flexthink
commited on
Commit
·
2678216
1
Parent(s):
5422153
Initial importZ
Browse files- attention_mlp.ckpt +3 -0
- classifier.ckpt +3 -0
- custom_interface.py +309 -0
- discrete_embedding_layer.ckpt +3 -0
- embedding_model.ckpt +3 -0
- hyperparams.yaml +83 -0
attention_mlp.ckpt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:28c1d68f953ce692dbdbb0501e16cb005b232e45d9244ac2b2681931c3055e7b
|
3 |
+
size 4204478
|
classifier.ckpt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:896a20f78eb8cfde322b5ec4e5eb82413b75fd453bdc8763a197bd68b229358d
|
3 |
+
size 931371
|
custom_interface.py
ADDED
@@ -0,0 +1,309 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Mapping
|
2 |
+
import torch
|
3 |
+
import math
|
4 |
+
from speechbrain.inference.interfaces import Pretrained
|
5 |
+
|
6 |
+
|
7 |
+
class AttentionMLP(torch.nn.Module):
|
8 |
+
def __init__(self, input_dim, hidden_dim):
|
9 |
+
super(AttentionMLP, self).__init__()
|
10 |
+
self.layers = torch.nn.Sequential(
|
11 |
+
torch.nn.Linear(input_dim, hidden_dim),
|
12 |
+
torch.nn.ReLU(),
|
13 |
+
torch.nn.Linear(hidden_dim, 1, bias=False),
|
14 |
+
)
|
15 |
+
|
16 |
+
def forward(self, x):
|
17 |
+
x = self.layers(x)
|
18 |
+
att_w = torch.nn.functional.softmax(x, dim=2)
|
19 |
+
return att_w
|
20 |
+
|
21 |
+
|
22 |
+
class Discrete_EmbeddingLayer(torch.nn.Module):
|
23 |
+
"""This class handles embedding layers for discrete tokens.
|
24 |
+
|
25 |
+
Arguments
|
26 |
+
---------
|
27 |
+
num_codebooks: int ,
|
28 |
+
number of codebooks of the tokenizer.
|
29 |
+
vocab_size : int,
|
30 |
+
size of the dictionary of embeddings
|
31 |
+
emb_dim: int ,
|
32 |
+
the size of each embedding vector
|
33 |
+
pad_index: int (default: 0),
|
34 |
+
If specified, the entries at padding_idx do not contribute to the gradient.
|
35 |
+
init: boolean (default: False):
|
36 |
+
If set to True, init the embedding with the tokenizer embedding otherwise init randomly.
|
37 |
+
freeze: boolean (default: False)
|
38 |
+
If True, the embedding is frozen. If False, the model will be trained
|
39 |
+
alongside with the rest of the pipeline.
|
40 |
+
chunk_size: int
|
41 |
+
The size of lengthwize chunks use when evaluating via
|
42 |
+
Gumbel softmax
|
43 |
+
|
44 |
+
Example
|
45 |
+
-------
|
46 |
+
>>> from speechbrain.lobes.models.huggingface_transformers.encodec import Encodec
|
47 |
+
>>> model_hub = "facebook/encodec_24khz"
|
48 |
+
>>> save_path = "savedir"
|
49 |
+
>>> model = Encodec(model_hub, save_path)
|
50 |
+
>>> audio = torch.randn(4, 1000)
|
51 |
+
>>> length = torch.tensor([1.0, .5, .75, 1.0])
|
52 |
+
>>> tokens, emb = model.encode(audio, length)
|
53 |
+
>>> print(tokens.shape)
|
54 |
+
torch.Size([4, 4, 2])
|
55 |
+
>>> emb= Discrete_EmbeddingLayer(2, 1024, 1024)
|
56 |
+
>>> in_emb = emb(tokens)
|
57 |
+
>>> print(in_emb.shape)
|
58 |
+
torch.Size([4, 4, 2, 1024])
|
59 |
+
"""
|
60 |
+
|
61 |
+
def __init__(
|
62 |
+
self,
|
63 |
+
num_codebooks,
|
64 |
+
vocab_size,
|
65 |
+
emb_dim,
|
66 |
+
pad_index=0,
|
67 |
+
init=False,
|
68 |
+
freeze=False,
|
69 |
+
available_layers=None,
|
70 |
+
layers=None,
|
71 |
+
chunk_size=100,
|
72 |
+
):
|
73 |
+
super(Discrete_EmbeddingLayer, self).__init__()
