|
|
|
|
|
|
|
__all__ = ['VTDEConfig', 'VTDEModel', 'SamVisionPreTrainedModel', 'SamVisionModel'] |
|
|
|
|
|
from transformers.models.clip.modeling_clip import CLIPOutput, clip_loss |
|
from typing import Optional, Tuple, Union |
|
from transformers import PreTrainedModel, VisionTextDualEncoderModel |
|
import torch |
|
from transformers import VisionTextDualEncoderConfig |
|
|
|
class VTDEConfig(VisionTextDualEncoderConfig): |
|
model_type = "vtde" |
|
|
|
def __init__(self, projection_dim=512, logit_scale_init_value=2.6592, |
|
text_pooling_mode='mean', |
|
vision_pooling_mode='max', |
|
**kwargs): |
|
""" |
|
pooling_mode in ['mean', 'max', 'cls'] |
|
https://arxiv.org/pdf/2210.09996.pdf |
|
https://github.com/kahnchana/clippy/blob/3c102c29c32f7c66c6e52e09b795fe9c061bbb03/src/open_clip/hf_model.py#L56 |
|
also |
|
https://arxiv.org/pdf/2301.07836.pdf |
|
""" |
|
self.text_pooling_mode = text_pooling_mode |
|
self.vision_pooling_mode = vision_pooling_mode |
|
super().__init__(projection_dim, logit_scale_init_value, **kwargs) |
|
|
|
VTDEConfig.register_for_auto_class() |
|
|
|
|
|
class VTDEModel(VisionTextDualEncoderModel): |
|
config_class = VTDEConfig |
|
base_model_prefix = "vtde" |
|
|
|
def __init__( |
|
self, |
|
config: Optional[VTDEConfig] = None, |
|
vision_model: Optional[PreTrainedModel] = None, |
|
text_model: Optional[PreTrainedModel] = None, |
|
): |
|
|
|
super().__init__(config, vision_model, text_model) |
|
self.text_pooling_mode = config.text_pooling_mode |
|
self.vision_pooling_mode = config.vision_pooling_mode |
|
|
|
def get_text_features( |
|
self, |
|
input_ids=None, |
|
attention_mask=None, |
|
position_ids=None, |
|
token_type_ids=None, |
|
output_attentions=None, |
|
output_hidden_states=None, |
|
return_dict=None, |
|
): |
|
text_outputs = self.text_model( |
|
input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
token_type_ids=token_type_ids, |
|
position_ids=position_ids, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
if self.text_pooling_mode == 'cls': |
|
pooled_output = text_outputs[1] |
|
elif self.text_pooling_mode == 'mean': |
|
pooled_output = torch.mean(text_outputs[0], dim=1) |
|
elif self.text_pooling_mode == 'max': |
|
pooled_output = torch.max(text_outputs[0], dim=1)[0] |
|
elif self.text_pooling_mode == 'norm': |
|
"""we select the patch with the largest norm""" |
|
last_hidden_states = text_outputs[0] |
|
patch_norms = torch.norm(last_hidden_states[:, 1:, :], dim=-1) |
|
max_norm_idx = torch.argmax(patch_norms, dim=1) |
|
pooled_output = last_hidden_states[:, max_norm_idx, :][:, 0, :] |
|
else: |
|
"We want to raise the name of the pooling mode" |
|
raise NotImplementedError |
|
|
|
text_features = self.text_projection(pooled_output) |
|
|
|
return text_features |
|
|
|
def get_image_features( |
|
self, |
|
pixel_values=None, |
|
output_attentions=None, |
|
output_hidden_states=None, |
|
return_dict=None, |
|
): |
|
vision_outputs = self.vision_model( |
|
pixel_values=pixel_values, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
|
|
if self.vision_pooling_mode == 'cls': |
|
pooled_output = vision_outputs[1] |
|
elif self.vision_pooling_mode == 'mean': |
|
pooled_output = torch.mean(vision_outputs[0], dim=1) |
|
elif self.vision_pooling_mode == 'max': |
|
pooled_output = torch.max(vision_outputs[0], dim=1)[0] |
|
elif self.vision_pooling_mode == 'norm': |
|
"""we select the patch with the largest norm""" |
|
last_hidden_states = vision_outputs[0] |
|
patch_norms = torch.norm(last_hidden_states[:, 1:, :], dim=-1) |
|
max_norm_idx = torch.argmax(patch_norms, dim=1) |
|
