ner-spanish-large / training.log
alanakbik's picture
initial commit
5dbaccf
raw
history blame
58.6 kB
2021-01-16 03:26:26,142 ----------------------------------------------------------------------------------------------------
2021-01-16 03:26:26,146 Model: "SequenceTagger(
(embeddings): TransformerWordEmbeddings(
(model): XLMRobertaModel(
(embeddings): RobertaEmbeddings(
(word_embeddings): Embedding(250002, 1024, padding_idx=1)
(position_embeddings): Embedding(514, 1024, padding_idx=1)
(token_type_embeddings): Embedding(1, 1024)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(encoder): RobertaEncoder(
(layer): ModuleList(
(0): RobertaLayer(
(attention): RobertaAttention(
(self): RobertaSelfAttention(
(query): Linear(in_features=1024, out_features=1024, bias=True)
(key): Linear(in_features=1024, out_features=1024, bias=True)
(value): Linear(in_features=1024, out_features=1024, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): RobertaSelfOutput(
(dense): Linear(in_features=1024, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): RobertaIntermediate(
(dense): Linear(in_features=1024, out_features=4096, bias=True)
)
(output): RobertaOutput(
(dense): Linear(in_features=4096, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(1): RobertaLayer(
(attention): RobertaAttention(
(self): RobertaSelfAttention(
(query): Linear(in_features=1024, out_features=1024, bias=True)
(key): Linear(in_features=1024, out_features=1024, bias=True)
(value): Linear(in_features=1024, out_features=1024, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): RobertaSelfOutput(
(dense): Linear(in_features=1024, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): RobertaIntermediate(
(dense): Linear(in_features=1024, out_features=4096, bias=True)
)
(output): RobertaOutput(
(dense): Linear(in_features=4096, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(2): RobertaLayer(
(attention): RobertaAttention(
(self): RobertaSelfAttention(
(query): Linear(in_features=1024, out_features=1024, bias=True)
(key): Linear(in_features=1024, out_features=1024, bias=True)
(value): Linear(in_features=1024, out_features=1024, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): RobertaSelfOutput(
(dense): Linear(in_features=1024, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): RobertaIntermediate(
(dense): Linear(in_features=1024, out_features=4096, bias=True)
)
(output): RobertaOutput(
(dense): Linear(in_features=4096, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(3): RobertaLayer(
(attention): RobertaAttention(
(self): RobertaSelfAttention(
(query): Linear(in_features=1024, out_features=1024, bias=True)
(key): Linear(in_features=1024, out_features=1024, bias=True)
(value): Linear(in_features=1024, out_features=1024, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): RobertaSelfOutput(
(dense): Linear(in_features=1024, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): RobertaIntermediate(
(dense): Linear(in_features=1024, out_features=4096, bias=True)
)
(output): RobertaOutput(
(dense): Linear(in_features=4096, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(4): RobertaLayer(
(attention): RobertaAttention(
(self): RobertaSelfAttention(
(query): Linear(in_features=1024, out_features=1024, bias=True)
(key): Linear(in_features=1024, out_features=1024, bias=True)
(value): Linear(in_features=1024, out_features=1024, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): RobertaSelfOutput(
(dense): Linear(in_features=1024, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): RobertaIntermediate(
(dense): Linear(in_features=1024, out_features=4096, bias=True)
)
(output): RobertaOutput(
(dense): Linear(in_features=4096, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(5): RobertaLayer(
(attention): RobertaAttention(
(self): RobertaSelfAttention(
(query): Linear(in_features=1024, out_features=1024, bias=True)
(key): Linear(in_features=1024, out_features=1024, bias=True)
(value): Linear(in_features=1024, out_features=1024, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): RobertaSelfOutput(
(dense): Linear(in_features=1024, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): RobertaIntermediate(
(dense): Linear(in_features=1024, out_features=4096, bias=True)
)
(output): RobertaOutput(
(dense): Linear(in_features=4096, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(6): RobertaLayer(
(attention): RobertaAttention(
(self): RobertaSelfAttention(
(query): Linear(in_features=1024, out_features=1024, bias=True)
(key): Linear(in_features=1024, out_features=1024, bias=True)
(value): Linear(in_features=1024, out_features=1024, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): RobertaSelfOutput(
(dense): Linear(in_features=1024, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): RobertaIntermediate(
(dense): Linear(in_features=1024, out_features=4096, bias=True)
)
(output): RobertaOutput(
(dense): Linear(in_features=4096, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(7): RobertaLayer(
(attention): RobertaAttention(
(self): RobertaSelfAttention(
(query): Linear(in_features=1024, out_features=1024, bias=True)
(key): Linear(in_features=1024, out_features=1024, bias=True)
(value): Linear(in_features=1024, out_features=1024, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): RobertaSelfOutput(
(dense): Linear(in_features=1024, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): RobertaIntermediate(
(dense): Linear(in_features=1024, out_features=4096, bias=True)
)
(output): RobertaOutput(
(dense): Linear(in_features=4096, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(8): RobertaLayer(
(attention): RobertaAttention(
(self): RobertaSelfAttention(
(query): Linear(in_features=1024, out_features=1024, bias=True)