|
74 |
+
self.vocab_size = vocab_size
|
75 |
+
self.num_codebooks = num_codebooks
|
76 |
+
self.freeze = freeze
|
77 |
+
self.embedding = torch.nn.Embedding(
|
78 |
+
num_codebooks * vocab_size, emb_dim
|
79 |
+
).requires_grad_(not self.freeze)
|
80 |
+
self.init = init
|
81 |
+
self.layers = layers
|
82 |
+
self.available_layers = available_layers
|
83 |
+
self.register_buffer("offsets", self.build_offsets())
|
84 |
+
self.register_buffer("layer_embs", self.compute_layer_embs())
|
85 |
+
self.chunk_size = chunk_size
|
86 |
+
|
87 |
+
def init_embedding(self, weights):
|
88 |
+
with torch.no_grad():
|
89 |
+
self.embedding.weight = torch.nn.Parameter(weights)
|
90 |
+
|
91 |
+
def build_offsets(self):
|
92 |
+
offsets = torch.arange(
|
93 |
+
0,
|
94 |
+
self.num_codebooks * self.vocab_size,
|
95 |
+
self.vocab_size,
|
96 |
+
)
|
97 |
+
if self.layers:
|
98 |
+
selected_layers = set(self.layers)
|
99 |
+
indexes = [
|
100 |
+
idx for idx, layer in enumerate(self.available_layers)
|
101 |
+
if layer in selected_layers
|
102 |
+
]
|
103 |
+
offsets = offsets[indexes]
|
104 |
+
return offsets
|
105 |
+
|
106 |
+
def forward(self, in_tokens):
|
107 |
+
"""Computes the embedding for discrete tokens.
|
108 |
+
a sample.
|
109 |
+
|
110 |
+
Arguments
|
111 |
+
---------
|
112 |
+
in_tokens : torch.Tensor
|
113 |
+
A (Batch x Time x num_codebooks)
|
114 |
+
audio sample
|
115 |
+
Returns
|
116 |
+
-------
|
117 |
+
in_embs : torch.Tensor
|
118 |
+
"""
|
119 |
+
with torch.set_grad_enabled(not self.freeze):
|
120 |
+
# Add unique token IDs across diffrent codebooks by adding num_codebooks * vocab_size
|
121 |
+
in_tokens_offset = in_tokens + self.offsets.to(in_tokens.device)
|
122 |
+
# Forward Pass to embedding and
|
123 |
+
in_embs = self.embedding(in_tokens_offset.int())
|
124 |
+
return in_embs
|
125 |
+
|
126 |
+
def compute_layer_embs(self):
|
127 |
+
weight = self.embedding.weight
|
128 |
+
|
129 |
+
# Compute offsets
|
130 |
+
layer_idx_map = {
|
131 |
+
layer: idx
|
132 |
+
for idx, layer in enumerate(self.available_layers)
|
133 |
+
}
|
134 |
+
layer_idx = [
|
135 |
+
layer_idx_map[layer]
|
136 |
+
for layer in self.layers
|
137 |
+
]
|
138 |
+
|
139 |
+
offsets = [
|
140 |
+
idx * self.vocab_size
|
141 |
+
for idx in layer_idx
|
142 |
+
]
|
143 |
+
|
144 |
+
layer_embs = torch.stack([
|
145 |
+
weight[offset:offset + self.vocab_size]
|
146 |
+
for offset in offsets
|
147 |
+
])
|
148 |
+
|
149 |
+
# To (Batch x Length x Emb)
|
150 |
+
layer_embs = layer_embs.unsqueeze(0).unsqueeze(0)
|
151 |
+
return layer_embs
|
152 |
+
|
153 |
+
def encode_logits(self, logits, length=None):
|
154 |
+
"""Computes waveforms from a batch of discrete units
|
155 |
+
Arguments
|
156 |
+
---------
|
157 |
+
units: torch.tensor
|
158 |
+
Batch of discrete unit logits [batch, length, head, token]
|
159 |
+
or tokens [batch, length, head]
|
160 |
+
spk: torch.tensor
|
161 |
+
Batch of speaker embeddings [batch, spk_dim]
|
162 |
+
Returns
|
163 |
+
-------
|
164 |
+
waveforms: torch.tensor
|
165 |
+
Batch of mel-waveforms [batch, 1, time]
|
166 |
+
"""
|
167 |
+
|
168 |
+
# Convert logits to one-hot representations
|
169 |
+
# without losing the gradient
|
170 |
+
