ehristoforu commited on
Commit
364b817
·
verified ·
1 Parent(s): c7811d3

Adding Evaluation Results

Browse files

This is an automated PR created with https://huggingface.co/spaces/Weyaxi/open-llm-leaderboard-results-pr

The purpose of this PR is to add evaluation results from the Open LLM Leaderboard to your model card.

If you encounter any issues, please report them to https://huggingface.co/spaces/Weyaxi/open-llm-leaderboard-results-pr/discussions

Files changed (1) hide show
  1. README.md +120 -12
README.md CHANGED
@@ -1,5 +1,14 @@
1
  ---
2
- inference: true
 
 
 
 
 
 
 
 
 
3
  library_name: transformers
4
  tags:
5
  - fluently-lm
@@ -14,22 +23,108 @@ tags:
14
  - unsloth
15
  - argilla
16
  - qwen2
17
- license: mit
18
- language:
19
- - en
20
- - fr
21
- - es
22
- - ru
23
- - zh
24
- - ja
25
- - fa
26
- - code
27
  datasets:
28
  - fluently-sets/ultraset
29
  - fluently-sets/ultrathink
30
  - fluently-sets/reasoning-1-1k
31
  - fluently-sets/MATH-500-Overall
 
32
  pipeline_tag: text-generation
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33
  ---
34
 
35
  <img src="https://huggingface.co/fluently-lm/FluentlyLM-Prinum/resolve/main/assets/preview.jpeg" alt="FluentlyLM Logo" width="800" height="500" style="margin-left:'auto' margin-right:'auto' display:'block'"/>
@@ -109,4 +204,17 @@ You can also use our model locally via GGUF file in various interfaces and workf
109
 
110
  ## Special thanks
111
 
112
- 🤗 We are grateful for open source resources, technologies and assistance from: [Unsloth AI](https://unsloth.ai), [Axolotl AI](https://axolotl.ai), [Argilla](https://argilla.io), [Alibaba Cloud: Qwen](https://qwenlm.ai), [NVIDIA](https://huggingface.co/nvidia) and [NousResearch](https://nousresearch.com).
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ language:
3
+ - en
4
+ - fr
5
+ - es
6
+ - ru
7
+ - zh
8
+ - ja
9
+ - fa
10
+ - code
11
+ license: mit
12
  library_name: transformers
13
  tags:
14
  - fluently-lm
 
23
  - unsloth
24
  - argilla
25
  - qwen2
 
 
 
 
 
 
 
 
 
 
26
  datasets:
27
  - fluently-sets/ultraset
28
  - fluently-sets/ultrathink
29
  - fluently-sets/reasoning-1-1k
30
  - fluently-sets/MATH-500-Overall
31
+ inference: true
32
  pipeline_tag: text-generation
33
+ model-index:
34
+ - name: FluentlyLM-Prinum
35
+ results:
36
+ - task:
37
+ type: text-generation
38
+ name: Text Generation
39
+ dataset:
40
+ name: IFEval (0-Shot)
41
+ type: HuggingFaceH4/ifeval
42
+ args:
43
+ num_few_shot: 0
44
+ metrics:
45
+ - type: inst_level_strict_acc and prompt_level_strict_acc
46
+ value: 80.9
47
+ name: strict accuracy
48
+ source:
49
+ url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=fluently-lm/FluentlyLM-Prinum
50
+ name: Open LLM Leaderboard
51
+ - task:
52
+ type: text-generation
53
+ name: Text Generation
54
+ dataset:
55
+ name: BBH (3-Shot)
56
+ type: BBH
57
+ args:
58
+ num_few_shot: 3
59
+ metrics:
60
+ - type: acc_norm
61
+ value: 59.48
62
+ name: normalized accuracy
63
+ source:
64
+ url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=fluently-lm/FluentlyLM-Prinum
65
+ name: Open LLM Leaderboard
66
+ - task:
67
+ type: text-generation
68
+ name: Text Generation
69
+ dataset:
70
+ name: MATH Lvl 5 (4-Shot)
71
+ type: hendrycks/competition_math
72
+ args:
73
+ num_few_shot: 4
74
+ metrics:
75
+ - type: exact_match
76
+ value: 54.0
77
+ name: exact match
78
+ source:
79
+ url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=fluently-lm/FluentlyLM-Prinum
80
+ name: Open LLM Leaderboard
81
+ - task:
82
+ type: text-generation
83
+ name: Text Generation
84
+ dataset:
85
+ name: GPQA (0-shot)
86
+ type: Idavidrein/gpqa
87
+ args:
88
+ num_few_shot: 0
89
+ metrics:
90
+ - type: acc_norm
91
+ value: 18.23
92
+ name: acc_norm
93
+ source:
94
+ url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=fluently-lm/FluentlyLM-Prinum
95
+ name: Open LLM Leaderboard
96
+ - task:
97
+ type: text-generation
98
+ name: Text Generation
99
+ dataset:
100
+ name: MuSR (0-shot)
101
+ type: TAUR-Lab/MuSR
102
+ args:
103
+ num_few_shot: 0
104
+ metrics:
105
+ - type: acc_norm
106
+ value: 17.26
107
+ name: acc_norm
108
+ source:
109
+ url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=fluently-lm/FluentlyLM-Prinum
110
+ name: Open LLM Leaderboard
111
+ - task:
112
+ type: text-generation
113
+ name: Text Generation
114
+ dataset:
115
+ name: MMLU-PRO (5-shot)
116
+ type: TIGER-Lab/MMLU-Pro
117
+ config: main
118
+ split: test
119
+ args:
120
+ num_few_shot: 5
121
+ metrics:
122
+ - type: acc
123
+ value: 53.42
124
+ name: accuracy
125
+ source:
126
+ url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=fluently-lm/FluentlyLM-Prinum
127
+ name: Open LLM Leaderboard
128
  ---
129
 
130
  <img src="https://huggingface.co/fluently-lm/FluentlyLM-Prinum/resolve/main/assets/preview.jpeg" alt="FluentlyLM Logo" width="800" height="500" style="margin-left:'auto' margin-right:'auto' display:'block'"/>
 
204
 
205
  ## Special thanks
206
 
207
+ 🤗 We are grateful for open source resources, technologies and assistance from: [Unsloth AI](https://unsloth.ai), [Axolotl AI](https://axolotl.ai), [Argilla](https://argilla.io), [Alibaba Cloud: Qwen](https://qwenlm.ai), [NVIDIA](https://huggingface.co/nvidia) and [NousResearch](https://nousresearch.com).
208
+ # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
209
+ Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/fluently-lm__FluentlyLM-Prinum-details)
210
+
211
+ | Metric |Value|
212
+ |-------------------|----:|
213
+ |Avg. |47.22|
214
+ |IFEval (0-Shot) |80.90|
215
+ |BBH (3-Shot) |59.48|
216
+ |MATH Lvl 5 (4-Shot)|54.00|
217
+ |GPQA (0-shot) |18.23|
218
+ |MuSR (0-shot) |17.26|
219
+ |MMLU-PRO (5-shot) |53.42|
220
+