File size: 4,130 Bytes
25200da
 
 
 
 
 
 
 
 
 
 
 
 
d33b2e0
25200da
d33b2e0
25200da
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d33b2e0
25200da
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d33b2e0
25200da
 
d33b2e0
25200da
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d33b2e0
25200da
 
 
 
 
 
 
 
 
 
d33b2e0
 
 
 
 
 
 
 
 
 
 
 
25200da
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
---
tags:
- flair
- token-classification
- sequence-tagger-model
language: en de nl es
datasets:
- conll2003
inference: false
---

## 4-Language NER in Flair (English, German, Dutch and Spanish)

This is the fast 4-class NER model for 4 CoNLL-03 languages that ships with [Flair](https://github.com/flairNLP/flair/). Also kind of works for related languages like French.

F1-Score: **91,51** (CoNLL-03 English), **85,72** (CoNLL-03 German revised), **86,22** (CoNLL-03 Dutch), **85,78** (CoNLL-03 Spanish)


Predicts 4 tags:

| **tag**                        | **meaning** |
|---------------------------------|-----------|
| PER         | person name | 
| LOC         | location name | 
| ORG         | organization name | 
| MISC         | other name | 

Based on [Flair embeddings](https://www.aclweb.org/anthology/C18-1139/) and LSTM-CRF.

---

### Demo: How to use in Flair

Requires: **[Flair](https://github.com/flairNLP/flair/)** (`pip install flair`)

```python
from flair.data import Sentence
from flair.models import SequenceTagger

# load tagger
tagger = SequenceTagger.load("flair/ner-multi-fast")

# make example sentence in any of the four languages
sentence = Sentence("George Washington ging nach Washington")

# predict NER tags
tagger.predict(sentence)

# print sentence
print(sentence)

# print predicted NER spans
print('The following NER tags are found:')
# iterate over entities and print
for entity in sentence.get_spans('ner'):
    print(entity)

```

This yields the following output:
```
Span [1,2]: "George Washington"   [− Labels: PER (0.9977)]
Span [5]: "Washington"   [− Labels: LOC (0.9895)]
```

So, the entities "*George Washington*" (labeled as a **person**) and "*Washington*" (labeled as a **location**) are found in the sentence "*George Washington ging nach Washington*". 


---

### Training: Script to train this model

The following Flair script was used to train this model: 

```python
from flair.data import Corpus
from flair.datasets import CONLL_03, CONLL_03_GERMAN, CONLL_03_DUTCH, CONLL_03_SPANISH
from flair.embeddings import WordEmbeddings, StackedEmbeddings, FlairEmbeddings

# 1. get the multi-language corpus
corpus: Corpus = MultiCorpus([
    CONLL_03(),         # English corpus
    CONLL_03_GERMAN(),  # German corpus
    CONLL_03_DUTCH(),   # Dutch corpus
    CONLL_03_SPANISH(), # Spanish corpus
    ])

# 2. what tag do we want to predict?
tag_type = 'ner'

# 3. make the tag dictionary from the corpus
tag_dictionary = corpus.make_tag_dictionary(tag_type=tag_type)

# 4. initialize each embedding we use
embedding_types = [

    # GloVe embeddings
    WordEmbeddings('glove'),

    # FastText embeddings
    WordEmbeddings('de'),

    # contextual string embeddings, forward
    FlairEmbeddings('multi-forward-fast'),

    # contextual string embeddings, backward
    FlairEmbeddings('multi-backward-fast'),
]

# embedding stack consists of Flair and GloVe embeddings
embeddings = StackedEmbeddings(embeddings=embedding_types)

# 5. initialize sequence tagger
from flair.models import SequenceTagger

tagger = SequenceTagger(hidden_size=256,
                        embeddings=embeddings,
                        tag_dictionary=tag_dictionary,
                        tag_type=tag_type)

# 6. initialize trainer
from flair.trainers import ModelTrainer

trainer = ModelTrainer(tagger, corpus)

# 7. run training
trainer.train('resources/taggers/ner-multi-fast',
              train_with_dev=True,
              max_epochs=150)
```



---

### Cite

Please cite the following papers when using this model.


```
@misc{akbik2019multilingual,
  title={Multilingual sequence labeling with one model},
  author={Akbik, Alan and Bergmann, Tanja and Vollgraf, Roland}
  booktitle = {{NLDL} 2019, Northern Lights Deep Learning Workshop},
  year      = {2019}
}
```


```
@inproceedings{akbik2018coling,
  title={Contextual String Embeddings for Sequence Labeling},
  author={Akbik, Alan and Blythe, Duncan and Vollgraf, Roland},
  booktitle = {{COLING} 2018, 27th International Conference on Computational Linguistics},
  pages     = {1638--1649},
  year      = {2018}
}
```