File size: 61,551 Bytes
c0da81a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
2021-02-20 12:03:00,991 ----------------------------------------------------------------------------------------------------
2021-02-20 12:03:00,994 Model: "SequenceTagger(
  (embeddings): TransformerWordEmbeddings(
    (model): XLMRobertaModel(
      (embeddings): RobertaEmbeddings(
        (word_embeddings): Embedding(250002, 1024, padding_idx=1)
        (position_embeddings): Embedding(514, 1024, padding_idx=1)
        (token_type_embeddings): Embedding(1, 1024)
        (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
        (dropout): Dropout(p=0.1, inplace=False)
      )
      (encoder): RobertaEncoder(
        (layer): ModuleList(
          (0): RobertaLayer(
            (attention): RobertaAttention(
              (self): RobertaSelfAttention(
                (query): Linear(in_features=1024, out_features=1024, bias=True)
                (key): Linear(in_features=1024, out_features=1024, bias=True)
                (value): Linear(in_features=1024, out_features=1024, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): RobertaSelfOutput(
                (dense): Linear(in_features=1024, out_features=1024, bias=True)
                (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): RobertaIntermediate(
              (dense): Linear(in_features=1024, out_features=4096, bias=True)
            )
            (output): RobertaOutput(
              (dense): Linear(in_features=4096, out_features=1024, bias=True)
              (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (1): RobertaLayer(
            (attention): RobertaAttention(
              (self): RobertaSelfAttention(
                (query): Linear(in_features=1024, out_features=1024, bias=True)
                (key): Linear(in_features=1024, out_features=1024, bias=True)
                (value): Linear(in_features=1024, out_features=1024, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): RobertaSelfOutput(
                (dense): Linear(in_features=1024, out_features=1024, bias=True)
                (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): RobertaIntermediate(
              (dense): Linear(in_features=1024, out_features=4096, bias=True)
            )
            (output): RobertaOutput(
              (dense): Linear(in_features=4096, out_features=1024, bias=True)
              (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (2): RobertaLayer(
            (attention): RobertaAttention(
              (self): RobertaSelfAttention(
                (query): Linear(in_features=1024, out_features=1024, bias=True)
                (key): Linear(in_features=1024, out_features=1024, bias=True)
                (value): Linear(in_features=1024, out_features=1024, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): RobertaSelfOutput(
                (dense): Linear(in_features=1024, out_features=1024, bias=True)
                (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): RobertaIntermediate(
              (dense): Linear(in_features=1024, out_features=4096, bias=True)
            )
            (output): RobertaOutput(
              (dense): Linear(in_features=4096, out_features=1024, bias=True)
              (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (3): RobertaLayer(
            (attention): RobertaAttention(
              (self): RobertaSelfAttention(
                (query): Linear(in_features=1024, out_features=1024, bias=True)
                (key): Linear(in_features=1024, out_features=1024, bias=True)
                (value): Linear(in_features=1024, out_features=1024, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): RobertaSelfOutput(
                (dense): Linear(in_features=1024, out_features=1024, bias=True)
                (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): RobertaIntermediate(
              (dense): Linear(in_features=1024, out_features=4096, bias=True)
            )
            (output): RobertaOutput(
              (dense): Linear(in_features=4096, out_features=1024, bias=True)
              (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (4): RobertaLayer(
            (attention): RobertaAttention(
              (self): RobertaSelfAttention(
                (query): Linear(in_features=1024, out_features=1024, bias=True)
                (key): Linear(in_features=1024, out_features=1024, bias=True)
                (value): Linear(in_features=1024, out_features=1024, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): RobertaSelfOutput(
                (dense): Linear(in_features=1024, out_features=1024, bias=True)
                (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): RobertaIntermediate(
              (dense): Linear(in_features=1024, out_features=4096, bias=True)
            )
            (output): RobertaOutput(
              (dense): Linear(in_features=4096, out_features=1024, bias=True)
              (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (5): RobertaLayer(
            (attention): RobertaAttention(
              (self): RobertaSelfAttention(
                (query): Linear(in_features=1024, out_features=1024, bias=True)
                (key): Linear(in_features=1024, out_features=1024, bias=True)
                (value): Linear(in_features=1024, out_features=1024, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): RobertaSelfOutput(
                (dense): Linear(in_features=1024, out_features=1024, bias=True)
                (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): RobertaIntermediate(
              (dense): Linear(in_features=1024, out_features=4096, bias=True)
            )
            (output): RobertaOutput(
              (dense): Linear(in_features=4096, out_features=1024, bias=True)
              (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (6): RobertaLayer(
            (attention): RobertaAttention(
              (self): RobertaSelfAttention(
                (query): Linear(in_features=1024, out_features=1024, bias=True)