pooled_output = last_hidden_states[:, max_norm_idx, :][:, 0, :] |
|
else: |
|
raise NotImplementedError |
|
|
|
image_features = self.visual_projection(pooled_output) |
|
|
|
return image_features |
|
|
|
def forward( |
|
self, |
|
input_ids: Optional[torch.LongTensor] = None, |
|
pixel_values: Optional[torch.FloatTensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
return_loss: Optional[bool] = None, |
|
token_type_ids: Optional[torch.LongTensor] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple[torch.Tensor], CLIPOutput]: |
|
|
|
return_dict = return_dict if return_dict is not None else self.config.return_dict |
|
|
|
image_embeds = self.get_image_features( |
|
pixel_values=pixel_values, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
|
|
text_embeds = self.get_text_features( |
|
input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
|
|
|
|
image_embeds = image_embeds / image_embeds.norm(dim=-1, keepdim=True) |
|
text_embeds = text_embeds / text_embeds.norm(dim=-1, keepdim=True) |
|
|
|
|
|
logit_scale = self.logit_scale.exp() |
|
logits_per_text = torch.matmul(text_embeds, image_embeds.t()) * logit_scale |
|
logits_per_image = logits_per_text.T |
|
|
|
loss = None |
|
if return_loss: |
|
loss = clip_loss(logits_per_text) |
|
|
|
if not return_dict: |
|
output = (logits_per_image, logits_per_text, text_embeds, image_embeds, text_embeds, image_embeds) |
|
return ((loss,) + output) if loss is not None else output |
|
|
|
return CLIPOutput( |
|
loss=loss, |
|
logits_per_image=logits_per_image, |
|
logits_per_text=logits_per_text, |
|
text_embeds=text_embeds, |
|
image_embeds=image_embeds, |
|
text_model_output=text_embeds, |
|
vision_model_output=image_embeds, |
|
) |
|
|
|
|
|
VTDEModel.register_for_auto_class("AutoModel") |
|
VTDEModel.register_for_auto_class("AutoModelForZeroShotImageClassification") |
|
|
|
|
|
|
|
from transformers import PreTrainedModel |
|
from transformers.models.sam.modeling_sam import SamPositionalEmbedding, SamVisionEncoder, SamVisionEncoderOutput |
|
from transformers.models.sam.configuration_sam import SamVisionConfig |
|
from torch import nn |
|
|
|
class SamVisionPreTrainedModel(PreTrainedModel): |
|
config_class = SamVisionConfig |
|
base_model_prefix = "sam_vision_encoder" |
|
main_input_name = "pixel_values" |
|
|
|
def _init_weights(self, module): |
|
std = self.config.initializer_range |
|
if isinstance(module, (nn.Linear, nn.Conv2d, nn.ConvTranspose2d)): |
|
module.weight.data.normal_(mean=0.0, std=std) |
|
if module.bias is not None: |
|
module.bias.data.zero_() |
|
elif isinstance(module, nn.Embedding): |
|
module.weight.data.normal_(mean=0.0, std=std) |
|
if module.padding_idx is not None: |
|
module.weight.data[module.padding_idx].zero_() |
|
|
|
class SamVisionModel(SamVisionPreTrainedModel): |
|
|
|
def __init__(self, config): |
|
super().__init__(config) |
|
self.shared_image_embedding = SamPositionalEmbedding(config) |
|
self.vision_encoder = SamVisionEncoder(config) |
|
|
|
def forward( |
|
self, |
|
pixel_values=None, |
|
attention_mask=None, |
|
output_attentions=None, |
|
output_hidden_states=None, |
|
return_dict=None, |
|
) -> SamVisionEncoderOutput: |
|
return_dict = return_dict if return_dict is not None else self.config.return_dict |
|
|
|
image_embeddings = self.shared_image_embedding(pixel_values) |
|
vision_encoder_outputs = self.vision_encoder( |
|
image_embeddings, |
|
attention_mask=attention_mask, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
|
|
return vision_encoder_outputs |
|
|
|
SamVisionModel.register_for_auto_class("AutoModel") |
|
|
|
|
|
|