83e9fb80d67a180643de6dcdefbcfc
3
+ size 35237104
all_results.json CHANGED
@@ -1,8 +1,8 @@
1
  {
2
  "total_flos": 0.0,
3
- "train_loss": 0.0008721697144210338,
4
- "train_runtime": 2002.6709,
5
  "train_samples": 7500,
6
- "train_samples_per_second": 0.24,
7
- "train_steps_per_second": 0.015
8
  }
 
1
  {
2
  "total_flos": 0.0,
3
+ "train_loss": 0.0028079951708861748,
4
+ "train_runtime": 39617.8147,
5
  "train_samples": 7500,
6
+ "train_samples_per_second": 0.189,
7
+ "train_steps_per_second": 0.012
8
  }
config.json CHANGED
@@ -1,5 +1,6 @@
1
  {
2
- "_name_or_path": "Qwen/Qwen2.5-0.5B",
 
3
  "architectures": [
4
  "Qwen2ForCausalLM"
5
  ],
@@ -7,24 +8,24 @@
7
  "bos_token_id": 151643,
8
  "eos_token_id": 151643,
9
  "hidden_act": "silu",
10
- "hidden_size": 896,
11
  "initializer_range": 0.02,
12
- "intermediate_size": 4864,
13
- "max_position_embeddings": 32768,
14
- "max_window_layers": 24,
15
  "model_type": "qwen2",
16
- "num_attention_heads": 14,
17
- "num_hidden_layers": 24,
18
- "num_key_value_heads": 2,
19
  "rms_norm_eps": 1e-06,
20
  "rope_scaling": null,
21
- "rope_theta": 1000000.0,
22
- "sliding_window": 32768,
23
- "tie_word_embeddings": true,
24
  "torch_dtype": "bfloat16",
25
  "transformers_version": "4.49.0",
26
  "use_cache": true,
27
  "use_mrope": false,
28
  "use_sliding_window": false,
29
- "vocab_size": 151936
30
  }
 
1
  {
2
+ "_attn_implementation_autoset": true,
3
+ "_name_or_path": "Qwen/Qwen2.5-Math-7B",
4
  "architectures": [
5
  "Qwen2ForCausalLM"
6
  ],
 
8
  "bos_token_id": 151643,
9
  "eos_token_id": 151643,
10
  "hidden_act": "silu",
11
+ "hidden_size": 3584,
12
  "initializer_range": 0.02,
13
+ "intermediate_size": 18944,
14
+ "max_position_embeddings": 4096,
15
+ "max_window_layers": 28,
16
  "model_type": "qwen2",
17
+ "num_attention_heads": 28,
18
+ "num_hidden_layers": 28,
19
+ "num_key_value_heads": 4,
20
  "rms_norm_eps": 1e-06,
21
  "rope_scaling": null,
22
+ "rope_theta": 10000,
23
+ "sliding_window": 4096,
24
+ "tie_word_embeddings": false,
25
  "torch_dtype": "bfloat16",
26
  "transformers_version": "4.49.0",
27
  "use_cache": true,
28
  "use_mrope": false,
29
  "use_sliding_window": false,
30
+ "vocab_size": 152064
31
  }
tokenizer_config.json CHANGED
@@ -195,7 +195,7 @@
195
  "<|video_pad|>"
196
  ],
197
  "bos_token": null,
198
- "chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'Please reason step by step, and put your final answer within \\\\boxed{}.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nPlease reason step by step, and put your final answer within \\\\boxed{}.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n",
199
  "clean_up_tokenization_spaces": false,
200
  "eos_token": "<|endoftext|>",
201
  "errors": "replace",
 
195
  "<|video_pad|>"
196
  ],
197
  "bos_token": null,
198
+ "chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'You are a helpful assistant.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nYou are a helpful assistant.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n",
199
  "clean_up_tokenization_spaces": false,
200
  "eos_token": "<|endoftext|>",
201
  "errors": "replace",
train_results.json CHANGED
@@ -1,8 +1,8 @@
1
  {
2
  "total_flos": 0.0,
3
- "train_loss": 0.0008721697144210338,
4
- "train_runtime": 2002.6709,
5
  "train_samples": 7500,
6
- "train_samples_per_second": 0.24,
7
- "train_steps_per_second": 0.015
8
  }
 
1
  {
2
  "total_flos": 0.0,
3
+ "train_loss": 0.0028079951708861748,
4
+ "train_runtime": 39617.8147,
5
  "train_samples": 7500,
6
+ "train_samples_per_second": 0.189,
7
+ "train_steps_per_second": 0.012
8
  }
trainer_state.json CHANGED
@@ -1,20 +1,20 @@
1
  {
2
  "best_metric": null,
3
  "best_model_checkpoint": null,
4
- "epoch": 0.032,
5
  "eval_steps": 100,
6
- "global_step": 30,
7
  "is_hyper_param_search": false,
8
  "is_local_process_zero": true,
9
  "is_world_process_zero": true,
10
  "log_history": [
11
  {
12
  "clip_ratio": 0.0,
13
- "completion_length": 246.8125,
14
- "epoch": 0.0010666666666666667,
15
  "grad_norm": 0.0,
16
  "kl": 0.0,
17
- "learning_rate": 1e-06,
18
  "loss": 0.0,
19
  "reward": 0.0,
20
  "reward_std": 0.0,
@@ -24,100 +24,1357 @@
24
  },
25
  {
26
  "clip_ratio": 0.0,
27
- "completion_length": 228.984375,
28
- "epoch": 0.005333333333333333,
29
- "grad_norm": 0.0002897010708693415,
30
- "kl": 0.0002434550688121817,
31
- "learning_rate": 2.959567305869736e-06,
32
- "loss": -0.0114,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33
  "reward": 0.0625,
34
- "reward_std": 0.0883883461356163,
35
  "rewards/accuracy_reward": 0.0625,
36
  "rewards/format_reward": 0.0,
37
- "step": 5
38
  },
39
  {
40
  "clip_ratio": 0.0,
41
- "completion_length": 234.275,
42
- "epoch": 0.010666666666666666,
43
- "grad_norm": 0.012982388027012348,
44
- "kl": 0.00034311858398723417,
45
- "learning_rate": 2.529362456803101e-06,
46
- "loss": -0.0046,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
47
  "reward": 0.0625,
48
- "reward_std": 0.01767766922712326,
49
  "rewards/accuracy_reward": 0.0625,
50
  "rewards/format_reward": 0.0,
51
- "step": 10
52
  },
53
  {
54
  "clip_ratio": 0.0,
55
- "completion_length": 239.0,
56
- "epoch": 0.016,
57
- "grad_norm": 0.00560641847550869,
58
- "kl": 0.000386229114519665,
59
- "learning_rate": 1.7604722665003958e-06,
60
- "loss": 0.0031,
61
- "reward": 0.1375,
62
- "reward_std": 0.12374368458986282,
63
- "rewards/accuracy_reward": 0.1375,
64
  "rewards/format_reward": 0.0,
65
- "step": 15
66
  },
67
  {
68
  "clip_ratio": 0.0,
69
- "completion_length": 244.1125,
70
- "epoch": 0.021333333333333333,
71
- "grad_norm": 0.0002242429181933403,
72
- "kl": 0.00041347902733832596,
73
- "learning_rate": 9.058803509412648e-07,
74
- "loss": 0.0022,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
75
  "reward": 0.05,
76
  "reward_std": 0.03535533845424652,
77
  "rewards/accuracy_reward": 0.05,
78
  "rewards/format_reward": 0.0,
79
- "step": 20
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
80
  },
81
  {
82
  "clip_ratio": 0.0,
83
- "completion_length": 242.75,
84
- "epoch": 0.02666666666666667,
85
- "grad_norm": 0.016108760610222816,
86