(key): Linear(in_features=1024, out_features=1024, bias=True)
(value): Linear(in_features=1024, out_features=1024, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): RobertaSelfOutput(
(dense): Linear(in_features=1024, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): RobertaIntermediate(
(dense): Linear(in_features=1024, out_features=4096, bias=True)
)
(output): RobertaOutput(
(dense): Linear(in_features=4096, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(9): RobertaLayer(
(attention): RobertaAttention(
(self): RobertaSelfAttention(
(query): Linear(in_features=1024, out_features=1024, bias=True)
(key): Linear(in_features=1024, out_features=1024, bias=True)
(value): Linear(in_features=1024, out_features=1024, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): RobertaSelfOutput(
(dense): Linear(in_features=1024, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): RobertaIntermediate(
(dense): Linear(in_features=1024, out_features=4096, bias=True)
)
(output): RobertaOutput(
(dense): Linear(in_features=4096, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(10): RobertaLayer(
(attention): RobertaAttention(
(self): RobertaSelfAttention(
(query): Linear(in_features=1024, out_features=1024, bias=True)
(key): Linear(in_features=1024, out_features=1024, bias=True)
(value): Linear(in_features=1024, out_features=1024, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): RobertaSelfOutput(
(dense): Linear(in_features=1024, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): RobertaIntermediate(
(dense): Linear(in_features=1024, out_features=4096, bias=True)
)
(output): RobertaOutput(
(dense): Linear(in_features=4096, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(11): RobertaLayer(
(attention): RobertaAttention(
(self): RobertaSelfAttention(
(query): Linear(in_features=1024, out_features=1024, bias=True)
(key): Linear(in_features=1024, out_features=1024, bias=True)
(value): Linear(in_features=1024, out_features=1024, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): RobertaSelfOutput(
(dense): Linear(in_features=1024, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): RobertaIntermediate(
(dense): Linear(in_features=1024, out_features=4096, bias=True)
)
(output): RobertaOutput(
(dense): Linear(in_features=4096, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(12): RobertaLayer(
(attention): RobertaAttention(
(self): RobertaSelfAttention(
(query): Linear(in_features=1024, out_features=1024, bias=True)
(key): Linear(in_features=1024, out_features=1024, bias=True)
(value): Linear(in_features=1024, out_features=1024, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): RobertaSelfOutput(
(dense): Linear(in_features=1024, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): RobertaIntermediate(
(dense): Linear(in_features=1024, out_features=4096, bias=True)
)
(output): RobertaOutput(
(dense): Linear(in_features=4096, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(13): RobertaLayer(
(attention): RobertaAttention(
(self): RobertaSelfAttention(
(query): Linear(in_features=1024, out_features=1024, bias=True)
(key): Linear(in_features=1024, out_features=1024, bias=True)
(value): Linear(in_features=1024, out_features=1024, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): RobertaSelfOutput(
(dense): Linear(in_features=1024, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): RobertaIntermediate(
(dense): Linear(in_features=1024, out_features=4096, bias=True)
)
(output): RobertaOutput(
(dense): Linear(in_features=4096, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(14): RobertaLayer(
(attention): RobertaAttention(
(self): RobertaSelfAttention(
(query): Linear(in_features=1024, out_features=1024, bias=True)
(key): Linear(in_features=1024, out_features=1024, bias=True)
(value): Linear(in_features=1024, out_features=1024, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): RobertaSelfOutput(
(dense): Linear(in_features=1024, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): RobertaIntermediate(
(dense): Linear(in_features=1024, out_features=4096, bias=True)
)
(output): RobertaOutput(
(dense): Linear(in_features=4096, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(15): RobertaLayer(
(attention): RobertaAttention(
(self): RobertaSelfAttention(
(query): Linear(in_features=1024, out_features=1024, bias=True)
(key): Linear(in_features=1024, out_features=1024, bias=True)
(value): Linear(in_features=1024, out_features=1024, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): RobertaSelfOutput(
(dense): Linear(in_features=1024, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): RobertaIntermediate(
(dense): Linear(in_features=1024, out_features=4096, bias=True)
)
(output): RobertaOutput(
(dense): Linear(in_features=4096, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(16): RobertaLayer(
(attention): RobertaAttention(
(self): RobertaSelfAttention(
(query): Linear(in_features=1024, out_features=1024, bias=True)
(key): Linear(in_features=1024, out_features=1024, bias=True)
(value): Linear(in_features=1024, out_features=1024, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): RobertaSelfOutput(
(dense): Linear(in_features=1024, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): RobertaIntermediate(
(dense): Linear(in_features=1024, out_features=4096, bias=True)
)
(output): RobertaOutput(
(dense): Linear(in_features=4096, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(17): RobertaLayer(
(attention): RobertaAttention(
(self): RobertaSelfAttention(
(query): Linear(in_features=1024, out_features=1024, bias=True)
(key): Linear(in_features=1024, out_features=1024, bias=True)
(value): Linear(in_features=1024, out_features=1024, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): RobertaSelfOutput(
