export MODEL_DIR=`pwd` | |
export WANDB_ENTITY="wandb" | |
export WANDB_PROJECT="hf-flax-gpt2-indonesian" | |
export WANDB_LOG_MODEL="true" | |
./run_clm_flax.py \ | |
--output_dir="${MODEL_DIR}" \ | |
--model_type="gpt2" \ | |
--config_name="${MODEL_DIR}" \ | |
--tokenizer_name="${MODEL_DIR}" \ | |
--dataset_name="oscar" \ | |
--dataset_config_name="unshuffled_deduplicated_id" \ | |
--do_train --do_eval \ | |
--block_size="512" \ | |
--per_device_train_batch_size="24" \ | |
--per_device_eval_batch_size="24" \ | |
--learning_rate="0.0024" --warmup_steps="1000" \ | |
--adam_beta1="0.9" --adam_beta2="0.98" --weight_decay="0.01" \ | |
--overwrite_output_dir \ | |
--num_train_epochs="20" \ | |
--dataloader_num_workers="64" \ | |
--preprocessing_num_workers="64" \ | |
--save_steps="10" \ | |
--eval_steps="10" \ | |
--max_train_samples="10000" \ | |
--max_eval_samples="1000" \ | |
--push_to_hub | |