- "kl": 0.0003348791698954301,
87
- "learning_rate": 2.467682828805956e-07,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
88
  "loss": 0.0156,
89
- "reward": 0.1375,
90
- "reward_std": 0.0883883461356163,
91
- "rewards/accuracy_reward": 0.1375,
92
  "rewards/format_reward": 0.0,
93
- "step": 25
94
  },
95
  {
96
  "clip_ratio": 0.0,
97
- "completion_length": 234.625,
98
- "epoch": 0.032,
99
- "grad_norm": 0.0001786644133972004,
100
- "kl": 0.0004210583254462108,
101
- "learning_rate": 0.0,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
102
  "loss": -0.0019,
103
- "reward": 0.0625,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
104
  "reward_std": 0.05303300768136978,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
105
  "rewards/accuracy_reward": 0.0625,
106
  "rewards/format_reward": 0.0,
107
- "step": 30
108
  },
109
  {
110
- "epoch": 0.032,
111
- "step": 30,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
112
  "total_flos": 0.0,
113
- "train_loss": 0.0008721697144210338,
114
- "train_runtime": 2002.6709,
115
- "train_samples_per_second": 0.24,
116
- "train_steps_per_second": 0.015
117
  }
118
  ],
119
  "logging_steps": 5,
120
- "max_steps": 30,
121
  "num_input_tokens_seen": 0,
122
  "num_train_epochs": 1,
123
  "save_steps": 500,
@@ -134,7 +1391,7 @@
134
  }
135
  },
136
  "total_flos": 0.0,
137
- "train_batch_size": 2,
138
  "trial_name": null,
139
  "trial_params": null
140
  }
 
1
  {
2
  "best_metric": null,
3
  "best_model_checkpoint": null,
4
+ "epoch": 0.9984,
5
  "eval_steps": 100,
6
+ "global_step": 468,
7
  "is_hyper_param_search": false,
8
  "is_local_process_zero": true,
9
  "is_world_process_zero": true,
10
  "log_history": [
11
  {
12
  "clip_ratio": 0.0,
13
+ "completion_length": 599.40625,
14
+ "epoch": 0.0021333333333333334,
15
  "grad_norm": 0.0,
16
  "kl": 0.0,
17
+ "learning_rate": 6.382978723404255e-08,
18
  "loss": 0.0,
19
  "reward": 0.0,
20
  "reward_std": 0.0,
 
24
  },
25
  {
26
  "clip_ratio": 0.0,
27
+ "completion_length": 567.0078125,
28
+ "epoch": 0.010666666666666666,
29
+ "grad_norm": 0.02547222189605236,
30
+ "kl": 0.00040041709871729836,
31
+ "learning_rate": 3.1914893617021275e-07,
32
+ "loss": -0.0109,
33
+ "reward": 0.0859375,
34
+ "reward_std": 0.07733980286866426,
35
+ "rewards/accuracy_reward": 0.0859375,
36
+ "rewards/format_reward": 0.0,
37
+ "step": 5
38
+ },
39
+ {
40
+ "clip_ratio": 0.0,
41
+ "completion_length": 504.56875,
42
+ "epoch": 0.021333333333333333,
43
+ "grad_norm": 0.016505707055330276,
44
+ "kl": 0.0006629314979363698,
45
+ "learning_rate": 6.382978723404255e-07,
46
+ "loss": -0.0096,
47
+ "reward": 0.04375,
48
+ "reward_std": 0.04419417306780815,
49
+ "rewards/accuracy_reward": 0.04375,
50
+ "rewards/format_reward": 0.0,
51
+ "step": 10
52
+ },
53
+ {
54
+ "clip_ratio": 0.0,
55
+ "completion_length": 505.84375,
56
+ "epoch": 0.032,
57
+ "grad_norm": 0.033047277480363846,
58
+ "kl": 0.0005872767855180427,
59
+ "learning_rate": 9.574468085106384e-07,
60
+ "loss": 0.0176,
61
+ "reward": 0.0375,
62
+ "reward_std": 0.05303300768136978,
63
+ "rewards/accuracy_reward": 0.0375,
64
+ "rewards/format_reward": 0.0,
65
+ "step": 15
66
+ },
67
+ {
68
+ "clip_ratio": 0.0,
69
+ "completion_length": 543.25625,
70
+ "epoch": 0.042666666666666665,
71
+ "grad_norm": 0.03408794477581978,
72
+ "kl": 0.0006242210474738386,
73
+ "learning_rate": 1.276595744680851e-06,
74
+ "loss": 0.0039,
75
+ "reward": 0.04375,
76
+ "reward_std": 0.06187184229493141,
77
+ "rewards/accuracy_reward": 0.04375,
78
+ "rewards/format_reward": 0.0,
79
+ "step": 20
80
+ },
81
+ {
82
+ "clip_ratio": 0.0,
83
+ "completion_length": 597.21875,
84
+ "epoch": 0.05333333333333334,
85
+ "grad_norm": 0.02023429423570633,
86
+ "kl": 0.000612794059998123,
87
+ "learning_rate": 1.5957446808510639e-06,
88
+ "loss": 0.0064,
89
+ "reward": 0.05,
90
+ "reward_std": 0.07071067690849304,
91
+ "rewards/accuracy_reward": 0.05,
92
+ "rewards/format_reward": 0.0,
93
+ "step": 25
94
+ },
95
+ {
96
+ "clip_ratio": 0.0,
97
+ "completion_length": 591.35625,
98
+ "epoch": 0.064,
99
+ "grad_norm": 0.027683651074767113,
100
+ "kl": 0.0005714267717848998,
101
+ "learning_rate": 1.9148936170212767e-06,
102
+ "loss": -0.0076,
103
+ "reward": 0.05,
104
+ "reward_std": 0.05303300768136978,
105
+ "rewards/accuracy_reward": 0.05,
106
+ "rewards/format_reward": 0.0,
107
+ "step": 30
108
+ },
109
+ {
110
+ "clip_ratio": 0.0,
111
+ "completion_length": 516.53125,
112
+ "epoch": 0.07466666666666667,
113
+ "grad_norm": 0.0005982788279652596,
114
+ "kl": 0.0005893220724829007,
115
+ "learning_rate": 2.2340425531914894e-06,
116
+ "loss": 0.0301,
117
+ "reward": 0.08125,
118
+ "reward_std": 0.09722718074917794,
119
+ "rewards/accuracy_reward": 0.08125,
120
+ "rewards/format_reward": 0.0,
121
+ "step": 35
122
+ },
123
+ {
124
+ "clip_ratio": 0.0,
125
+ "completion_length": 544.31875,
126
+ "epoch": 0.08533333333333333,
127
+ "grad_norm": 0.0005049636238254607,
128
+ "kl": 0.0006337692822853569,
129
+ "learning_rate": 2.553191489361702e-06,
130
+ "loss": 0.0217,
131
+ "reward": 0.08125,
132
+ "reward_std": 0.09722718074917794,
133
+ "rewards/accuracy_reward": 0.08125,
134
+ "rewards/format_reward": 0.0,
135
+ "step": 40
136
+ },
137
+ {
138
+ "clip_ratio": 0.0,
139
+ "completion_length": 514.3875,
140
+ "epoch": 0.096,
141
+ "grad_norm": 0.03791235387325287,
142
+ "kl": 0.0006594170117750764,
143
+ "learning_rate": 2.872340425531915e-06,
144
+ "loss": -0.0038,
145
  "reward": 0.0625,
146
+ "reward_std": 0.07071067690849304,
147
  "rewards/accuracy_reward": 0.0625,
148
  "rewards/format_reward": 0.0,
149
+ "step": 45
150
  },
151
  {
152
  "clip_ratio": 0.0,
153
+ "completion_length": 509.44375,
154
+ "epoch": 0.10666666666666667,
155
+ "grad_norm": 0.02021694928407669,
156
+ "kl": 0.0006204415323736612,
157
+ "learning_rate": 2.9996241442585123e-06,
158
+ "loss": 0.0034,
159
+ "reward": 0.0375,
160
+ "reward_std": 0.05303300768136978,
161
+ "rewards/accuracy_reward": 0.0375,
162
+ "rewards/format_reward": 0.0,
163
+ "step": 50
164
+ },
165
+ {
166
+ "clip_ratio": 0.0,
167
+ "completion_length": 615.1375,
168