(dense): Linear(in_features=1024, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): RobertaIntermediate(
(dense): Linear(in_features=1024, out_features=4096, bias=True)
)
(output): RobertaOutput(
(dense): Linear(in_features=4096, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(18): RobertaLayer(
(attention): RobertaAttention(
(self): RobertaSelfAttention(
(query): Linear(in_features=1024, out_features=1024, bias=True)
(key): Linear(in_features=1024, out_features=1024, bias=True)
(value): Linear(in_features=1024, out_features=1024, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): RobertaSelfOutput(
(dense): Linear(in_features=1024, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): RobertaIntermediate(
(dense): Linear(in_features=1024, out_features=4096, bias=True)
)
(output): RobertaOutput(
(dense): Linear(in_features=4096, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(19): RobertaLayer(
(attention): RobertaAttention(
(self): RobertaSelfAttention(
(query): Linear(in_features=1024, out_features=1024, bias=True)
(key): Linear(in_features=1024, out_features=1024, bias=True)
(value): Linear(in_features=1024, out_features=1024, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): RobertaSelfOutput(
(dense): Linear(in_features=1024, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): RobertaIntermediate(
(dense): Linear(in_features=1024, out_features=4096, bias=True)
)
(output): RobertaOutput(
(dense): Linear(in_features=4096, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(20): RobertaLayer(
(attention): RobertaAttention(
(self): RobertaSelfAttention(
(query): Linear(in_features=1024, out_features=1024, bias=True)
(key): Linear(in_features=1024, out_features=1024, bias=True)
(value): Linear(in_features=1024, out_features=1024, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): RobertaSelfOutput(
(dense): Linear(in_features=1024, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): RobertaIntermediate(
(dense): Linear(in_features=1024, out_features=4096, bias=True)
)
(output): RobertaOutput(
(dense): Linear(in_features=4096, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(21): RobertaLayer(
(attention): RobertaAttention(
(self): RobertaSelfAttention(
(query): Linear(in_features=1024, out_features=1024, bias=True)
(key): Linear(in_features=1024, out_features=1024, bias=True)
(value): Linear(in_features=1024, out_features=1024, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): RobertaSelfOutput(
(dense): Linear(in_features=1024, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): RobertaIntermediate(
(dense): Linear(in_features=1024, out_features=4096, bias=True)
)
(output): RobertaOutput(
(dense): Linear(in_features=4096, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(22): RobertaLayer(
(attention): RobertaAttention(
(self): RobertaSelfAttention(
(query): Linear(in_features=1024, out_features=1024, bias=True)
(key): Linear(in_features=1024, out_features=1024, bias=True)
(value): Linear(in_features=1024, out_features=1024, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): RobertaSelfOutput(
(dense): Linear(in_features=1024, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): RobertaIntermediate(
(dense): Linear(in_features=1024, out_features=4096, bias=True)
)
(output): RobertaOutput(
(dense): Linear(in_features=4096, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(23): RobertaLayer(
(attention): RobertaAttention(
(self): RobertaSelfAttention(
(query): Linear(in_features=1024, out_features=1024, bias=True)
(key): Linear(in_features=1024, out_features=1024, bias=True)
(value): Linear(in_features=1024, out_features=1024, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): RobertaSelfOutput(
(dense): Linear(in_features=1024, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): RobertaIntermediate(
(dense): Linear(in_features=1024, out_features=4096, bias=True)
)
(output): RobertaOutput(
(dense): Linear(in_features=4096, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
)
)
(pooler): RobertaPooler(
(dense): Linear(in_features=1024, out_features=1024, bias=True)
(activation): Tanh()
)
)
)
(word_dropout): WordDropout(p=0.05)
(locked_dropout): LockedDropout(p=0.5)
(linear): Linear(in_features=1024, out_features=20, bias=True)
(beta): 1.0
(weights): None
(weight_tensor) None
)"
2021-01-16 03:26:26,148 ----------------------------------------------------------------------------------------------------
2021-01-16 03:26:26,148 Corpus: "Corpus: 8323 train + 1915 dev + 1517 test sentences"
2021-01-16 03:26:26,148 ----------------------------------------------------------------------------------------------------
2021-01-16 03:26:26,148 Parameters:
2021-01-16 03:26:26,148 - learning_rate: "5e-06"
2021-01-16 03:26:26,148 - mini_batch_size: "4"
2021-01-16 03:26:26,148 - patience: "3"
2021-01-16 03:26:26,148 - anneal_factor: "0.5"
2021-01-16 03:26:26,148 - max_epochs: "20"
2021-01-16 03:26:26,148 - shuffle: "True"
2021-01-16 03:26:26,148 - train_with_dev: "True"
2021-01-16 03:26:26,148 - batch_growth_annealing: "False"
2021-01-16 03:26:26,149 ----------------------------------------------------------------------------------------------------
2021-01-16 03:26:26,149 Model training base path: "resources/contextdrop/flert-es-ft+dev-xlm-roberta-large-context+drop-64-True-258"
2021-01-16 03:26:26,149 ----------------------------------------------------------------------------------------------------
2021-01-16 03:26:26,149 Device: cuda:3
2021-01-16 03:26:26,149 ----------------------------------------------------------------------------------------------------
2021-01-16 03:26:26,149 Embeddings storage mode: none
2021-01-16 03:26:26,161 ----------------------------------------------------------------------------------------------------