units_gumbel = torch.nn.functional.gumbel_softmax(
|
171 |
+
logits,
|
172 |
+
hard=False,
|
173 |
+
dim=-1
|
174 |
+
)
|
175 |
+
|
176 |
+
# Straight-through trick
|
177 |
+
_, argmax_idx = logits.max(dim=-1, keepdim=True)
|
178 |
+
units_ref = torch.zeros_like(logits).scatter_(
|
179 |
+
dim=-1, index=argmax_idx, src=torch.ones_like(logits)
|
180 |
+
)
|
181 |
+
units_hard = units_ref - units_gumbel.detach() + units_gumbel
|
182 |
+
|
183 |
+
# Sum over embeddings for each layer
|
184 |
+
units_hard_chunked = units_hard.chunk(
|
185 |
+
math.ceil(units_hard.size(1) / self.chunk_size),
|
186 |
+
dim=1
|
187 |
+
)
|
188 |
+
emb = torch.cat(
|
189 |
+
[
|
190 |
+
(self.layer_embs * units_hard_chunk.unsqueeze(-1)).sum(-2)
|
191 |
+
for units_hard_chunk in units_hard_chunked
|
192 |
+
],
|
193 |
+
dim=1
|
194 |
+
)
|
195 |
+
return emb
|
196 |
+
|
197 |
+
def load_state_dict(self, state_dict, strict=True):
|
198 |
+
result = super().load_state_dict(state_dict, strict)
|
199 |
+
self.layer_embs = self.compute_layer_embs()
|
200 |
+
return result
|
201 |
+
|
202 |
+
|
203 |
+
class DiscreteSpkEmb(Pretrained):
|
204 |
+
"""A ready-to-use class for utterance-level classification (e.g, speaker-id,
|
205 |
+
language-id, emotion recognition, keyword spotting, etc).
|
206 |
+
The class assumes that an self-supervised encoder like wav2vec2/hubert and a classifier model
|
207 |
+
are defined in the yaml file. If you want to
|
208 |
+
convert the predicted index into a corresponding text label, please
|
209 |
+
provide the path of the label_encoder in a variable called 'lab_encoder_file'
|
210 |
+
within the yaml.
|
211 |
+
The class can be used either to run only the encoder (encode_batch()) to
|
212 |
+
extract embeddings or to run a classification step (classify_batch()).
|
213 |
+
```
|
214 |
+
Example
|
215 |
+
-------
|
216 |
+
>>> import torchaudio
|
217 |
+
>>> from speechbrain.pretrained import EncoderClassifier
|
218 |
+
>>> # Model is downloaded from the speechbrain HuggingFace repo
|
219 |
+
>>> tmpdir = getfixture("tmpdir")
|
220 |
+
>>> classifier = EncoderClassifier.from_hparams(
|
221 |
+
... source="speechbrain/spkrec-ecapa-voxceleb",
|
222 |
+
... savedir=tmpdir,
|
223 |
+
... )
|
224 |
+
>>> # Compute embeddings
|
225 |
+
>>> signal, fs = torchaudio.load("samples/audio_samples/example1.wav")
|
226 |
+
>>> embeddings = classifier.encode_batch(signal)
|
227 |
+
>>> # Classification
|
228 |
+
>>> prediction = classifier .classify_batch(signal)
|
229 |
+
"""
|
230 |
+
|
231 |
+
def __init__(self, *args, **kwargs):
|
232 |
+
super().__init__(*args, **kwargs)
|
233 |
+
|
234 |
+
def encode_batch(self, audio, length=None):
|
235 |
+
"""Encodes the input audio into a single vector embedding.
|
236 |
+
The waveforms should already be in the model's desired format.
|
237 |
+
Arguments
|
238 |
+
---------
|
239 |
+
audio : torch.tensor
|
240 |
+
Batch of tokenized audio [batch, time, heads]
|
241 |
+
length : torch.tensor
|
242 |
+
Lengths of the waveforms relative to the longest one in the
|
243 |
+
batch, tensor of shape [batch]. The longest one should have
|
244 |
+
relative length 1.0 and others len(waveform) / max_length.
|
245 |
+
Used for ignoring padding.