+ "epoch": 0.11733333333333333,
169
+ "grad_norm": 0.017503464594483376,
170
+ "kl": 0.0005966832359263208,
171
+ "learning_rate": 2.9973279301399446e-06,
172
+ "loss": 0.0078,
173
+ "reward": 0.04375,
174
+ "reward_std": 0.06187184229493141,
175
+ "rewards/accuracy_reward": 0.04375,
176
+ "rewards/format_reward": 0.0,
177
+ "step": 55
178
+ },
179
+ {
180
+ "clip_ratio": 0.0,
181
+ "completion_length": 508.95625,
182
+ "epoch": 0.128,
183
+ "grad_norm": 0.04325263574719429,
184
+ "kl": 0.0007028729422017932,
185
+ "learning_rate": 2.992947502998804e-06,
186
+ "loss": -0.0118,
187
  "reward": 0.0625,
188
+ "reward_std": 0.05303300768136978,
189
  "rewards/accuracy_reward": 0.0625,
190
  "rewards/format_reward": 0.0,
191
+ "step": 60
192
  },
193
  {
194
  "clip_ratio": 0.0,
195
+ "completion_length": 528.80625,
196
+ "epoch": 0.13866666666666666,
197
+ "grad_norm": 0.026006193831562996,
198
+ "kl": 0.0006322090062894859,
199
+ "learning_rate": 2.9864889601923268e-06,
200
+ "loss": -0.0065,
201
+ "reward": 0.06875,
202
+ "reward_std": 0.07954951152205467,
203
+ "rewards/accuracy_reward": 0.06875,
204
  "rewards/format_reward": 0.0,
205
+ "step": 65
206
  },
207
  {
208
  "clip_ratio": 0.0,
209
+ "completion_length": 508.56875,
210
+ "epoch": 0.14933333333333335,
211
+ "grad_norm": 0.03273686766624451,
212
+ "kl": 0.0005886858463782119,
213
+ "learning_rate": 2.977961291721137e-06,
214
+ "loss": 0.0017,
215
+ "reward": 0.06875,
216
+ "reward_std": 0.07954951152205467,
217
+ "rewards/accuracy_reward": 0.06875,
218
+ "rewards/format_reward": 0.0,
219
+ "step": 70
220
+ },
221
+ {
222
+ "clip_ratio": 0.0,
223
+ "completion_length": 564.89375,
224
+ "epoch": 0.16,
225
+ "grad_norm": 0.012765306048095226,
226
+ "kl": 0.0005601999211648945,
227
+ "learning_rate": 2.9673763677155655e-06,
228
+ "loss": -0.0157,
229
  "reward": 0.05,
230
  "reward_std": 0.03535533845424652,
231
  "rewards/accuracy_reward": 0.05,
232
  "rewards/format_reward": 0.0,
233
+ "step": 75
234
+ },
235
+ {
236
+ "clip_ratio": 0.0,
237
+ "completion_length": 560.225,
238
+ "epoch": 0.17066666666666666,
239
+ "grad_norm": 0.023025022819638252,
240
+ "kl": 0.0007396811590297148,
241
+ "learning_rate": 2.9547489219129666e-06,
242
+ "loss": 0.005,
243
+ "reward": 0.04375,
244
+ "reward_std": 0.06187184229493141,
245
+ "rewards/accuracy_reward": 0.04375,
246
+ "rewards/format_reward": 0.0,
247
+ "step": 80
248
+ },
249
+ {
250
+ "clip_ratio": 0.0,
251
+ "completion_length": 534.0,
252
+ "epoch": 0.18133333333333335,
253
+ "grad_norm": 0.0005447011208161712,
254
+ "kl": 0.0005739938373153563,
255
+ "learning_rate": 2.9400965311490175e-06,
256
+ "loss": 0.0065,
257
+ "reward": 0.025,
258
+ "reward_std": 0.03535533845424652,
259
+ "rewards/accuracy_reward": 0.025,
260
+ "rewards/format_reward": 0.0,
261
+ "step": 85
262
+ },
263
+ {
264
+ "clip_ratio": 0.0,
265
+ "completion_length": 578.45625,
266
+ "epoch": 0.192,
267
+ "grad_norm": 0.05320625752210617,
268
+ "kl": 0.0005843402541358955,
269
+ "learning_rate": 2.9234395908915565e-06,
270
+ "loss": 0.0148,
271
+ "reward": 0.05625,
272
+ "reward_std": 0.07954951152205467,
273
+ "rewards/accuracy_reward": 0.05625,
274
+ "rewards/format_reward": 0.0,
275
+ "step": 90
276
+ },
277
+ {
278
+ "clip_ratio": 0.0,
279
+ "completion_length": 529.00625,
280
+ "epoch": 0.20266666666666666,
281
+ "grad_norm": 0.0005686267395503819,
282
+ "kl": 0.0006063115164579358,
283
+ "learning_rate": 2.904801286851009e-06,
284
+ "loss": -0.0111,
285
+ "reward": 0.025,
286
+ "reward_std": 0.03535533845424652,
287
+ "rewards/accuracy_reward": 0.025,
288
+ "rewards/format_reward": 0.0,
289
+ "step": 95
290
+ },
291
+ {
292
+ "epoch": 0.21333333333333335,
293
+ "grad_norm": 0.0004754478286486119,
294
+ "learning_rate": 2.884207562706925e-06,
295
+ "loss": -0.0045,
296
+ "step": 100
297
+ },
298
+ {
299
+ "epoch": 0.21333333333333335,
300
+ "eval_clip_ratio": 0.0,
301
+ "eval_completion_length": 546.1873,
302
+ "eval_kl": 0.0006224736573698465,
303
+ "eval_loss": 0.0016505873063579202,
304
+ "eval_reward": 0.0431,
305
+ "eval_reward_std": 0.05246732226610184,
306
+ "eval_rewards/accuracy_reward": 0.0431,
307
+ "eval_rewards/format_reward": 0.0,
308
+ "eval_runtime": 6984.4091,
309
+ "eval_samples_per_second": 0.716,
310
+ "eval_steps_per_second": 0.179,
311
+ "step": 100
312
+ },
313
+ {
314
+ "clip_ratio": 0.0,
315
+ "completion_length": 504.8,
316
+ "epoch": 0.224,
317
+ "grad_norm": 0.043887630105018616,
318
+ "kl": 0.0005905847807298415,
319
+ "learning_rate": 2.8616870839955444e-06,
320
+ "loss": -0.0069,
321
+ "reward": 0.065625,
322
+ "reward_std": 0.08396892882883548,
323
+ "rewards/accuracy_reward": 0.065625,
324
+ "rewards/format_reward": 0.0,
325
+ "step": 105
326
+ },
327
+ {
328
+ "clip_ratio": 0.0,
329
+ "completion_length": 554.9875,
330
+ "epoch": 0.23466666666666666,
331
+ "grad_norm": 0.03810940682888031,
332
+ "kl": 0.0006392004950612317,
333
+ "learning_rate": 2.837271198208662e-06,
334
+ "loss": 0.0054,
335
+ "reward": 0.05625,
336
+ "reward_std": 0.07954951152205467,
337
+ "rewards/accuracy_reward": 0.05625,
338
+ "rewards/format_reward": 0.0,
339
+ "step": 110
340
+ },
341
+ {
342
+ "clip_ratio": 0.0,
343
+ "completion_length": 594.39375,
344
+ "epoch": 0.24533333333333332,
345
+ "grad_norm": 0.0005416510975919664,
346
+ "kl": 0.0006476349917647894,
347
+ "learning_rate": 2.8109938911593322e-06,
348
+ "loss": -0.0032,
349
+ "reward": 0.00625,
350
+ "reward_std": 0.00883883461356163,
351
+ "rewards/accuracy_reward": 0.00625,
352
+ "rewards/format_reward": 0.0,
353
+ "step": 115
354
+ },
355
+ {
356
+ "clip_ratio": 0.0,
357
+ "completion_length": 535.65625,
358
+ "epoch": 0.256,
359
+ "grad_norm": 0.021277422085404396,
360
+ "kl": 0.000646474702807609,
361
+ "learning_rate": 2.7828917396751474e-06,
362
+ "loss": 0.0019,
363
+ "reward": 0.05,
364
+ "reward_std": 0.05303300768136978,
365
+ "rewards/accuracy_reward": 0.05,
366
+ "rewards/format_reward": 0.0,
367
+ "step": 120
368
+ },
369
+ {
370
+ "clip_ratio": 0.0,
371
+ "completion_length": 497.81875,
372
+ "epoch": 0.26666666666666666,
373
+ "grad_norm": 0.04059675708413124,
374
