from datasets import load_dataset | |
from tokenizers import ByteLevelBPETokenizer | |
# load dataset | |
dataset = load_dataset("mc4", "id", split="train") | |
# Instantiate tokenizer | |
tokenizer = ByteLevelBPETokenizer() | |
def batch_iterator(batch_size=1000): | |
for i in range(0, len(dataset), batch_size): | |
yield dataset[i : i + batch_size]["text"] | |
# Customized training | |
tokenizer.train_from_iterator( | |
batch_iterator(), | |
vocab_size=50265, | |
min_frequency=2, | |
special_tokens=["<s>", "<pad>", "</s>", "<unk>", "<mask>",], | |
) | |
# Save files to disk | |
tokenizer.save(f"./tokenizer.json") | |