2021-01-16 03:28:04,650 epoch 1 - iter 256/2560 - loss 0.87027155 - samples/sec: 10.40 - lr: 0.000005
2021-01-16 03:29:42,988 epoch 1 - iter 512/2560 - loss 0.59530026 - samples/sec: 10.41 - lr: 0.000005
2021-01-16 03:31:21,817 epoch 1 - iter 768/2560 - loss 0.52507711 - samples/sec: 10.36 - lr: 0.000005
2021-01-16 03:33:00,647 epoch 1 - iter 1024/2560 - loss 0.45703199 - samples/sec: 10.36 - lr: 0.000005
2021-01-16 03:34:42,020 epoch 1 - iter 1280/2560 - loss 0.41694313 - samples/sec: 10.10 - lr: 0.000005
2021-01-16 03:36:21,509 epoch 1 - iter 1536/2560 - loss 0.38192728 - samples/sec: 10.29 - lr: 0.000005
2021-01-16 03:38:00,214 epoch 1 - iter 1792/2560 - loss 0.36367874 - samples/sec: 10.38 - lr: 0.000005
2021-01-16 03:39:38,871 epoch 1 - iter 2048/2560 - loss 0.34546215 - samples/sec: 10.38 - lr: 0.000005
2021-01-16 03:41:16,409 epoch 1 - iter 2304/2560 - loss 0.33346538 - samples/sec: 10.50 - lr: 0.000005
2021-01-16 03:42:54,136 epoch 1 - iter 2560/2560 - loss 0.32667036 - samples/sec: 10.48 - lr: 0.000005
2021-01-16 03:42:54,138 ----------------------------------------------------------------------------------------------------
2021-01-16 03:42:54,138 EPOCH 1 done: loss 0.3267 - lr 0.0000050
2021-01-16 03:42:54,138 BAD EPOCHS (no improvement): 4
2021-01-16 03:42:54,141 ----------------------------------------------------------------------------------------------------
2021-01-16 03:44:32,764 epoch 2 - iter 256/2560 - loss 0.21108762 - samples/sec: 10.38 - lr: 0.000005
2021-01-16 03:46:11,253 epoch 2 - iter 512/2560 - loss 0.22128268 - samples/sec: 10.40 - lr: 0.000005
2021-01-16 03:47:49,772 epoch 2 - iter 768/2560 - loss 0.22246430 - samples/sec: 10.39 - lr: 0.000005
2021-01-16 03:49:28,129 epoch 2 - iter 1024/2560 - loss 0.21358276 - samples/sec: 10.41 - lr: 0.000005
2021-01-16 03:51:06,924 epoch 2 - iter 1280/2560 - loss 0.21429265 - samples/sec: 10.37 - lr: 0.000005
2021-01-16 03:52:46,984 epoch 2 - iter 1536/2560 - loss 0.21196466 - samples/sec: 10.23 - lr: 0.000005
2021-01-16 03:54:29,705 epoch 2 - iter 1792/2560 - loss 0.21758704 - samples/sec: 9.97 - lr: 0.000005
2021-01-16 03:56:10,481 epoch 2 - iter 2048/2560 - loss 0.21965157 - samples/sec: 10.16 - lr: 0.000005
2021-01-16 03:57:50,615 epoch 2 - iter 2304/2560 - loss 0.21877101 - samples/sec: 10.23 - lr: 0.000005
2021-01-16 03:59:31,158 epoch 2 - iter 2560/2560 - loss 0.21954602 - samples/sec: 10.19 - lr: 0.000005
2021-01-16 03:59:31,160 ----------------------------------------------------------------------------------------------------
2021-01-16 03:59:31,160 EPOCH 2 done: loss 0.2195 - lr 0.0000049
2021-01-16 03:59:31,160 BAD EPOCHS (no improvement): 4
2021-01-16 03:59:31,163 ----------------------------------------------------------------------------------------------------
2021-01-16 04:01:11,656 epoch 3 - iter 256/2560 - loss 0.20612080 - samples/sec: 10.19 - lr: 0.000005
2021-01-16 04:02:51,941 epoch 3 - iter 512/2560 - loss 0.19317841 - samples/sec: 10.21 - lr: 0.000005
2021-01-16 04:04:32,511 epoch 3 - iter 768/2560 - loss 0.19963626 - samples/sec: 10.18 - lr: 0.000005
2021-01-16 04:06:11,909 epoch 3 - iter 1024/2560 - loss 0.19312694 - samples/sec: 10.30 - lr: 0.000005
2021-01-16 04:07:53,866 epoch 3 - iter 1280/2560 - loss 0.19674287 - samples/sec: 10.04 - lr: 0.000005
2021-01-16 04:09:33,688 epoch 3 - iter 1536/2560 - loss 0.19699039 - samples/sec: 10.26 - lr: 0.000005
2021-01-16 04:11:13,497 epoch 3 - iter 1792/2560 - loss 0.19513463 - samples/sec: 10.26 - lr: 0.000005
2021-01-16 04:12:53,541 epoch 3 - iter 2048/2560 - loss 0.19334227 - samples/sec: 10.24 - lr: 0.000005
2021-01-16 04:14:33,916 epoch 3 - iter 2304/2560 - loss 0.19294838 - samples/sec: 10.20 - lr: 0.000005
2021-01-16 04:16:13,001 epoch 3 - iter 2560/2560 - loss 0.19331988 - samples/sec: 10.34 - lr: 0.000005
2021-01-16 04:16:13,003 ----------------------------------------------------------------------------------------------------
2021-01-16 04:16:13,003 EPOCH 3 done: loss 0.1933 - lr 0.0000047
2021-01-16 04:16:13,003 BAD EPOCHS (no improvement): 4
2021-01-16 04:16:13,006 ----------------------------------------------------------------------------------------------------
2021-01-16 04:17:52,069 epoch 4 - iter 256/2560 - loss 0.16853571 - samples/sec: 10.34 - lr: 0.000005
2021-01-16 04:19:31,083 epoch 4 - iter 512/2560 - loss 0.16783710 - samples/sec: 10.34 - lr: 0.000005
2021-01-16 04:21:09,860 epoch 4 - iter 768/2560 - loss 0.17852492 - samples/sec: 10.37 - lr: 0.000005
2021-01-16 04:22:48,222 epoch 4 - iter 1024/2560 - loss 0.18170671 - samples/sec: 10.41 - lr: 0.000005
2021-01-16 04:24:28,304 epoch 4 - iter 1280/2560 - loss 0.17619093 - samples/sec: 10.23 - lr: 0.000005
2021-01-16 04:26:06,542 epoch 4 - iter 1536/2560 - loss 0.18313451 - samples/sec: 10.42 - lr: 0.000005
2021-01-16 04:27:44,976 epoch 4 - iter 1792/2560 - loss 0.18543083 - samples/sec: 10.40 - lr: 0.000005
2021-01-16 04:29:25,900 epoch 4 - iter 2048/2560 - loss 0.18948785 - samples/sec: 10.15 - lr: 0.000005
2021-01-16 04:31:03,494 epoch 4 - iter 2304/2560 - loss 0.18818842 - samples/sec: 10.49 - lr: 0.000005
2021-01-16 04:32:40,881 epoch 4 - iter 2560/2560 - loss 0.18725109 - samples/sec: 10.52 - lr: 0.000005
2021-01-16 04:32:40,883 ----------------------------------------------------------------------------------------------------
2021-01-16 04:32:40,884 EPOCH 4 done: loss 0.1873 - lr 0.0000045
2021-01-16 04:32:40,884 BAD EPOCHS (no improvement): 4
2021-01-16 04:32:40,886 ----------------------------------------------------------------------------------------------------
2021-01-16 04:34:18,022 epoch 5 - iter 256/2560 - loss 0.19665239 - samples/sec: 10.54 - lr: 0.000004