+ "kl": 0.0007086705743859056,
375
+ "learning_rate": 2.753003860684943e-06,
376
+ "loss": 0.0073,
377
+ "reward": 0.03125,
378
+ "reward_std": 0.02651650384068489,
379
+ "rewards/accuracy_reward": 0.03125,
380
+ "rewards/format_reward": 0.0,
381
+ "step": 125
382
+ },
383
+ {
384
+ "clip_ratio": 0.0,
385
+ "completion_length": 539.66875,
386
+ "epoch": 0.2773333333333333,
387
+ "grad_norm": 0.0311752837151289,
388
+ "kl": 0.0006064358283765614,
389
+ "learning_rate": 2.721371856769793e-06,
390
+ "loss": 0.0056,
391
+ "reward": 0.04375,
392
+ "reward_std": 0.06187184229493141,
393
+ "rewards/accuracy_reward": 0.04375,
394
+ "rewards/format_reward": 0.0,
395
+ "step": 130
396
+ },
397
+ {
398
+ "clip_ratio": 0.0,
399
+ "completion_length": 461.6625,
400
+ "epoch": 0.288,
401
+ "grad_norm": 0.018207967281341553,
402
+ "kl": 0.0006391550123225898,
403
+ "learning_rate": 2.688039758254093e-06,
404
+ "loss": 0.0073,
405
+ "reward": 0.06875,
406
+ "reward_std": 0.06187184229493141,
407
+ "rewards/accuracy_reward": 0.06875,
408
+ "rewards/format_reward": 0.0,
409
+ "step": 135
410
+ },
411
+ {
412
+ "clip_ratio": 0.0,
413
+ "completion_length": 555.3,
414
+ "epoch": 0.2986666666666667,
415
+ "grad_norm": 0.014577426947653294,
416
+ "kl": 0.0006190024098032155,
417
+ "learning_rate": 2.65305396191733e-06,
418
+ "loss": 0.0091,
419
+ "reward": 0.03125,
420
+ "reward_std": 0.04419417306780815,
421
+ "rewards/accuracy_reward": 0.03125,
422
+ "rewards/format_reward": 0.0,
423
+ "step": 140
424
+ },
425
+ {
426
+ "clip_ratio": 0.0,
427
+ "completion_length": 529.79375,
428
+ "epoch": 0.30933333333333335,
429
+ "grad_norm": 0.0005597746348939836,
430
+ "kl": 0.0007494706653233152,
431
+ "learning_rate": 2.61646316641186e-06,
432
+ "loss": 0.0059,
433
+ "reward": 0.05625,
434
+ "reward_std": 0.04419417306780815,
435
+ "rewards/accuracy_reward": 0.05625,
436
+ "rewards/format_reward": 0.0,
437
+ "step": 145
438
+ },
439
+ {
440
+ "clip_ratio": 0.0,
441
+ "completion_length": 533.4125,
442
+ "epoch": 0.32,
443
+ "grad_norm": 0.0008026298601180315,
444
+ "kl": 0.000564340456185164,
445
+ "learning_rate": 2.5783183044765715e-06,
446
+ "loss": 0.0155,
447
+ "reward": 0.04375,
448
+ "reward_std": 0.06187184229493141,
449
+ "rewards/accuracy_reward": 0.04375,
450
+ "rewards/format_reward": 0.0,
451
+ "step": 150
452
+ },
453
+ {
454
+ "clip_ratio": 0.0,
455
+ "completion_length": 572.88125,
456
+ "epoch": 0.33066666666666666,
457
+ "grad_norm": 0.02461259439587593,
458
+ "kl": 0.0006232189080037642,
459
+ "learning_rate": 2.5386724720408135e-06,
460
+ "loss": 0.0042,
461
+ "reward": 0.0625,
462
+ "reward_std": 0.05303300768136978,
463
+ "rewards/accuracy_reward": 0.0625,
464
+ "rewards/format_reward": 0.0,
465
+ "step": 155
466
+ },
467
+ {
468
+ "clip_ratio": 0.0,
469
+ "completion_length": 469.73125,
470
+ "epoch": 0.3413333333333333,
471
+ "grad_norm": 0.0007159389788284898,
472
+ "kl": 0.0006267319105973002,
473
+ "learning_rate": 2.49758085431725e-06,
474
+ "loss": -0.0023,
475
+ "reward": 0.0625,
476
+ "reward_std": 0.05303300768136978,
477
+ "rewards/accuracy_reward": 0.0625,
478
+ "rewards/format_reward": 0.0,
479
+ "step": 160
480
+ },
481
+ {
482
+ "clip_ratio": 0.0,
483
+ "completion_length": 537.625,
484
+ "epoch": 0.352,
485
+ "grad_norm": 0.0005227501387707889,
486
+ "kl": 0.0006310752982244594,
487
+ "learning_rate": 2.455100648986533e-06,
488
+ "loss": 0.0019,
489
+ "reward": 0.05,
490
+ "reward_std": 0.07071067690849304,
491
+ "rewards/accuracy_reward": 0.05,
492
+ "rewards/format_reward": 0.0,
493
+ "step": 165
494
+ },
495
+ {
496
+ "clip_ratio": 0.0,
497
+ "completion_length": 570.20625,
498
+ "epoch": 0.3626666666666667,
499
+ "grad_norm": 0.0317506417632103,
500
+ "kl": 0.0006065379689971451,
501
+ "learning_rate": 2.4112909865807053e-06,
502
+ "loss": 0.0383,
503
+ "reward": 0.08125,
504
+ "reward_std": 0.1149048499763012,
505
+ "rewards/accuracy_reward": 0.08125,
506
+ "rewards/format_reward": 0.0,
507
+ "step": 170
508
+ },
509
+ {
510
+ "clip_ratio": 0.0,
511
+ "completion_length": 548.31875,
512
+ "epoch": 0.37333333333333335,
513
+ "grad_norm": 0.04262116923928261,
514
+ "kl": 0.0005954368047241587,
515
+ "learning_rate": 2.366212848176164e-06,
516
+ "loss": -0.0139,
517
+ "reward": 0.08125,
518
+ "reward_std": 0.09722718074917794,
519
+ "rewards/accuracy_reward": 0.08125,
520
+ "rewards/format_reward": 0.0,
521
+ "step": 175
522
+ },
523
+ {
524
+ "clip_ratio": 0.0,
525
+ "completion_length": 506.475,
526
+ "epoch": 0.384,
527
+ "grad_norm": 0.029712267220020294,
528
+ "kl": 0.0006351386713504325,
529
+ "learning_rate": 2.319928980510752e-06,
530
+ "loss": -0.0088,
531
+ "reward": 0.06875,
532
+ "reward_std": 0.09722718074917794,
533
+ "rewards/accuracy_reward": 0.06875,
534
+ "rewards/format_reward": 0.0,
535
+ "step": 180
536
+ },
537
+ {
538
+ "clip_ratio": 0.0,
539
+ "completion_length": 553.3,
540
+ "epoch": 0.39466666666666667,
541
+ "grad_norm": 0.01826683059334755,
542
+ "kl": 0.000638010091643082,
543
+ "learning_rate": 2.272503808643123e-06,
544
+ "loss": -0.0008,
545
+ "reward": 0.04375,
546
+ "reward_std": 0.04419417306780815,
547
+ "rewards/accuracy_reward": 0.04375,
548
+ "rewards/format_reward": 0.0,
549
+ "step": 185
550
+ },
551
+ {
552
+ "clip_ratio": 0.0,
553
+ "completion_length": 572.2125,
554
+ "epoch": 0.4053333333333333,
555
+ "grad_norm": 0.025073450058698654,
556
+ "kl": 0.0006133078852144536,
557
+ "learning_rate": 2.2240033462759628e-06,
558
+ "loss": 0.0062,
559
+ "reward": 0.0625,
560
+ "reward_std": 0.07071067690849304,
561
+ "rewards/accuracy_reward": 0.0625,
562
+ "rewards/format_reward": 0.0,
563
+ "step": 190
564
+ },
565
+ {
566
+ "clip_ratio": 0.0,
567
+ "completion_length": 529.24375,
568
+ "epoch": 0.416,
569
+ "grad_norm": 0.017348134890198708,
570
+ "kl": 0.0006518879818031564,
571
+ "learning_rate": 2.1744951038678905e-06,
572
+ "loss": 0.0129,
573
+ "reward": 0.0875,
574
+ "reward_std": 0.05303300768136978,
575
+ "rewards/accuracy_reward": 0.0875,
576
+ "rewards/format_reward": 0.0,
577
+ "step": 195
578
+ },
579
+ {
580
+ "epoch": 0.4266666666666667,
581
