flaneur-ml commited on
Commit
9259bbb
·
verified ·
1 Parent(s): 69f311d

End of training

Browse files
README.md ADDED
@@ -0,0 +1,97 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: apache-2.0
4
+ base_model: ntu-spml/distilhubert
5
+ tags:
6
+ - generated_from_trainer
7
+ datasets:
8
+ - marsyas/gtzan
9
+ metrics:
10
+ - accuracy
11
+ model-index:
12
+ - name: distilhubert-finetuned-gtzan
13
+ results:
14
+ - task:
15
+ name: Audio Classification
16
+ type: audio-classification
17
+ dataset:
18
+ name: GTZAN
19
+ type: marsyas/gtzan
20
+ config: all
21
+ split: train
22
+ args: all
23
+ metrics:
24
+ - name: Accuracy
25
+ type: accuracy
26
+ value: 0.86
27
+ ---
28
+
29
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
30
+ should probably proofread and complete it, then remove this comment. -->
31
+
32
+ # distilhubert-finetuned-gtzan
33
+
34
+ This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset.
35
+ It achieves the following results on the evaluation set:
36
+ - Loss: 0.8175
37
+ - Accuracy: 0.86
38
+
39
+ ## Model description
40
+
41
+ More information needed
42
+
43
+ ## Intended uses & limitations
44
+
45
+ More information needed
46
+
47
+ ## Training and evaluation data
48
+
49
+ More information needed
50
+
51
+ ## Training procedure
52
+
53
+ ### Training hyperparameters
54
+
55
+ The following hyperparameters were used during training:
56
+ - learning_rate: 5e-05
57
+ - train_batch_size: 8
58
+ - eval_batch_size: 8
59
+ - seed: 42
60
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
61
+ - lr_scheduler_type: linear
62
+ - lr_scheduler_warmup_ratio: 0.1
63
+ - num_epochs: 20
64
+ - mixed_precision_training: Native AMP
65
+
66
+ ### Training results
67
+
68
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
69
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|
70
+ | 2.1414 | 1.0 | 113 | 2.0686 | 0.52 |
71
+ | 1.3917 | 2.0 | 226 | 1.4505 | 0.56 |
72
+ | 1.109 | 3.0 | 339 | 1.0342 | 0.71 |
73
+ | 0.6752 | 4.0 | 452 | 0.8531 | 0.74 |
74
+ | 0.5346 | 5.0 | 565 | 0.7352 | 0.74 |
75
+ | 0.3598 | 6.0 | 678 | 0.5552 | 0.82 |
76
+ | 0.32 | 7.0 | 791 | 0.5660 | 0.84 |
77
+ | 0.1663 | 8.0 | 904 | 0.5829 | 0.84 |
78
+ | 0.0369 | 9.0 | 1017 | 0.7868 | 0.83 |
79
+ | 0.0235 | 10.0 | 1130 | 0.8371 | 0.84 |
80
+ | 0.0087 | 11.0 | 1243 | 0.7114 | 0.84 |
81
+ | 0.0064 | 12.0 | 1356 | 0.7578 | 0.84 |
82
+ | 0.0046 | 13.0 | 1469 | 0.7859 | 0.83 |
83
+ | 0.0042 | 14.0 | 1582 | 0.8681 | 0.86 |
84
+ | 0.0032 | 15.0 | 1695 | 0.8926 | 0.86 |
85
+ | 0.0031 | 16.0 | 1808 | 0.8339 | 0.84 |
86
+ | 0.0029 | 17.0 | 1921 | 0.7772 | 0.86 |
87
+ | 0.0025 | 18.0 | 2034 | 0.8376 | 0.86 |
88
+ | 0.0025 | 19.0 | 2147 | 0.8175 | 0.86 |
89
+ | 0.0024 | 20.0 | 2260 | 0.8175 | 0.86 |
90
+
91
+
92
+ ### Framework versions
93
+
94
+ - Transformers 4.44.2
95
+ - Pytorch 2.5.0+cu121
96
+ - Datasets 3.1.0
97
+ - Tokenizers 0.19.1
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:d9b1611870d29ab60c7e691b5212380221782a6c173674b12235cff078b88663
3
  size 94771728
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:89559e741a7d229715154d8c04842794f744b5319cbe4f629bc8ddf79830e8c8
3
  size 94771728
runs/Nov11_17-02-35_995bb374dcac/events.out.tfevents.1731344572.995bb374dcac.268.0 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:12c036cb0b8c94111ea3fead1fa29119e35901f457d4398971a7e2002c0bb3be
3
- size 107538
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:545957ef8dd9fef46860984222201efab1b0fe7427b4c9d3d333b37588527ae0
3
+ size 108215