2021-01-16 04:35:54,846 epoch 5 - iter 512/2560 - loss 0.19948870 - samples/sec: 10.58 - lr: 0.000004
2021-01-16 04:37:32,278 epoch 5 - iter 768/2560 - loss 0.19201483 - samples/sec: 10.51 - lr: 0.000004
2021-01-16 04:39:11,686 epoch 5 - iter 1024/2560 - loss 0.18716260 - samples/sec: 10.30 - lr: 0.000004
2021-01-16 04:40:48,941 epoch 5 - iter 1280/2560 - loss 0.17767008 - samples/sec: 10.53 - lr: 0.000004
2021-01-16 04:42:26,151 epoch 5 - iter 1536/2560 - loss 0.17738586 - samples/sec: 10.53 - lr: 0.000004
2021-01-16 04:44:03,440 epoch 5 - iter 1792/2560 - loss 0.17437861 - samples/sec: 10.53 - lr: 0.000004
2021-01-16 04:45:40,641 epoch 5 - iter 2048/2560 - loss 0.17843058 - samples/sec: 10.54 - lr: 0.000004
2021-01-16 04:47:18,726 epoch 5 - iter 2304/2560 - loss 0.17962338 - samples/sec: 10.44 - lr: 0.000004
2021-01-16 04:48:56,938 epoch 5 - iter 2560/2560 - loss 0.17857406 - samples/sec: 10.43 - lr: 0.000004
2021-01-16 04:48:56,941 ----------------------------------------------------------------------------------------------------
2021-01-16 04:48:56,941 EPOCH 5 done: loss 0.1786 - lr 0.0000043
2021-01-16 04:48:56,941 BAD EPOCHS (no improvement): 4
2021-01-16 04:48:56,944 ----------------------------------------------------------------------------------------------------
2021-01-16 04:50:37,578 epoch 6 - iter 256/2560 - loss 0.19558805 - samples/sec: 10.18 - lr: 0.000004
2021-01-16 04:52:15,762 epoch 6 - iter 512/2560 - loss 0.17503759 - samples/sec: 10.43 - lr: 0.000004
2021-01-16 04:53:52,814 epoch 6 - iter 768/2560 - loss 0.17416353 - samples/sec: 10.55 - lr: 0.000004
2021-01-16 04:55:29,984 epoch 6 - iter 1024/2560 - loss 0.16483752 - samples/sec: 10.54 - lr: 0.000004
2021-01-16 04:57:07,349 epoch 6 - iter 1280/2560 - loss 0.16624319 - samples/sec: 10.52 - lr: 0.000004
2021-01-16 04:58:44,378 epoch 6 - iter 1536/2560 - loss 0.16546115 - samples/sec: 10.55 - lr: 0.000004
2021-01-16 05:00:21,884 epoch 6 - iter 1792/2560 - loss 0.16436590 - samples/sec: 10.50 - lr: 0.000004
2021-01-16 05:01:58,951 epoch 6 - iter 2048/2560 - loss 0.16724299 - samples/sec: 10.55 - lr: 0.000004
2021-01-16 05:03:36,482 epoch 6 - iter 2304/2560 - loss 0.16918433 - samples/sec: 10.50 - lr: 0.000004
2021-01-16 05:05:14,584 epoch 6 - iter 2560/2560 - loss 0.16921876 - samples/sec: 10.44 - lr: 0.000004
2021-01-16 05:05:14,587 ----------------------------------------------------------------------------------------------------
2021-01-16 05:05:14,587 EPOCH 6 done: loss 0.1692 - lr 0.0000040
2021-01-16 05:05:14,587 BAD EPOCHS (no improvement): 4
2021-01-16 05:05:14,599 ----------------------------------------------------------------------------------------------------
2021-01-16 05:06:51,663 epoch 7 - iter 256/2560 - loss 0.18482960 - samples/sec: 10.55 - lr: 0.000004
2021-01-16 05:08:28,534 epoch 7 - iter 512/2560 - loss 0.16880554 - samples/sec: 10.57 - lr: 0.000004
2021-01-16 05:10:05,876 epoch 7 - iter 768/2560 - loss 0.16822603 - samples/sec: 10.52 - lr: 0.000004
2021-01-16 05:11:42,818 epoch 7 - iter 1024/2560 - loss 0.17842509 - samples/sec: 10.56 - lr: 0.000004
2021-01-16 05:13:20,349 epoch 7 - iter 1280/2560 - loss 0.16997025 - samples/sec: 10.50 - lr: 0.000004
2021-01-16 05:14:57,279 epoch 7 - iter 1536/2560 - loss 0.16850697 - samples/sec: 10.57 - lr: 0.000004
2021-01-16 05:16:33,604 epoch 7 - iter 1792/2560 - loss 0.16897440 - samples/sec: 10.63 - lr: 0.000004
2021-01-16 05:18:11,130 epoch 7 - iter 2048/2560 - loss 0.16901586 - samples/sec: 10.50 - lr: 0.000004
2021-01-16 05:19:48,742 epoch 7 - iter 2304/2560 - loss 0.16746824 - samples/sec: 10.49 - lr: 0.000004
2021-01-16 05:21:27,376 epoch 7 - iter 2560/2560 - loss 0.16665962 - samples/sec: 10.38 - lr: 0.000004
2021-01-16 05:21:27,378 ----------------------------------------------------------------------------------------------------
2021-01-16 05:21:27,378 EPOCH 7 done: loss 0.1667 - lr 0.0000036
2021-01-16 05:21:27,378 BAD EPOCHS (no improvement): 4
2021-01-16 05:21:27,381 ----------------------------------------------------------------------------------------------------
2021-01-16 05:23:04,098 epoch 8 - iter 256/2560 - loss 0.17170512 - samples/sec: 10.59 - lr: 0.000004
2021-01-16 05:24:40,963 epoch 8 - iter 512/2560 - loss 0.16578343 - samples/sec: 10.57 - lr: 0.000004
2021-01-16 05:26:17,874 epoch 8 - iter 768/2560 - loss 0.15936900 - samples/sec: 10.57 - lr: 0.000004
2021-01-16 05:27:54,684 epoch 8 - iter 1024/2560 - loss 0.16254958 - samples/sec: 10.58 - lr: 0.000003
2021-01-16 05:29:31,674 epoch 8 - iter 1280/2560 - loss 0.16254652 - samples/sec: 10.56 - lr: 0.000003
2021-01-16 05:31:09,021 epoch 8 - iter 1536/2560 - loss 0.16126451 - samples/sec: 10.52 - lr: 0.000003
2021-01-16 05:32:48,943 epoch 8 - iter 1792/2560 - loss 0.15960888 - samples/sec: 10.25 - lr: 0.000003
2021-01-16 05:34:26,910 epoch 8 - iter 2048/2560 - loss 0.16106515 - samples/sec: 10.45 - lr: 0.000003
2021-01-16 05:36:05,072 epoch 8 - iter 2304/2560 - loss 0.15881735 - samples/sec: 10.43 - lr: 0.000003
2021-01-16 05:37:43,202 epoch 8 - iter 2560/2560 - loss 0.16070351 - samples/sec: 10.44 - lr: 0.000003
2021-01-16 05:37:43,204 ----------------------------------------------------------------------------------------------------
2021-01-16 05:37:43,204 EPOCH 8 done: loss 0.1607 - lr 0.0000033
2021-01-16 05:37:43,204 BAD EPOCHS (no improvement): 4
2021-01-16 05:37:43,207 ----------------------------------------------------------------------------------------------------
2021-01-16 05:39:21,420 epoch 9 - iter 256/2560 - loss 0.17227183 - samples/sec: 10.43 - lr: 0.000003
2021-01-16 05:40:59,261 epoch 9 - iter 512/2560 - loss 0.17554657 - samples/sec: 10.47 - lr: 0.000003
2021-01-16 05:42:38,175 epoch 9 - iter 768/2560 - loss 0.16616659 - samples/sec: 10.35 - lr: 0.000003
