sam-vision-model-base / modelling.py
marcusinthesky's picture
Upload model
c46712e
# AUTOGENERATED! DO NOT EDIT! File to edit: ../notebooks/12_modelling.ipynb.
# %% auto 0
__all__ = ['VTDEConfig', 'VTDEModel', 'SamVisionPreTrainedModel', 'SamVisionModel']
# %% ../notebooks/12_modelling.ipynb 1
from transformers.models.clip.modeling_clip import CLIPOutput, clip_loss
from typing import Optional, Tuple, Union
from transformers import PreTrainedModel, VisionTextDualEncoderModel
import torch
from transformers import VisionTextDualEncoderConfig
class VTDEConfig(VisionTextDualEncoderConfig):
model_type = "vtde"
def __init__(self, projection_dim=512, logit_scale_init_value=2.6592,
text_pooling_mode='mean',
vision_pooling_mode='max',
**kwargs):
"""
pooling_mode in ['mean', 'max', 'cls']
https://arxiv.org/pdf/2210.09996.pdf
https://github.com/kahnchana/clippy/blob/3c102c29c32f7c66c6e52e09b795fe9c061bbb03/src/open_clip/hf_model.py#L56
also
https://arxiv.org/pdf/2301.07836.pdf
"""
self.text_pooling_mode = text_pooling_mode
self.vision_pooling_mode = vision_pooling_mode
super().__init__(projection_dim, logit_scale_init_value, **kwargs)
VTDEConfig.register_for_auto_class()
class VTDEModel(VisionTextDualEncoderModel):
config_class = VTDEConfig
base_model_prefix = "vtde"
def __init__(
self,
config: Optional[VTDEConfig] = None,
vision_model: Optional[PreTrainedModel] = None,
text_model: Optional[PreTrainedModel] = None,
):
# You can customize the constructor if needed
super().__init__(config, vision_model, text_model)
self.text_pooling_mode = config.text_pooling_mode
self.vision_pooling_mode = config.vision_pooling_mode
def get_text_features(
self,
input_ids=None,
attention_mask=None,
position_ids=None,
token_type_ids=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
text_outputs = self.text_model(
input_ids=input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
if self.text_pooling_mode == 'cls':
pooled_output = text_outputs[1]
elif self.text_pooling_mode == 'mean':
pooled_output = torch.mean(text_outputs[0], dim=1)
elif self.text_pooling_mode == 'max':
pooled_output = torch.max(text_outputs[0], dim=1)[0]
elif self.text_pooling_mode == 'norm':
"""we select the patch with the largest norm"""
last_hidden_states = text_outputs[0]
patch_norms = torch.norm(last_hidden_states[:, 1:, :], dim=-1)
max_norm_idx = torch.argmax(patch_norms, dim=1)
pooled_output = last_hidden_states[:, max_norm_idx, :][:, 0, :]
else:
"We want to raise the name of the pooling mode"
raise NotImplementedError
text_features = self.text_projection(pooled_output)
return text_features
def get_image_features(
self,
pixel_values=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
vision_outputs = self.vision_model(
pixel_values=pixel_values,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
if self.vision_pooling_mode == 'cls':
pooled_output = vision_outputs[1]
elif self.vision_pooling_mode == 'mean':
pooled_output = torch.mean(vision_outputs[0], dim=1)
elif self.vision_pooling_mode == 'max':
pooled_output = torch.max(vision_outputs[0], dim=1)[0]
elif self.vision_pooling_mode == 'norm':
"""we select the patch with the largest norm"""
last_hidden_states = vision_outputs[0]
patch_norms = torch.norm(last_hidden_states[:, 1:, :], dim=-1)
max_norm_idx = torch.argmax(patch_norms, dim=1)
pooled_output = last_hidden_states[:, max_norm_idx, :][:, 0, :]
else:
raise NotImplementedError
image_features = self.visual_projection(pooled_output)
return image_features
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
pixel_values: Optional[torch.FloatTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
return_loss: Optional[bool] = None,
token_type_ids: Optional[torch.LongTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], CLIPOutput]:
return_dict = return_dict if return_dict is not None else self.config.return_dict
image_embeds = self.get_image_features(
pixel_values=pixel_values,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
text_embeds = self.get_text_features(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
# normalized features
image_embeds = image_embeds / image_embeds.norm(dim=-1, keepdim=True)
text_embeds = text_embeds / text_embeds.norm(dim=-1, keepdim=True)
# cosine similarity as logits
logit_scale = self.logit_scale.exp()
logits_per_text = torch.matmul(text_embeds, image_embeds.t()) * logit_scale
logits_per_image = logits_per_text.T
loss = None
if return_loss:
loss = clip_loss(logits_per_text)
if not return_dict:
output = (logits_per_image, logits_per_text, text_embeds, image_embeds, text_embeds, image_embeds)
return ((loss,) + output) if loss is not None else output
return CLIPOutput(
loss=loss,
logits_per_image=logits_per_image,
logits_per_text=logits_per_text,
text_embeds=text_embeds,
image_embeds=image_embeds,
text_model_output=text_embeds,
vision_model_output=image_embeds,
)
VTDEModel.register_for_auto_class("AutoModel")
VTDEModel.register_for_auto_class("AutoModelForZeroShotImageClassification")
# %% ../notebooks/12_modelling.ipynb 2
# we want to create a vision-text encoder model for SAM
from transformers import PreTrainedModel
from transformers.models.sam.modeling_sam import SamPositionalEmbedding, SamVisionEncoder, SamVisionEncoderOutput
from transformers.models.sam.configuration_sam import SamVisionConfig
from torch import nn
class SamVisionPreTrainedModel(PreTrainedModel):
config_class = SamVisionConfig
base_model_prefix = "sam_vision_encoder"
main_input_name = "pixel_values"
def _init_weights(self, module):
std = self.config.initializer_range
if isinstance(module, (nn.Linear, nn.Conv2d, nn.ConvTranspose2d)):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
class SamVisionModel(SamVisionPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.shared_image_embedding = SamPositionalEmbedding(config)
self.vision_encoder = SamVisionEncoder(config)
def forward(
self,
pixel_values=None,
attention_mask=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
) -> SamVisionEncoderOutput:
return_dict = return_dict if return_dict is not None else self.config.return_dict
image_embeddings = self.shared_image_embedding(pixel_values)
vision_encoder_outputs = self.vision_encoder(
image_embeddings,
attention_mask=attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
return vision_encoder_outputs
SamVisionModel.register_for_auto_class("AutoModel")
# SamVisionConfig.register_for_auto_class()