File size: 4,889 Bytes
055fe96 4610445 055fe96 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 |
---
tags:
- flair
- token-classification
- sequence-tagger-model
language:
- en
- de
- fr
- it
- nl
- pl
- es
- sv
- da
- no
- fi
- cs
datasets:
- ontonotes
widget:
- text: "Ich liebe Berlin, as they say."
---
## Multilingual Universal Part-of-Speech Tagging in Flair (fast model)
This is the fast multilingual universal part-of-speech tagging model that ships with [Flair](https://github.com/flairNLP/flair/).
F1-Score: **92,88** (12 UD Treebanks covering English, German, French, Italian, Dutch, Polish, Spanish, Swedish, Danish, Norwegian, Finnish and Czech)
Predicts universal POS tags:
| **tag** | **meaning** |
|---------------------------------|-----------|
|ADJ | adjective |
| ADP | adposition |
| ADV | adverb |
| AUX | auxiliary |
| CCONJ | coordinating conjunction |
| DET | determiner |
| INTJ | interjection |
| NOUN | noun |
| NUM | numeral |
| PART | particle |
| PRON | pronoun |
| PROPN | proper noun |
| PUNCT | punctuation |
| SCONJ | subordinating conjunction |
| SYM | symbol |
| VERB | verb |
| X | other |
Based on [Flair embeddings](https://www.aclweb.org/anthology/C18-1139/) and LSTM-CRF.
---
### Demo: How to use in Flair
Requires: **[Flair](https://github.com/flairNLP/flair/)** (`pip install flair`)
```python
from flair.data import Sentence
from flair.models import SequenceTagger
# load tagger
tagger = SequenceTagger.load("flair/upos-multi-fast")
# make example sentence
sentence = Sentence("Ich liebe Berlin, as they say. ")
# predict NER tags
tagger.predict(sentence)
# print sentence
print(sentence)
# print predicted NER spans
print('The following NER tags are found:')
# iterate over entities and print
for entity in sentence.get_spans('pos'):
print(entity)
```
This yields the following output:
```
Span [1]: "Ich" [β Labels: PRON (0.9999)]
Span [2]: "liebe" [β Labels: VERB (0.9999)]
Span [3]: "Berlin" [β Labels: PROPN (0.9997)]
Span [4]: "," [β Labels: PUNCT (1.0)]
Span [5]: "as" [β Labels: SCONJ (0.9991)]
Span [6]: "they" [β Labels: PRON (0.9998)]
Span [7]: "say" [β Labels: VERB (0.9998)]
Span [8]: "." [β Labels: PUNCT (1.0)]
```
So, the words "*Ich*" and "*they*" are labeled as **pronouns** (PRON), while "*liebe*" and "*say*" are labeled as **verbs** (VERB) in the multilingual sentence "*Ich liebe Berlin, as they say*".
---
### Training: Script to train this model
The following Flair script was used to train this model:
```python
from flair.data import MultiCorpus
from flair.datasets import UD_ENGLISH, UD_GERMAN, UD_FRENCH, UD_ITALIAN, UD_POLISH, UD_DUTCH, UD_CZECH, \
UD_DANISH, UD_SPANISH, UD_SWEDISH, UD_NORWEGIAN, UD_FINNISH
from flair.embeddings import StackedEmbeddings, FlairEmbeddings
# 1. make a multi corpus consisting of 12 UD treebanks (in_memory=False here because this corpus becomes large)
corpus = MultiCorpus([
UD_ENGLISH(in_memory=False),
UD_GERMAN(in_memory=False),
UD_DUTCH(in_memory=False),
UD_FRENCH(in_memory=False),
UD_ITALIAN(in_memory=False),
UD_SPANISH(in_memory=False),
UD_POLISH(in_memory=False),
UD_CZECH(in_memory=False),
UD_DANISH(in_memory=False),
UD_SWEDISH(in_memory=False),
UD_NORWEGIAN(in_memory=False),
UD_FINNISH(in_memory=False),
])
# 2. what tag do we want to predict?
tag_type = 'upos'
# 3. make the tag dictionary from the corpus
tag_dictionary = corpus.make_tag_dictionary(tag_type=tag_type)
# 4. initialize each embedding we use
embedding_types = [
# contextual string embeddings, forward
FlairEmbeddings('multi-forward-fast'),
# contextual string embeddings, backward
FlairEmbeddings('multi-backward-fast'),
]
# embedding stack consists of Flair and GloVe embeddings
embeddings = StackedEmbeddings(embeddings=embedding_types)
# 5. initialize sequence tagger
from flair.models import SequenceTagger
tagger = SequenceTagger(hidden_size=256,
embeddings=embeddings,
tag_dictionary=tag_dictionary,
tag_type=tag_type,
use_crf=False)
# 6. initialize trainer
from flair.trainers import ModelTrainer
trainer = ModelTrainer(tagger, corpus)
# 7. run training
trainer.train('resources/taggers/upos-multi-fast',
train_with_dev=True,
max_epochs=150)
```
---
### Cite
Please cite the following paper when using this model.
```
@inproceedings{akbik2018coling,
title={Contextual String Embeddings for Sequence Labeling},
author={Akbik, Alan and Blythe, Duncan and Vollgraf, Roland},
booktitle = {{COLING} 2018, 27th International Conference on Computational Linguistics},
pages = {1638--1649},
year = {2018}
}
```
---
### Issues?
The Flair issue tracker is available [here](https://github.com/flairNLP/flair/issues/).
|