2021-01-16 05:44:16,618 epoch 9 - iter 1024/2560 - loss 0.16832605 - samples/sec: 10.40 - lr: 0.000003
2021-01-16 05:45:57,429 epoch 9 - iter 1280/2560 - loss 0.16394874 - samples/sec: 10.16 - lr: 0.000003
2021-01-16 05:47:35,957 epoch 9 - iter 1536/2560 - loss 0.16352007 - samples/sec: 10.39 - lr: 0.000003
2021-01-16 05:49:13,705 epoch 9 - iter 1792/2560 - loss 0.16385724 - samples/sec: 10.48 - lr: 0.000003
2021-01-16 05:50:52,424 epoch 9 - iter 2048/2560 - loss 0.16055360 - samples/sec: 10.37 - lr: 0.000003
2021-01-16 05:52:30,508 epoch 9 - iter 2304/2560 - loss 0.16334559 - samples/sec: 10.44 - lr: 0.000003
2021-01-16 05:54:08,468 epoch 9 - iter 2560/2560 - loss 0.16240605 - samples/sec: 10.45 - lr: 0.000003
2021-01-16 05:54:08,470 ----------------------------------------------------------------------------------------------------
2021-01-16 05:54:08,470 EPOCH 9 done: loss 0.1624 - lr 0.0000029
2021-01-16 05:54:08,470 BAD EPOCHS (no improvement): 4
2021-01-16 05:54:08,473 ----------------------------------------------------------------------------------------------------
2021-01-16 05:55:47,128 epoch 10 - iter 256/2560 - loss 0.16313144 - samples/sec: 10.38 - lr: 0.000003
2021-01-16 05:57:25,407 epoch 10 - iter 512/2560 - loss 0.15020732 - samples/sec: 10.42 - lr: 0.000003
2021-01-16 05:59:03,413 epoch 10 - iter 768/2560 - loss 0.15983365 - samples/sec: 10.45 - lr: 0.000003
2021-01-16 06:00:41,548 epoch 10 - iter 1024/2560 - loss 0.15880243 - samples/sec: 10.44 - lr: 0.000003
2021-01-16 06:02:19,846 epoch 10 - iter 1280/2560 - loss 0.15641733 - samples/sec: 10.42 - lr: 0.000003
2021-01-16 06:03:57,792 epoch 10 - iter 1536/2560 - loss 0.15979563 - samples/sec: 10.46 - lr: 0.000003
2021-01-16 06:05:37,942 epoch 10 - iter 1792/2560 - loss 0.15822496 - samples/sec: 10.23 - lr: 0.000003
2021-01-16 06:07:15,923 epoch 10 - iter 2048/2560 - loss 0.15759511 - samples/sec: 10.45 - lr: 0.000003
2021-01-16 06:08:53,939 epoch 10 - iter 2304/2560 - loss 0.15693087 - samples/sec: 10.45 - lr: 0.000003
2021-01-16 06:10:32,048 epoch 10 - iter 2560/2560 - loss 0.15801453 - samples/sec: 10.44 - lr: 0.000002
2021-01-16 06:10:32,051 ----------------------------------------------------------------------------------------------------
2021-01-16 06:10:32,051 EPOCH 10 done: loss 0.1580 - lr 0.0000025
2021-01-16 06:10:32,051 BAD EPOCHS (no improvement): 4
2021-01-16 06:10:32,054 ----------------------------------------------------------------------------------------------------
2021-01-16 06:12:10,483 epoch 11 - iter 256/2560 - loss 0.16742767 - samples/sec: 10.40 - lr: 0.000002
2021-01-16 06:13:48,782 epoch 11 - iter 512/2560 - loss 0.15327274 - samples/sec: 10.42 - lr: 0.000002
2021-01-16 06:15:26,970 epoch 11 - iter 768/2560 - loss 0.15209073 - samples/sec: 10.43 - lr: 0.000002
2021-01-16 06:17:05,366 epoch 11 - iter 1024/2560 - loss 0.14838890 - samples/sec: 10.41 - lr: 0.000002
2021-01-16 06:18:43,497 epoch 11 - iter 1280/2560 - loss 0.14857876 - samples/sec: 10.44 - lr: 0.000002
2021-01-16 06:20:21,564 epoch 11 - iter 1536/2560 - loss 0.14942513 - samples/sec: 10.44 - lr: 0.000002
2021-01-16 06:21:59,181 epoch 11 - iter 1792/2560 - loss 0.14977847 - samples/sec: 10.49 - lr: 0.000002
2021-01-16 06:23:37,984 epoch 11 - iter 2048/2560 - loss 0.15052564 - samples/sec: 10.37 - lr: 0.000002
2021-01-16 06:25:18,744 epoch 11 - iter 2304/2560 - loss 0.15348464 - samples/sec: 10.16 - lr: 0.000002
2021-01-16 06:26:56,801 epoch 11 - iter 2560/2560 - loss 0.15405217 - samples/sec: 10.44 - lr: 0.000002
2021-01-16 06:26:56,804 ----------------------------------------------------------------------------------------------------
2021-01-16 06:26:56,804 EPOCH 11 done: loss 0.1541 - lr 0.0000021
2021-01-16 06:26:56,804 BAD EPOCHS (no improvement): 4
2021-01-16 06:26:56,806 ----------------------------------------------------------------------------------------------------
2021-01-16 06:28:34,919 epoch 12 - iter 256/2560 - loss 0.14515525 - samples/sec: 10.44 - lr: 0.000002
2021-01-16 06:30:14,290 epoch 12 - iter 512/2560 - loss 0.16185121 - samples/sec: 10.31 - lr: 0.000002
2021-01-16 06:31:51,825 epoch 12 - iter 768/2560 - loss 0.15630178 - samples/sec: 10.50 - lr: 0.000002
2021-01-16 06:33:29,645 epoch 12 - iter 1024/2560 - loss 0.16061640 - samples/sec: 10.47 - lr: 0.000002
2021-01-16 06:35:07,390 epoch 12 - iter 1280/2560 - loss 0.16106939 - samples/sec: 10.48 - lr: 0.000002
2021-01-16 06:36:45,537 epoch 12 - iter 1536/2560 - loss 0.16553326 - samples/sec: 10.43 - lr: 0.000002
2021-01-16 06:38:23,976 epoch 12 - iter 1792/2560 - loss 0.16298360 - samples/sec: 10.40 - lr: 0.000002
2021-01-16 06:40:01,697 epoch 12 - iter 2048/2560 - loss 0.15791582 - samples/sec: 10.48 - lr: 0.000002
2021-01-16 06:41:40,081 epoch 12 - iter 2304/2560 - loss 0.15724189 - samples/sec: 10.41 - lr: 0.000002
2021-01-16 06:43:17,722 epoch 12 - iter 2560/2560 - loss 0.15517561 - samples/sec: 10.49 - lr: 0.000002
2021-01-16 06:43:17,724 ----------------------------------------------------------------------------------------------------
2021-01-16 06:43:17,724 EPOCH 12 done: loss 0.1552 - lr 0.0000017
2021-01-16 06:43:17,724 BAD EPOCHS (no improvement): 4
2021-01-16 06:43:17,727 ----------------------------------------------------------------------------------------------------
2021-01-16 06:44:55,687 epoch 13 - iter 256/2560 - loss 0.15713525 - samples/sec: 10.45 - lr: 0.000002
2021-01-16 06:46:36,001 epoch 13 - iter 512/2560 - loss 0.15100717 - samples/sec: 10.21 - lr: 0.000002
2021-01-16 06:48:13,819 epoch 13 - iter 768/2560 - loss 0.15847721 - samples/sec: 10.47 - lr: 0.000002
2021-01-16 06:49:52,306 epoch 13 - iter 1024/2560 - loss 0.15904259 - samples/sec: 10.40 - lr: 0.000002