+ "grad_norm": 0.0005302979261614382,
582
+ "learning_rate": 2.124047994661941e-06,
583
+ "loss": -0.0062,
584
+ "step": 200
585
+ },
586
+ {
587
+ "epoch": 0.4266666666666667,
588
+ "eval_clip_ratio": 0.0,
589
+ "eval_completion_length": 542.9258,
590
+ "eval_kl": 0.0006711028324672952,
591
+ "eval_loss": 0.0005841926322318614,
592
+ "eval_reward": 0.0475,
593
+ "eval_reward_std": 0.05670996288061142,
594
+ "eval_rewards/accuracy_reward": 0.0475,
595
+ "eval_rewards/format_reward": 0.0,
596
+ "eval_runtime": 6903.4955,
597
+ "eval_samples_per_second": 0.724,
598
+ "eval_steps_per_second": 0.181,
599
+ "step": 200
600
+ },
601
+ {
602
+ "clip_ratio": 0.0,
603
+ "completion_length": 571.925,
604
+ "epoch": 0.43733333333333335,
605
+ "grad_norm": 0.03621024638414383,
606
+ "kl": 0.000652521890879143,
607
+ "learning_rate": 2.072732238761434e-06,
608
+ "loss": 0.0023,
609
+ "reward": 0.04375,
610
+ "reward_std": 0.05303300768136978,
611
+ "rewards/accuracy_reward": 0.04375,
612
+ "rewards/format_reward": 0.0,
613
+ "step": 205
614
+ },
615
+ {
616
+ "clip_ratio": 0.0,
617
+ "completion_length": 556.3875,
618
+ "epoch": 0.448,
619
+ "grad_norm": 0.01959877274930477,
620
+ "kl": 0.0006465273501817137,
621
+ "learning_rate": 2.0206192653867536e-06,
622
+ "loss": -0.0093,
623
+ "reward": 0.04375,
624
+ "reward_std": 0.06187184229493141,
625
+ "rewards/accuracy_reward": 0.04375,
626
+ "rewards/format_reward": 0.0,
627
+ "step": 210
628
+ },
629
+ {
630
+ "clip_ratio": 0.0,
631
+ "completion_length": 524.30625,
632
+ "epoch": 0.45866666666666667,
633
+ "grad_norm": 0.026872603222727776,
634
+ "kl": 0.0006922339722223114,
635
+ "learning_rate": 1.967781613449095e-06,
636
+ "loss": 0.0152,
637
+ "reward": 0.0625,
638
+ "reward_std": 0.05303300768136978,
639
+ "rewards/accuracy_reward": 0.0625,
640
+ "rewards/format_reward": 0.0,
641
+ "step": 215
642
+ },
643
+ {
644
+ "clip_ratio": 0.0,
645
+ "completion_length": 524.2,
646
+ "epoch": 0.4693333333333333,
647
+ "grad_norm": 0.024317504838109016,
648
+ "kl": 0.0007104755510226824,
649
+ "learning_rate": 1.9142928305795637e-06,
650
+ "loss": 0.005,
651
+ "reward": 0.0375,
652
+ "reward_std": 0.05303300768136978,
653
+ "rewards/accuracy_reward": 0.0375,
654
+ "rewards/format_reward": 0.0,
655
+ "step": 220
656
+ },
657
+ {
658
+ "clip_ratio": 0.0,
659
+ "completion_length": 566.8,
660
+ "epoch": 0.48,
661
+ "grad_norm": 0.0005844333791173995,
662
+ "kl": 0.0007887360618042294,
663
+ "learning_rate": 1.8602273707541886e-06,
664
+ "loss": -0.004,
665
+ "reward": 0.01875,
666
+ "reward_std": 0.02651650384068489,
667
+ "rewards/accuracy_reward": 0.01875,
668
+ "rewards/format_reward": 0.0,
669
+ "step": 225
670
+ },
671
+ {
672
+ "clip_ratio": 0.0,
673
+ "completion_length": 566.1625,
674
+ "epoch": 0.49066666666666664,
675
+ "grad_norm": 0.042061224579811096,
676
+ "kl": 0.0006022223657055292,
677
+ "learning_rate": 1.8056604906573418e-06,
678
+ "loss": 0.0171,
679
+ "reward": 0.05625,
680
+ "reward_std": 0.06187184229493141,
681
+ "rewards/accuracy_reward": 0.05625,
682
+ "rewards/format_reward": 0.0,
683
+ "step": 230
684
+ },
685
+ {
686
+ "clip_ratio": 0.0,
687
+ "completion_length": 589.93125,
688
+ "epoch": 0.5013333333333333,
689
+ "grad_norm": 0.017109017819166183,
690
+ "kl": 0.0006615983191295526,
691
+ "learning_rate": 1.7506681449278226e-06,
692
+ "loss": 0.0003,
693
+ "reward": 0.05625,
694
+ "reward_std": 0.07954951152205467,
695
+ "rewards/accuracy_reward": 0.05625,
696
+ "rewards/format_reward": 0.0,
697
+ "step": 235
698
+ },
699
+ {
700
+ "clip_ratio": 0.0,
701
+ "completion_length": 582.16875,
702
+ "epoch": 0.512,
703
+ "grad_norm": 0.02843085303902626,
704
+ "kl": 0.0006830113568867091,
705
+ "learning_rate": 1.6953268804334257e-06,
706
+ "loss": 0.008,
707
+ "reward": 0.03125,
708
+ "reward_std": 0.04419417306780815,
709
+ "rewards/accuracy_reward": 0.03125,
710
+ "rewards/format_reward": 0.0,
711
+ "step": 240
712
+ },
713
+ {
714
+ "clip_ratio": 0.0,
715
+ "completion_length": 550.20625,
716
+ "epoch": 0.5226666666666666,
717
+ "grad_norm": 0.0007241690182127059,
718
+ "kl": 0.0007094932108884678,
719
+ "learning_rate": 1.6397137297211436e-06,
720
+ "loss": 0.0047,
721
+ "reward": 0.03125,
722
+ "reward_std": 0.04419417306780815,
723
+ "rewards/accuracy_reward": 0.03125,
724
+ "rewards/format_reward": 0.0,
725
+ "step": 245
726
  },
727
  {
728
  "clip_ratio": 0.0,
729
+ "completion_length": 520.5375,
730
+ "epoch": 0.5333333333333333,
731
+ "grad_norm": 0.013676224276423454,
732
+ "kl": 0.0006993950722971931,
733
+ "learning_rate": 1.5839061037913395e-06,
734
+ "loss": -0.0035,
735
+ "reward": 0.0375,
736
+ "reward_std": 0.05303300768136978,
737
+ "rewards/accuracy_reward": 0.0375,
738
+ "rewards/format_reward": 0.0,
739
+ "step": 250
740
+ },
741
+ {
742
+ "clip_ratio": 0.0,
743
+ "completion_length": 570.4625,
744
+ "epoch": 0.544,
745
+ "grad_norm": 0.026784850284457207,
746
+ "kl": 0.0007027815772744361,
747
+ "learning_rate": 1.527981684345115e-06,
748
+ "loss": 0.0115,
749
+ "reward": 0.05625,
750
+ "reward_std": 0.06187184229493141,
751
+ "rewards/accuracy_reward": 0.05625,
752
+ "rewards/format_reward": 0.0,
753
+ "step": 255
754
+ },
755
+ {
756
+ "clip_ratio": 0.0,
757
+ "completion_length": 526.28125,
758
+ "epoch": 0.5546666666666666,
759
+ "grad_norm": 0.027511239051818848,
760
+ "kl": 0.0007118464120139834,
761
+ "learning_rate": 1.4720183156548855e-06,
762
  "loss": 0.0156,
763
+ "reward": 0.05625,
764
+ "reward_std": 0.04419417306780815,
765
+ "rewards/accuracy_reward": 0.05625,
766
  "rewards/format_reward": 0.0,
767
+ "step": 260
768
  },
769
  {
770
  "clip_ratio": 0.0,
771
+ "completion_length": 501.05,
772
+ "epoch": 0.5653333333333334,
773
+ "grad_norm": 0.0400506816804409,
774
+ "kl": 0.0007247071487654466,
775
+ "learning_rate": 1.4160938962086612e-06,
776
+ "loss": 0.0056,
777
+ "reward": 0.05,
778
+ "reward_std": 0.07071067690849304,
779
+ "rewards/accuracy_reward": 0.05,
780
+ "rewards/format_reward": 0.0,
781
+ "step": 265
782
+ },
783
+ {
784
+ "clip_ratio": 0.0,
785
+ "completion_length": 492.38125,
786
+ "epoch": 0.576,
787
+ "grad_norm": 0.020546777173876762,