|
246 |
+
|
247 |
+
Returns
|
248 |
+
-------
|
249 |
+
torch.tensor
|
250 |
+
The encoded batch
|
251 |
+
"""
|
252 |
+
# Manage single waveforms in input
|
253 |
+
embeddings = self.mods.discrete_embedding_layer(audio)
|
254 |
+
att_w = self.mods.attention_mlp(embeddings)
|
255 |
+
feats = torch.matmul(att_w.transpose(2, -1), embeddings).squeeze(-2)
|
256 |
+
embeddings = self.mods.embedding_model(feats, length)
|
257 |
+
return embeddings.squeeze(1)
|
258 |
+
|
259 |
+
def encode_logits(self, logits, length=None):
|
260 |
+
"""Encodes the input audio logits into a single vector embedding.
|
261 |
+
|
262 |
+
Arguments
|
263 |
+
---------
|
264 |
+
audio : torch.tensor
|
265 |
+
Batch of tokenized audio [batch, time, heads]
|
266 |
+
length : torch.tensor
|
267 |
+
Lengths of the waveforms relative to the longest one in the
|
268 |
+
batch, tensor of shape [batch]. The longest one should have
|
269 |
+
relative length 1.0 and others len(waveform) / max_length.
|
270 |
+
Used for ignoring padding.
|
271 |
+
|
272 |
+
Returns
|
273 |
+
-------
|
274 |
+
torch.tensor
|
275 |
+
The encoded batch
|
276 |
+
"""
|
277 |
+
embeddings = self.mods.discrete_embedding_layer.encode_logits(logits)
|
278 |
+
att_w = self.mods.attention_mlp(embeddings)
|
279 |
+
feats = torch.matmul(att_w.transpose(2, -1), embeddings).squeeze(-2)
|
280 |
+
embeddings = self.mods.embedding_model(feats, length)
|
281 |
+
return embeddings.squeeze(1)
|
282 |
+
|
283 |
+
def forward(self, audio, length=None):
|
284 |
+
"""Encodes the input audio into a single vector embedding.
|
285 |
+
The waveforms should already be in the model's desired format.
|
286 |
+
Arguments
|
287 |
+
---------
|
288 |
+
audio : torch.tensor
|
289 |
+
Batch of tokenized audio [batch, time, heads]
|
290 |
+
or logits [batch, time, heads, tokens]
|
291 |
+
length : torch.tensor
|
292 |
+
Lengths of the waveforms relative to the longest one in the
|
293 |
+
batch, tensor of shape [batch]. The longest one should have
|
294 |
+
relative length 1.0 and others len(waveform) / max_length.
|
295 |
+
Used for ignoring padding.
|
296 |
+
|
297 |
+
Returns
|
298 |
+
-------
|
299 |
+
torch.tensor
|
300 |
+
The encoded batch
|
301 |
+
"""
|
302 |
+
audio_dim = audio.dim()
|
303 |
+
if audio_dim == 3:
|
304 |
+
embeddings = self.encode_batch(audio, length)
|
305 |
+
elif audio_dim == 4:
|
306 |
+
embeddings = self.encode_logits(audio, length)
|
307 |
+
else:
|
308 |
+
raise ValueError("Unsupported audio shape {audio.shape}")
|
309 |
+
return embeddings
|
discrete_embedding_layer.ckpt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f0242e3dbca8efaeaeaa3f79fd92d1828da4cd3504c57072fbbc4b2100a32647
|
3 |
+
size 24577457
|
embedding_model.ckpt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2564eaaa33bd952b771c9c09f9b3dc555285cd4801663afacf3200eb5ccf786c
|
3 |
+
size 102646844
|
hyperparams.yaml
ADDED
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# ############################################################################
|
2 |
+
# Model: ECAPA big for Speaker verification
|
3 |
+
# ############################################################################
|
4 |
+
|
5 |
+
# Feature parameters
|
6 |