2021-01-16 06:51:29,891 epoch 13 - iter 1280/2560 - loss 0.15989578 - samples/sec: 10.49 - lr: 0.000002
2021-01-16 06:53:08,047 epoch 13 - iter 1536/2560 - loss 0.15584846 - samples/sec: 10.43 - lr: 0.000002
2021-01-16 06:54:45,903 epoch 13 - iter 1792/2560 - loss 0.15456669 - samples/sec: 10.47 - lr: 0.000001
2021-01-16 06:56:23,958 epoch 13 - iter 2048/2560 - loss 0.15476196 - samples/sec: 10.44 - lr: 0.000001
2021-01-16 06:58:01,860 epoch 13 - iter 2304/2560 - loss 0.15554818 - samples/sec: 10.46 - lr: 0.000001
2021-01-16 06:59:39,510 epoch 13 - iter 2560/2560 - loss 0.15582554 - samples/sec: 10.49 - lr: 0.000001
2021-01-16 06:59:39,513 ----------------------------------------------------------------------------------------------------
2021-01-16 06:59:39,513 EPOCH 13 done: loss 0.1558 - lr 0.0000014
2021-01-16 06:59:39,513 BAD EPOCHS (no improvement): 4
2021-01-16 06:59:39,536 ----------------------------------------------------------------------------------------------------
2021-01-16 07:01:17,550 epoch 14 - iter 256/2560 - loss 0.14336771 - samples/sec: 10.45 - lr: 0.000001
2021-01-16 07:02:55,149 epoch 14 - iter 512/2560 - loss 0.13420979 - samples/sec: 10.49 - lr: 0.000001
2021-01-16 07:04:33,295 epoch 14 - iter 768/2560 - loss 0.14666678 - samples/sec: 10.43 - lr: 0.000001
2021-01-16 07:06:11,482 epoch 14 - iter 1024/2560 - loss 0.14107045 - samples/sec: 10.43 - lr: 0.000001
2021-01-16 07:07:50,423 epoch 14 - iter 1280/2560 - loss 0.14810884 - samples/sec: 10.35 - lr: 0.000001
2021-01-16 07:09:29,149 epoch 14 - iter 1536/2560 - loss 0.15039081 - samples/sec: 10.37 - lr: 0.000001
2021-01-16 07:11:08,549 epoch 14 - iter 1792/2560 - loss 0.15404881 - samples/sec: 10.30 - lr: 0.000001
2021-01-16 07:12:48,860 epoch 14 - iter 2048/2560 - loss 0.15398198 - samples/sec: 10.21 - lr: 0.000001
2021-01-16 07:14:26,993 epoch 14 - iter 2304/2560 - loss 0.15119867 - samples/sec: 10.44 - lr: 0.000001
2021-01-16 07:16:07,905 epoch 14 - iter 2560/2560 - loss 0.14988600 - samples/sec: 10.15 - lr: 0.000001
2021-01-16 07:16:07,907 ----------------------------------------------------------------------------------------------------
2021-01-16 07:16:07,907 EPOCH 14 done: loss 0.1499 - lr 0.0000010
2021-01-16 07:16:07,907 BAD EPOCHS (no improvement): 4
2021-01-16 07:16:07,910 ----------------------------------------------------------------------------------------------------
2021-01-16 07:17:47,163 epoch 15 - iter 256/2560 - loss 0.13211162 - samples/sec: 10.32 - lr: 0.000001
2021-01-16 07:19:26,428 epoch 15 - iter 512/2560 - loss 0.14312262 - samples/sec: 10.32 - lr: 0.000001
2021-01-16 07:21:04,402 epoch 15 - iter 768/2560 - loss 0.14991927 - samples/sec: 10.45 - lr: 0.000001
2021-01-16 07:22:42,083 epoch 15 - iter 1024/2560 - loss 0.15132502 - samples/sec: 10.48 - lr: 0.000001
2021-01-16 07:24:23,248 epoch 15 - iter 1280/2560 - loss 0.15012698 - samples/sec: 10.12 - lr: 0.000001
2021-01-16 07:26:02,510 epoch 15 - iter 1536/2560 - loss 0.15443282 - samples/sec: 10.32 - lr: 0.000001
2021-01-16 07:27:41,227 epoch 15 - iter 1792/2560 - loss 0.15337861 - samples/sec: 10.37 - lr: 0.000001
2021-01-16 07:29:19,916 epoch 15 - iter 2048/2560 - loss 0.15342457 - samples/sec: 10.38 - lr: 0.000001
2021-01-16 07:30:58,353 epoch 15 - iter 2304/2560 - loss 0.15126241 - samples/sec: 10.40 - lr: 0.000001
2021-01-16 07:32:36,692 epoch 15 - iter 2560/2560 - loss 0.14841692 - samples/sec: 10.41 - lr: 0.000001
2021-01-16 07:32:36,694 ----------------------------------------------------------------------------------------------------
2021-01-16 07:32:36,694 EPOCH 15 done: loss 0.1484 - lr 0.0000007
2021-01-16 07:32:36,694 BAD EPOCHS (no improvement): 4
2021-01-16 07:32:36,700 ----------------------------------------------------------------------------------------------------
2021-01-16 07:34:15,608 epoch 16 - iter 256/2560 - loss 0.14154861 - samples/sec: 10.35 - lr: 0.000001
2021-01-16 07:35:54,182 epoch 16 - iter 512/2560 - loss 0.15666068 - samples/sec: 10.39 - lr: 0.000001
2021-01-16 07:37:32,436 epoch 16 - iter 768/2560 - loss 0.14965853 - samples/sec: 10.42 - lr: 0.000001
2021-01-16 07:39:11,322 epoch 16 - iter 1024/2560 - loss 0.14517837 - samples/sec: 10.36 - lr: 0.000001
2021-01-16 07:40:50,070 epoch 16 - iter 1280/2560 - loss 0.15012946 - samples/sec: 10.37 - lr: 0.000001
2021-01-16 07:42:28,901 epoch 16 - iter 1536/2560 - loss 0.14944365 - samples/sec: 10.36 - lr: 0.000001
2021-01-16 07:44:07,511 epoch 16 - iter 1792/2560 - loss 0.15203691 - samples/sec: 10.39 - lr: 0.000001
2021-01-16 07:45:46,097 epoch 16 - iter 2048/2560 - loss 0.15361748 - samples/sec: 10.39 - lr: 0.000001
2021-01-16 07:47:24,743 epoch 16 - iter 2304/2560 - loss 0.15600239 - samples/sec: 10.38 - lr: 0.000001
2021-01-16 07:49:05,943 epoch 16 - iter 2560/2560 - loss 0.15282003 - samples/sec: 10.12 - lr: 0.000000
2021-01-16 07:49:05,945 ----------------------------------------------------------------------------------------------------
2021-01-16 07:49:05,945 EPOCH 16 done: loss 0.1528 - lr 0.0000005
2021-01-16 07:49:05,945 BAD EPOCHS (no improvement): 4
2021-01-16 07:49:05,948 ----------------------------------------------------------------------------------------------------
2021-01-16 07:50:44,838 epoch 17 - iter 256/2560 - loss 0.16498748 - samples/sec: 10.36 - lr: 0.000000
2021-01-16 07:52:23,007 epoch 17 - iter 512/2560 - loss 0.16360209 - samples/sec: 10.43 - lr: 0.000000
2021-01-16 07:54:00,994 epoch 17 - iter 768/2560 - loss 0.15339211 - samples/sec: 10.45 - lr: 0.000000
2021-01-16 07:55:39,191 epoch 17 - iter 1024/2560 - loss 0.15505899 - samples/sec: 10.43 - lr: 0.000000
2021-01-16 07:57:19,956 epoch 17 - iter 1280/2560 - loss 0.15433689 - samples/sec: 10.16 - lr: 0.000000