788
+ "kl": 0.0006569563163793645,
789
+ "learning_rate": 1.3602862702788567e-06,
790
+ "loss": -0.0087,
791
+ "reward": 0.06875,
792
+ "reward_std": 0.06187184229493141,
793
+ "rewards/accuracy_reward": 0.06875,
794
+ "rewards/format_reward": 0.0,
795
+ "step": 270
796
+ },
797
+ {
798
+ "clip_ratio": 0.0,
799
+ "completion_length": 601.91875,
800
+ "epoch": 0.5866666666666667,
801
+ "grad_norm": 0.0006509393570013344,
802
+ "kl": 0.000718773623520974,
803
+ "learning_rate": 1.3046731195665748e-06,
804
  "loss": -0.0019,
805
+ "reward": 0.03125,
806
+ "reward_std": 0.04419417306780815,
807
+ "rewards/accuracy_reward": 0.03125,
808
+ "rewards/format_reward": 0.0,
809
+ "step": 275
810
+ },
811
+ {
812
+ "clip_ratio": 0.0,
813
+ "completion_length": 544.3875,
814
+ "epoch": 0.5973333333333334,
815
+ "grad_norm": 0.015962699428200722,
816
+ "kl": 0.0007544517939095385,
817
+ "learning_rate": 1.2493318550721775e-06,
818
+ "loss": 0.0026,
819
+ "reward": 0.0375,
820
+ "reward_std": 0.03535533845424652,
821
+ "rewards/accuracy_reward": 0.0375,
822
+ "rewards/format_reward": 0.0,
823
+ "step": 280
824
+ },
825
+ {
826
+ "clip_ratio": 0.0,
827
+ "completion_length": 513.525,
828
+ "epoch": 0.608,
829
+ "grad_norm": 0.02608601376414299,
830
+ "kl": 0.0006703489023493602,
831
+ "learning_rate": 1.1943395093426585e-06,
832
+ "loss": -0.0063,
833
+ "reward": 0.05625,
834
+ "reward_std": 0.04419417306780815,
835
+ "rewards/accuracy_reward": 0.05625,
836
+ "rewards/format_reward": 0.0,
837
+ "step": 285
838
+ },
839
+ {
840
+ "clip_ratio": 0.0,
841
+ "completion_length": 537.90625,
842
+ "epoch": 0.6186666666666667,
843
+ "grad_norm": 0.0007309815846383572,
844
+ "kl": 0.0008104784224997275,
845
+ "learning_rate": 1.1397726292458115e-06,
846
+ "loss": 0.0138,
847
+ "reward": 0.04375,
848
+ "reward_std": 0.04419417306780815,
849
+ "rewards/accuracy_reward": 0.04375,
850
+ "rewards/format_reward": 0.0,
851
+ "step": 290
852
+ },
853
+ {
854
+ "clip_ratio": 0.0,
855
+ "completion_length": 530.6,
856
+ "epoch": 0.6293333333333333,
857
+ "grad_norm": 0.034363504499197006,
858
+ "kl": 0.0007202902772405651,
859
+ "learning_rate": 1.085707169420437e-06,
860
+ "loss": 0.0225,
861
+ "reward": 0.04375,
862
+ "reward_std": 0.06187184229493141,
863
+ "rewards/accuracy_reward": 0.04375,
864
+ "rewards/format_reward": 0.0,
865
+ "step": 295
866
+ },
867
+ {
868
+ "epoch": 0.64,
869
+ "grad_norm": 0.03348564729094505,
870
+ "learning_rate": 1.0322183865509054e-06,
871
+ "loss": 0.0041,
872
+ "step": 300
873
+ },
874
+ {
875
+ "epoch": 0.64,
876
+ "eval_clip_ratio": 0.0,
877
+ "eval_completion_length": 543.87,
878
+ "eval_kl": 0.0007330777346272952,
879
+ "eval_loss": 0.002262996742501855,
880
+ "eval_reward": 0.0493,
881
+ "eval_reward_std": 0.05840701912641525,
882
+ "eval_rewards/accuracy_reward": 0.0493,
883
+ "eval_rewards/format_reward": 0.0,
884
+ "eval_runtime": 6924.8337,
885
+ "eval_samples_per_second": 0.722,
886
+ "eval_steps_per_second": 0.181,
887
+ "step": 300
888
+ },
889
+ {
890
+ "clip_ratio": 0.0,
891
+ "completion_length": 553.821875,
892
+ "epoch": 0.6506666666666666,
893
+ "grad_norm": 0.05884533375501633,
894
+ "kl": 0.0007077409793055268,
895
+ "learning_rate": 9.793807346132464e-07,
896
+ "loss": 0.0064,
897
+ "reward": 0.065625,
898
+ "reward_std": 0.09280776344239712,
899
+ "rewards/accuracy_reward": 0.065625,
900
+ "rewards/format_reward": 0.0,
901
+ "step": 305
902
+ },
903
+ {
904
+ "clip_ratio": 0.0,
905
+ "completion_length": 507.25625,
906
+ "epoch": 0.6613333333333333,
907
+ "grad_norm": 0.00128034723456949,
908
+ "kl": 0.0007662738556973636,
909
+ "learning_rate": 9.272677612385667e-07,
910
+ "loss": -0.0022,
911
+ "reward": 0.05625,
912
+ "reward_std": 0.06187184229493141,
913
+ "rewards/accuracy_reward": 0.05625,
914
+ "rewards/format_reward": 0.0,
915
+ "step": 310
916
+ },
917
+ {
918
+ "clip_ratio": 0.0,
919
+ "completion_length": 585.83125,
920
+ "epoch": 0.672,
921
+ "grad_norm": 0.027511116117239,
922
+ "kl": 0.0007258923047629651,
923
+ "learning_rate": 8.759520053380591e-07,
924
+ "loss": 0.0104,
925
+ "reward": 0.0375,
926
  "reward_std": 0.05303300768136978,
927
+ "rewards/accuracy_reward": 0.0375,
928
+ "rewards/format_reward": 0.0,
929
+ "step": 315
930
+ },
931
+ {
932
+ "clip_ratio": 0.0,
933
+ "completion_length": 566.825,
934
+ "epoch": 0.6826666666666666,
935
+ "grad_norm": 0.02675638347864151,
936
+ "kl": 0.0008431313741311897,
937
+ "learning_rate": 8.255048961321088e-07,
938
+ "loss": 0.0081,
939
+ "reward": 0.0375,
940
+ "reward_std": 0.03535533845424652,
941
+ "rewards/accuracy_reward": 0.0375,
942
+ "rewards/format_reward": 0.0,
943
+ "step": 320
944
+ },
945
+ {
946
+ "clip_ratio": 0.0,
947
+ "completion_length": 561.75,
948
+ "epoch": 0.6933333333333334,
949
+ "grad_norm": 0.03926326334476471,
950
+ "kl": 0.0007520209066569806,
951
+ "learning_rate": 7.759966537240373e-07,
952
+ "loss": -0.0255,
953
+ "reward": 0.09375,
954
+ "reward_std": 0.09722718074917794,
955
+ "rewards/accuracy_reward": 0.09375,
956
+ "rewards/format_reward": 0.0,
957
+ "step": 325
958
+ },
959
+ {
960
+ "clip_ratio": 0.0,
961
+ "completion_length": 602.11875,
962
+ "epoch": 0.704,
963
+ "grad_norm": 0.04235618934035301,
964
+ "kl": 0.0006708401182550005,
965
+ "learning_rate": 7.274961913568773e-07,
966
+ "loss": -0.0017,
967
+ "reward": 0.0625,
968
+ "reward_std": 0.0883883461356163,
969
  "rewards/accuracy_reward": 0.0625,
970
  "rewards/format_reward": 0.0,
971
+ "step": 330
972
  },
973
  {
974
+ "clip_ratio": 0.0,
975
+ "completion_length": 539.75625,
976
+ "epoch": 0.7146666666666667,
977
+ "grad_norm": 0.01949181966483593,
978
+ "kl": 0.0007214361037767957,
979
+ "learning_rate": 6.800710194892484e-07,
980
+ "loss": -0.0142,
981
+ "reward": 0.05,
982
+ "reward_std": 0.07071067690849304,
983
+ "rewards/accuracy_reward": 0.05,
984
+ "rewards/format_reward": 0.0,
985
+ "step": 335
986
+ },
987
+ {
988
+ "clip_ratio": 0.0,
989
+ "completion_length": 559.64375,
990
+ "epoch": 0.7253333333333334,
991
+ "grad_norm": 0.01706821843981743,
992
+ "kl": 0.0007962717980262823,
993
+ "learning_rate": 6.33787151823836e-07,