+
n_mels: 80
|
7 |
+
|
8 |
+
# Pretrain folder (HuggingFace)
|
9 |
+
pretrained_path: flexthink/discrete_hubert_spk_rec_ecapatdn
|
10 |
+
# Output parameters
|
11 |
+
save_folder: tmp
|
12 |
+
|
13 |
+
### Configuration for discrete SSL model
|
14 |
+
# ssl_model_type: hubert, wavlm, wav2vec2
|
15 |
+
# ssl_hub: facebook/hubert-large-ll60k, microsoft/wavlm-large, facebook/wav2vec2-large
|
16 |
+
ssl_model_type: hubert # hubert, wavml or wav2vec2
|
17 |
+
ssl_hub: facebook/hubert-large-ll60k
|
18 |
+
ssl_folder: !ref <save_folder>/ssl_checkpoint
|
19 |
+
kmeans_repo_id: speechbrain/SSL_Quantization
|
20 |
+
kmeans_cache_dir: !ref <save_folder>/kmeans_checkpoint
|
21 |
+
kmeans_dataset: LibriSpeech-100-360-500
|
22 |
+
freeze_ssl: True
|
23 |
+
freeze_feature_extractor: True
|
24 |
+
num_clusters: 1000
|
25 |
+
|
26 |
+
### Config for Tokenizer
|
27 |
+
# Layer number should be among the supported layers for discrete SSL models(kmenas model should be available for that layer)
|
28 |
+
# ssl_layer_num: [3, 7, 12, 23]
|
29 |
+
# deduplicate: [False, False, False, False]
|
30 |
+
# bpe_tokenizer_path: [null , null, null, null]
|
31 |
+
ssl_layer_num: [1, 3, 7, 12, 18, 23]
|
32 |
+
ssl_layer_num_selected: [1, 3, 7, 12, 18, 23]
|
33 |
+
num_codebooks: 6
|
34 |
+
deduplicate: [False, False, False, False, False, False]
|
35 |
+
bpe_tokenizer_path: [null, null, null, null, null, null]
|
36 |
+
sample_rate: 16000
|
37 |
+
|
38 |
+
# Feature parameters
|
39 |
+
encoder_dim: 1024
|
40 |
+
# Modules
|
41 |
+
tokenizer_config:
|
42 |
+
SSL_layers: !ref <ssl_layer_num>
|
43 |
+
deduplicates: !ref <deduplicate>
|
44 |
+
bpe_tokenizers: !ref <bpe_tokenizer_path>
|
45 |
+
|
46 |
+
discrete_embedding_layer: !new:custom_interface.Discrete_EmbeddingLayer
|
47 |
+
num_codebooks: !ref <num_codebooks>
|
48 |
+
vocab_size: !ref <num_clusters>
|
49 |
+
emb_dim: !ref <encoder_dim>
|
50 |
+
available_layers: !ref <ssl_layer_num>
|
51 |
+
layers: !ref <ssl_layer_num_selected>
|
52 |
+
|
53 |
+
attention_mlp: !new:custom_interface.AttentionMLP
|
54 |
+
input_dim: !ref <encoder_dim>
|
55 |
+
hidden_dim: !ref <encoder_dim>
|
56 |
+
|
57 |
+
embedding_model: !new:speechbrain.lobes.models.ECAPA_TDNN.ECAPA_TDNN
|
58 |
+
input_size: !ref <encoder_dim>
|
59 |
+
channels: [1024, 1024, 1024, 1024, 3072]
|
60 |
+
kernel_sizes: [5, 3, 3, 3, 1]
|
61 |
+
dilations: [1, 2, 3, 4, 1]
|
62 |
+
groups: [1, 1, 1, 1, 1]
|
63 |
+
attention_channels: 128
|
64 |
+
lin_neurons: 192
|
65 |
+
|
66 |
+
modules:
|
67 |
+
embedding_model: !ref <embedding_model>
|
68 |
+
attention_mlp: !ref <attention_mlp>
|
69 |
+
discrete_embedding_layer: !ref <discrete_embedding_layer>
|
70 |
+
|
71 |
+
|
72 |
+
pretrainer: !new:speechbrain.utils.parameter_transfer.Pretrainer
|
73 |
+
loadables:
|
74 |
+
embedding_model: !ref <embedding_model>
|
75 |
+
attention_mlp: !ref <attention_mlp>
|
76 |
+
discrete_embedding_layer: !ref <discrete_embedding_layer>
|
77 |
+
|
78 |
+
paths:
|
79 |
+
embedding_model: !ref <pretrained_path>/embedding_model.ckpt
|
80 |
+
attention_mlp: !ref <pretrained_path>/attention_mlp.ckpt
|
81 |
+
discrete_embedding_layer: !ref <pretrained_path>/discrete_embedding_layer.ckpt
|
82 |
+
|
83 |
+
|