2021-01-16 07:58:58,357 epoch 17 - iter 1536/2560 - loss 0.15255959 - samples/sec: 10.41 - lr: 0.000000
2021-01-16 08:00:36,819 epoch 17 - iter 1792/2560 - loss 0.15399288 - samples/sec: 10.40 - lr: 0.000000
2021-01-16 08:02:15,472 epoch 17 - iter 2048/2560 - loss 0.15148049 - samples/sec: 10.38 - lr: 0.000000
2021-01-16 08:03:54,072 epoch 17 - iter 2304/2560 - loss 0.15382739 - samples/sec: 10.39 - lr: 0.000000
2021-01-16 08:05:31,830 epoch 17 - iter 2560/2560 - loss 0.15712540 - samples/sec: 10.48 - lr: 0.000000
2021-01-16 08:05:31,833 ----------------------------------------------------------------------------------------------------
2021-01-16 08:05:31,833 EPOCH 17 done: loss 0.1571 - lr 0.0000003
2021-01-16 08:05:31,833 BAD EPOCHS (no improvement): 4
2021-01-16 08:05:31,841 ----------------------------------------------------------------------------------------------------
2021-01-16 08:07:10,239 epoch 18 - iter 256/2560 - loss 0.15978983 - samples/sec: 10.41 - lr: 0.000000
2021-01-16 08:08:48,106 epoch 18 - iter 512/2560 - loss 0.14347639 - samples/sec: 10.46 - lr: 0.000000
2021-01-16 08:10:26,495 epoch 18 - iter 768/2560 - loss 0.15206254 - samples/sec: 10.41 - lr: 0.000000
2021-01-16 08:12:04,438 epoch 18 - iter 1024/2560 - loss 0.16796272 - samples/sec: 10.46 - lr: 0.000000
2021-01-16 08:13:42,204 epoch 18 - iter 1280/2560 - loss 0.16531154 - samples/sec: 10.48 - lr: 0.000000
2021-01-16 08:15:23,133 epoch 18 - iter 1536/2560 - loss 0.16233384 - samples/sec: 10.15 - lr: 0.000000
2021-01-16 08:17:01,293 epoch 18 - iter 1792/2560 - loss 0.16011966 - samples/sec: 10.43 - lr: 0.000000
2021-01-16 08:18:39,512 epoch 18 - iter 2048/2560 - loss 0.16087553 - samples/sec: 10.43 - lr: 0.000000
2021-01-16 08:20:17,092 epoch 18 - iter 2304/2560 - loss 0.16158800 - samples/sec: 10.50 - lr: 0.000000
2021-01-16 08:21:54,438 epoch 18 - iter 2560/2560 - loss 0.16291885 - samples/sec: 10.52 - lr: 0.000000
2021-01-16 08:21:54,441 ----------------------------------------------------------------------------------------------------
2021-01-16 08:21:54,441 EPOCH 18 done: loss 0.1629 - lr 0.0000001
2021-01-16 08:21:54,441 BAD EPOCHS (no improvement): 4
2021-01-16 08:21:54,456 ----------------------------------------------------------------------------------------------------
2021-01-16 08:23:31,809 epoch 19 - iter 256/2560 - loss 0.13830293 - samples/sec: 10.52 - lr: 0.000000
2021-01-16 08:25:09,222 epoch 19 - iter 512/2560 - loss 0.14792782 - samples/sec: 10.51 - lr: 0.000000
2021-01-16 08:26:47,079 epoch 19 - iter 768/2560 - loss 0.13707639 - samples/sec: 10.47 - lr: 0.000000
2021-01-16 08:28:27,701 epoch 19 - iter 1024/2560 - loss 0.13387744 - samples/sec: 10.18 - lr: 0.000000
2021-01-16 08:30:05,328 epoch 19 - iter 1280/2560 - loss 0.13241945 - samples/sec: 10.49 - lr: 0.000000
2021-01-16 08:31:43,732 epoch 19 - iter 1536/2560 - loss 0.13879341 - samples/sec: 10.41 - lr: 0.000000
2021-01-16 08:33:21,817 epoch 19 - iter 1792/2560 - loss 0.13955545 - samples/sec: 10.44 - lr: 0.000000
2021-01-16 08:34:59,377 epoch 19 - iter 2048/2560 - loss 0.13983331 - samples/sec: 10.50 - lr: 0.000000
2021-01-16 08:36:36,814 epoch 19 - iter 2304/2560 - loss 0.14005413 - samples/sec: 10.51 - lr: 0.000000
2021-01-16 08:38:14,963 epoch 19 - iter 2560/2560 - loss 0.14057681 - samples/sec: 10.43 - lr: 0.000000
2021-01-16 08:38:14,965 ----------------------------------------------------------------------------------------------------
2021-01-16 08:38:14,965 EPOCH 19 done: loss 0.1406 - lr 0.0000000
2021-01-16 08:38:14,965 BAD EPOCHS (no improvement): 4
2021-01-16 08:38:14,968 ----------------------------------------------------------------------------------------------------
2021-01-16 08:39:54,826 epoch 20 - iter 256/2560 - loss 0.14269958 - samples/sec: 10.26 - lr: 0.000000
2021-01-16 08:41:32,343 epoch 20 - iter 512/2560 - loss 0.13295984 - samples/sec: 10.50 - lr: 0.000000
2021-01-16 08:43:09,612 epoch 20 - iter 768/2560 - loss 0.13303004 - samples/sec: 10.53 - lr: 0.000000
2021-01-16 08:44:46,898 epoch 20 - iter 1024/2560 - loss 0.13511050 - samples/sec: 10.53 - lr: 0.000000
2021-01-16 08:46:24,453 epoch 20 - iter 1280/2560 - loss 0.14147167 - samples/sec: 10.50 - lr: 0.000000
2021-01-16 08:48:01,998 epoch 20 - iter 1536/2560 - loss 0.14640782 - samples/sec: 10.50 - lr: 0.000000
2021-01-16 08:49:39,864 epoch 20 - iter 1792/2560 - loss 0.14698716 - samples/sec: 10.46 - lr: 0.000000
2021-01-16 08:51:17,251 epoch 20 - iter 2048/2560 - loss 0.14558654 - samples/sec: 10.52 - lr: 0.000000
2021-01-16 08:52:55,347 epoch 20 - iter 2304/2560 - loss 0.14717600 - samples/sec: 10.44 - lr: 0.000000
2021-01-16 08:54:33,232 epoch 20 - iter 2560/2560 - loss 0.14611906 - samples/sec: 10.46 - lr: 0.000000
2021-01-16 08:54:33,234 ----------------------------------------------------------------------------------------------------
2021-01-16 08:54:33,234 EPOCH 20 done: loss 0.1461 - lr 0.0000000
2021-01-16 08:54:33,234 BAD EPOCHS (no improvement): 4
2021-01-16 08:55:12,409 ----------------------------------------------------------------------------------------------------
2021-01-16 08:55:12,409 Testing using best model ...
2021-01-16 08:56:13,946 0.9021 0.9087 0.9054
2021-01-16 08:56:13,946
Results:
- F1-score (micro) 0.9054
- F1-score (macro) 0.8961
By class:
LOC tp: 942 - fp: 87 - fn: 142 - precision: 0.9155 - recall: 0.8690 - f1-score: 0.8916
MISC tp: 272 - fp: 57 - fn: 68 - precision: 0.8267 - recall: 0.8000 - f1-score: 0.8132
ORG tp: 1292 - fp: 188 - fn: 108 - precision: 0.8730 - recall: 0.9229 - f1-score: 0.8972
PER tp: 728 - fp: 19 - fn: 7 - precision: 0.9746 - recall: 0.9905 - f1-score: 0.9825
2021-01-16 08:56:13,946 ----------------------------------------------------------------------------------------------------