994
+ "loss": 0.0083,
995
+ "reward": 0.05,
996
+ "reward_std": 0.03535533845424652,
997
+ "rewards/accuracy_reward": 0.05,
998
+ "rewards/format_reward": 0.0,
999
+ "step": 340
1000
+ },
1001
+ {
1002
+ "clip_ratio": 0.0,
1003
+ "completion_length": 543.775,
1004
+ "epoch": 0.736,
1005
+ "grad_norm": 0.026210952550172806,
1006
+ "kl": 0.000737834313622443,
1007
+ "learning_rate": 5.887090134192947e-07,
1008
+ "loss": 0.0213,
1009
+ "reward": 0.05625,
1010
+ "reward_std": 0.06187184229493141,
1011
+ "rewards/accuracy_reward": 0.05625,
1012
+ "rewards/format_reward": 0.0,
1013
+ "step": 345
1014
+ },
1015
+ {
1016
+ "clip_ratio": 0.0,
1017
+ "completion_length": 512.84375,
1018
+ "epoch": 0.7466666666666667,
1019
+ "grad_norm": 0.026430701836943626,
1020
+ "kl": 0.0007904948972282,
1021
+ "learning_rate": 5.448993510134669e-07,
1022
+ "loss": -0.0074,
1023
+ "reward": 0.03125,
1024
+ "reward_std": 0.02651650384068489,
1025
+ "rewards/accuracy_reward": 0.03125,
1026
+ "rewards/format_reward": 0.0,
1027
+ "step": 350
1028
+ },
1029
+ {
1030
+ "clip_ratio": 0.0,
1031
+ "completion_length": 498.09375,
1032
+ "epoch": 0.7573333333333333,
1033
+ "grad_norm": 0.039444226771593094,
1034
+ "kl": 0.0007300119003048166,
1035
+ "learning_rate": 5.024191456827498e-07,
1036
+ "loss": 0.0032,
1037
+ "reward": 0.05,
1038
+ "reward_std": 0.07071067690849304,
1039
+ "rewards/accuracy_reward": 0.05,
1040
+ "rewards/format_reward": 0.0,
1041
+ "step": 355
1042
+ },
1043
+ {
1044
+ "clip_ratio": 0.0,
1045
+ "completion_length": 534.31875,
1046
+ "epoch": 0.768,
1047
+ "grad_norm": 0.038000140339136124,
1048
+ "kl": 0.000727705340977991,
1049
+ "learning_rate": 4.6132752795918667e-07,
1050
+ "loss": -0.0045,
1051
+ "reward": 0.05,
1052
+ "reward_std": 0.07071067690849304,
1053
+ "rewards/accuracy_reward": 0.05,
1054
+ "rewards/format_reward": 0.0,
1055
+ "step": 360
1056
+ },
1057
+ {
1058
+ "clip_ratio": 0.0,
1059
+ "completion_length": 554.78125,
1060
+ "epoch": 0.7786666666666666,
1061
+ "grad_norm": 0.04807225242257118,
1062
+ "kl": 0.0009294274394051171,
1063
+ "learning_rate": 4.2168169552342905e-07,
1064
+ "loss": -0.0011,
1065
+ "reward": 0.05,
1066
+ "reward_std": 0.05303300768136978,
1067
+ "rewards/accuracy_reward": 0.05,
1068
+ "rewards/format_reward": 0.0,
1069
+ "step": 365
1070
+ },
1071
+ {
1072
+ "clip_ratio": 0.0,
1073
+ "completion_length": 552.01875,
1074
+ "epoch": 0.7893333333333333,
1075
+ "grad_norm": 0.0007483125664293766,
1076
+ "kl": 0.0007459162014129106,
1077
+ "learning_rate": 3.8353683358814046e-07,
1078
+ "loss": -0.0074,
1079
+ "reward": 0.05625,
1080
+ "reward_std": 0.06187184229493141,
1081
+ "rewards/accuracy_reward": 0.05625,
1082
+ "rewards/format_reward": 0.0,
1083
+ "step": 370
1084
+ },
1085
+ {
1086
+ "clip_ratio": 0.0,
1087
+ "completion_length": 531.85625,
1088
+ "epoch": 0.8,
1089
+ "grad_norm": 0.030684595927596092,
1090
+ "kl": 0.0007768759445752948,
1091
+ "learning_rate": 3.469460380826697e-07,
1092
+ "loss": 0.0043,
1093
+ "reward": 0.0375,
1094
+ "reward_std": 0.05303300768136978,
1095
+ "rewards/accuracy_reward": 0.0375,
1096
+ "rewards/format_reward": 0.0,
1097
+ "step": 375
1098
+ },
1099
+ {
1100
+ "clip_ratio": 0.0,
1101
+ "completion_length": 516.33125,
1102
+ "epoch": 0.8106666666666666,
1103
+ "grad_norm": 0.017879687249660492,
1104
+ "kl": 0.0007059701390971895,
1105
+ "learning_rate": 3.119602417459075e-07,
1106
+ "loss": 0.0053,
1107
+ "reward": 0.08125,
1108
+ "reward_std": 0.04419417306780815,
1109
+ "rewards/accuracy_reward": 0.08125,
1110
+ "rewards/format_reward": 0.0,
1111
+ "step": 380
1112
+ },
1113
+ {
1114
+ "clip_ratio": 0.0,
1115
+ "completion_length": 584.0375,
1116
+ "epoch": 0.8213333333333334,
1117
+ "grad_norm": 0.032094355672597885,
1118
+ "kl": 0.0007100752409314737,
1119
+ "learning_rate": 2.786281432302071e-07,
1120
+ "loss": -0.0047,
1121
+ "reward": 0.06875,
1122
+ "reward_std": 0.06187184229493141,
1123
+ "rewards/accuracy_reward": 0.06875,
1124
+ "rewards/format_reward": 0.0,
1125
+ "step": 385
1126
+ },
1127
+ {
1128
+ "clip_ratio": 0.0,
1129
+ "completion_length": 548.86875,
1130
+ "epoch": 0.832,
1131
+ "grad_norm": 0.033638887107372284,
1132
+ "kl": 0.0007739846543699969,
1133
+ "learning_rate": 2.46996139315057e-07,
1134
+ "loss": 0.001,
1135
+ "reward": 0.05625,
1136
+ "reward_std": 0.07954951152205467,
1137
+ "rewards/accuracy_reward": 0.05625,
1138
+ "rewards/format_reward": 0.0,
1139
+ "step": 390
1140
+ },
1141
+ {
1142
+ "clip_ratio": 0.0,
1143
+ "completion_length": 557.05,
1144
+ "epoch": 0.8426666666666667,
1145
+ "grad_norm": 0.02078291028738022,
1146
+ "kl": 0.0007550935217295774,
1147
+ "learning_rate": 2.1710826032485286e-07,
1148
+ "loss": 0.0127,
1149
+ "reward": 0.05,
1150
+ "reward_std": 0.05303300768136978,
1151
+ "rewards/accuracy_reward": 0.05,
1152
+ "rewards/format_reward": 0.0,
1153
+ "step": 395
1154
+ },
1155
+ {
1156
+ "epoch": 0.8533333333333334,
1157
+ "grad_norm": 0.033206239342689514,
1158
+ "learning_rate": 1.8900610884066817e-07,
1159
+ "loss": 0.0133,
1160
+ "step": 400
1161
+ },
1162
+ {
1163
+ "epoch": 0.8533333333333334,
1164
+ "eval_clip_ratio": 0.0,
1165
+ "eval_completion_length": 543.305,
1166
+ "eval_kl": 0.0007358199717185926,
1167
+ "eval_loss": -0.0010210861219093204,
1168
+ "eval_reward": 0.0571,
1169
+ "eval_reward_std": 0.06972072743177414,
1170
+ "eval_rewards/accuracy_reward": 0.0571,
1171
+ "eval_rewards/format_reward": 0.0,
1172
+ "eval_runtime": 6923.7389,
1173
+ "eval_samples_per_second": 0.722,
1174
+ "eval_steps_per_second": 0.181,
1175
+ "step": 400
1176
+ },
1177
+ {
1178
+ "clip_ratio": 0.0,
1179
+ "completion_length": 553.21875,
1180
+ "epoch": 0.864,
1181
+ "grad_norm": 0.0289897583425045,
1182
+ "kl": 0.000681120142689906,
1183
+ "learning_rate": 1.627288017913383e-07,
1184
+ "loss": 0.015,
1185
+ "reward": 0.053125,
1186
+ "reward_std": 0.06629125960171223,
1187
+ "rewards/accuracy_reward": 0.053125,
1188
+ "rewards/format_reward": 0.0,
1189
+ "step": 405
1190
+ },
1191
+ {
1192
+ "clip_ratio": 0.0,
1193
+ "completion_length": 541.675,
1194
+ "epoch": 0.8746666666666667,
1195
+ "grad_norm": 0.01583489030599594,
1196
+ "kl": 0.0007215753896161914,
1197
+ "learning_rate": 1.3831291600445573e-07,
1198
+ "loss": 0.0026,
1199
+ "reward": 0.06875,
1200
+ "reward_std": 0.09722718074917794,
1201
+ "rewards/accuracy_reward": 0.06875,
1202
+ "rewards/format_reward": 0.0,
1203
+ "step": 410
1204
+ },
1205
+ {
1206
+ "clip_ratio": 0.0,
1207
+ "completion_length": 557.6875,
1208
+ "epoch": 0.8853333333333333,
1209
+ "grad_norm": 0.02964521199464798,
1210
+ "kl": 0.0007608094070747029,
1211
+ "learning_rate": 1.1579243729307487e-07,
1212
+ "loss": 0.0165,
1213
+ "reward": 0.06875,
1214
+ "reward_std": 0.07954951152205467,
1215
+ "rewards/accuracy_reward": 0.06875,
1216
+ "rewards/format_reward": 0.0,
1217
+ "step": 415
1218
+ },
1219
+ {
1220
+ "clip_ratio": 0.0,
1221
+ "completion_length": 565.35,
1222
+ "epoch": 0.896,
1223
+ "grad_norm": 0.02043159306049347,
1224
+ "kl": 0.0006906129630806391,
1225
+ "learning_rate": 9.519871314899092e-08,
1226
+ "loss": 0.0003,
1227
+ "reward": 0.075,
1228
+ "reward_std": 0.0883883461356163,
1229
+ "rewards/accuracy_reward": 0.075,
1230
+ "rewards/format_reward": 0.0,
1231
+ "step": 420
1232
+ },
1233
+ {
1234
+ "clip_ratio": 0.0,
1235
+ "completion_length": 574.40625,
1236
+ "epoch": 0.9066666666666666,
1237
+ "grad_norm": 0.02876296639442444,
1238
+ "kl": 0.0007379365182714537,
1239
+ "learning_rate": 7.656040910844358e-08,
1240
+ "loss": 0.0039,
1241
+ "reward": 0.05625,
1242
+ "reward_std": 0.07954951152205467,
1243
+ "rewards/accuracy_reward": 0.05625,
1244
+ "rewards/format_reward": 0.0,
1245
+ "step": 425
1246
+ },
1247
+ {
1248
+ "clip_ratio": 0.0,
1249
+ "completion_length": 515.95625,
1250
+ "epoch": 0.9173333333333333,
1251
+ "grad_norm": 0.0013636675430461764,
1252
+ "kl": 0.0007321933764615097,
1253
+ "learning_rate": 5.990346885098235e-08,
1254
+ "loss": 0.002,
1255
+ "reward": 0.05,
1256
+ "reward_std": 0.07071067690849304,
1257
+ "rewards/accuracy_reward": 0.05,
1258
+ "rewards/format_reward": 0.0,
1259
+ "step": 430
1260
+ },
1261
+ {
1262
+ "clip_ratio": 0.0,
1263
+ "completion_length": 565.63125,
1264
+ "epoch": 0.928,
1265
+ "grad_norm": 0.03647277504205704,
1266
+ "kl": 0.0007315725852095056,
1267
+ "learning_rate": 4.5251078087033493e-08,
1268
+ "loss": 0.0024,
1269
+ "reward": 0.0375,
1270
+ "reward_std": 0.05303300768136978,
1271
+ "rewards/accuracy_reward": 0.0375,
1272
+ "rewards/format_reward": 0.0,
1273
+ "step": 435
1274
+ },
1275
+ {
1276
+ "clip_ratio": 0.0,
1277
+ "completion_length": 564.30625,
1278
+ "epoch": 0.9386666666666666,
1279
+ "grad_norm": 0.05657452344894409,
1280
+ "kl": 0.0007095941335137467,
1281
+ "learning_rate": 3.262363228443427e-08,
1282
+ "loss": -0.0054,
1283
+ "reward": 0.04375,
1284
+ "reward_std": 0.06187184229493141,
1285
+ "rewards/accuracy_reward": 0.04375,
1286
+ "rewards/format_reward": 0.0,
1287
+ "step": 440
1288
+ },
1289
+ {
1290
+ "clip_ratio": 0.0,
1291
+ "completion_length": 486.4875,
1292
+ "epoch": 0.9493333333333334,
1293
+ "grad_norm": 0.01980077102780342,
1294
+ "kl": 0.000773343399487203,
1295
+ "learning_rate": 2.2038708278862952e-08,
1296
+ "loss": 0.0091,
1297
+ "reward": 0.0375,
1298
+ "reward_std": 0.05303300768136978,
1299
+ "rewards/accuracy_reward": 0.0375,
1300
+ "rewards/format_reward": 0.0,
1301
+ "step": 445
1302
+ },
1303
+ {
1304
+ "clip_ratio": 0.0,
1305
+ "completion_length": 548.6875,
1306
+ "epoch": 0.96,
1307
+ "grad_norm": 0.015037409029901028,
1308
+ "kl": 0.0007495594465581235,
1309
+ "learning_rate": 1.3511039807673209e-08,
1310
+ "loss": -0.0042,
1311
+ "reward": 0.075,
1312
+ "reward_std": 0.0883883461356163,
1313
+ "rewards/accuracy_reward": 0.075,
1314
+ "rewards/format_reward": 0.0,
1315
+ "step": 450
1316
+ },
1317
+ {
1318
+ "clip_ratio": 0.0,
1319
+ "completion_length": 558.9,
1320
+ "epoch": 0.9706666666666667,
1321
+ "grad_norm": 0.0009223443339578807,
1322
+ "kl": 0.0007477809151168913,
1323
+ "learning_rate": 7.0524970011963675e-09,
1324
+ "loss": 0.0059,
1325
+ "reward": 0.06875,
1326
+ "reward_std": 0.07954951152205467,
1327
+ "rewards/accuracy_reward": 0.06875,
1328
+ "rewards/format_reward": 0.0,
1329
+ "step": 455
1330
+ },
1331
+ {
1332
+ "clip_ratio": 0.0,
1333
+ "completion_length": 579.7875,
1334
+ "epoch": 0.9813333333333333,
1335
+ "grad_norm": 0.008670797571539879,
1336
+ "kl": 0.0007434627186739817,
1337
+ "learning_rate": 2.6720698600553595e-09,
1338
+ "loss": -0.0066,
1339
+ "reward": 0.03125,
1340
+ "reward_std": 0.04419417306780815,
1341
+ "rewards/accuracy_reward": 0.03125,
1342
+ "rewards/format_reward": 0.0,
1343
+ "step": 460
1344
+ },
1345
+ {
1346
+ "clip_ratio": 0.0,
1347
+ "completion_length": 582.4625,
1348
+ "epoch": 0.992,
1349
+ "grad_norm": 0.018711771816015244,
1350
+ "kl": 0.0006959045043913647,
1351
+ "learning_rate": 3.7585574148779613e-10,
1352
+ "loss": -0.0194,
1353
+ "reward": 0.04375,
1354
+ "reward_std": 0.04419417306780815,
1355
+ "rewards/accuracy_reward": 0.04375,
1356
+ "rewards/format_reward": 0.0,
1357
+ "step": 465
1358
+ },
1359
+ {
1360
+ "clip_ratio": 0.0,
1361
+ "completion_length": 539.5729166666666,
1362
+ "epoch": 0.9984,
1363
+ "kl": 0.0007383018370698361,
1364
+ "reward": 0.08333333333333333,
1365
+ "reward_std": 0.058925564090410866,
1366
+ "rewards/accuracy_reward": 0.08333333333333333,
1367
+ "rewards/format_reward": 0.0,
1368
+ "step": 468,
1369
  "total_flos": 0.0,
1370
+ "train_loss": 0.0028079951708861748,
1371
+ "train_runtime": 39617.8147,
1372
+ "train_samples_per_second": 0.189,
1373
+ "train_steps_per_second": 0.012
1374
  }
1375
  ],
1376
  "logging_steps": 5,
1377
+ "max_steps": 468,
1378
  "num_input_tokens_seen": 0,
1379
  "num_train_epochs": 1,
1380
  "save_steps": 500,
 
1391
  }
1392
  },
1393
  "total_flos": 0.0,
1394
+ "train_batch_size": 4,
1395
  "trial_name": null,
1396
  "trial_params": null
1397
  }
training_args.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:7ce212c5204dd486d663714791f972520601089fe064d65c6f7d1b24d7d5cb22
3
  size 6520
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:182c7356186b1649511cf378d6ca2f74e09985432dfcecb23b9695a820bba297
3
  size 6520