                (key): Linear(in_features=1024, out_features=1024, bias=True)
                (value): Linear(in_features=1024, out_features=1024, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): RobertaSelfOutput(
                (dense): Linear(in_features=1024, out_features=1024, bias=True)
                (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): RobertaIntermediate(
              (dense): Linear(in_features=1024, out_features=4096, bias=True)
            )
            (output): RobertaOutput(
              (dense): Linear(in_features=4096, out_features=1024, bias=True)
              (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (7): RobertaLayer(
            (attention): RobertaAttention(
              (self): RobertaSelfAttention(
                (query): Linear(in_features=1024, out_features=1024, bias=True)
                (key): Linear(in_features=1024, out_features=1024, bias=True)
                (value): Linear(in_features=1024, out_features=1024, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): RobertaSelfOutput(
                (dense): Linear(in_features=1024, out_features=1024, bias=True)
                (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): RobertaIntermediate(
              (dense): Linear(in_features=1024, out_features=4096, bias=True)
            )
            (output): RobertaOutput(
              (dense): Linear(in_features=4096, out_features=1024, bias=True)
              (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (8): RobertaLayer(
            (attention): RobertaAttention(
              (self): RobertaSelfAttention(
                (query): Linear(in_features=1024, out_features=1024, bias=True)
                (key): Linear(in_features=1024, out_features=1024, bias=True)
                (value): Linear(in_features=1024, out_features=1024, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): RobertaSelfOutput(
                (dense): Linear(in_features=1024, out_features=1024, bias=True)
                (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): RobertaIntermediate(
              (dense): Linear(in_features=1024, out_features=4096, bias=True)
            )
            (output): RobertaOutput(
              (dense): Linear(in_features=4096, out_features=1024, bias=True)
              (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (9): RobertaLayer(
            (attention): RobertaAttention(
              (self): RobertaSelfAttention(
                (query): Linear(in_features=1024, out_features=1024, bias=True)
                (key): Linear(in_features=1024, out_features=1024, bias=True)
                (value): Linear(in_features=1024, out_features=1024, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): RobertaSelfOutput(
                (dense): Linear(in_features=1024, out_features=1024, bias=True)
                (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): RobertaIntermediate(
              (dense): Linear(in_features=1024, out_features=4096, bias=True)
            )
            (output): RobertaOutput(
              (dense): Linear(in_features=4096, out_features=1024, bias=True)
              (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (10): RobertaLayer(
            (attention): RobertaAttention(
              (self): RobertaSelfAttention(
                (query): Linear(in_features=1024, out_features=1024, bias=True)
                (key): Linear(in_features=1024, out_features=1024, bias=True)
                (value): Linear(in_features=1024, out_features=1024, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): RobertaSelfOutput(
                (dense): Linear(in_features=1024, out_features=1024, bias=True)
                (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): RobertaIntermediate(
              (dense): Linear(in_features=1024, out_features=4096, bias=True)
            )
            (output): RobertaOutput(
              (dense): Linear(in_features=4096, out_features=1024, bias=True)
              (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (11): RobertaLayer(
            (attention): RobertaAttention(
              (self): RobertaSelfAttention(
                (query): Linear(in_features=1024, out_features=1024, bias=True)
                (key): Linear(in_features=1024, out_features=1024, bias=True)
                (value): Linear(in_features=1024, out_features=1024, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): RobertaSelfOutput(
                (dense): Linear(in_features=1024, out_features=1024, bias=True)
                (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): RobertaIntermediate(
              (dense): Linear(in_features=1024, out_features=4096, bias=True)
            )
            (output): RobertaOutput(
              (dense): Linear(in_features=4096, out_features=1024, bias=True)
              (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (12): RobertaLayer(
            (attention): RobertaAttention(
              (self): RobertaSelfAttention(
                (query): Linear(in_features=1024, out_features=1024, bias=True)
                (key): Linear(in_features=1024, out_features=1024, bias=True)
                (value): Linear(in_features=1024, out_features=1024, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): RobertaSelfOutput(
                (dense): Linear(in_features=1024, out_features=1024, bias=True)
                (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): RobertaIntermediate(
              (dense): Linear(in_features=1024, out_features=4096, bias=True)
            )
            (output): RobertaOutput(
              (dense): Linear(in_features=4096, out_features=1024, bias=True)
              (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (13): RobertaLayer(
            (attention): RobertaAttention(
              (self): RobertaSelfAttention(
                (query): Linear(in_features=1024, out_features=1024, bias=True)
                (key): Linear(in_features=1024, out_features=1024, bias=True)
                (value): Linear(in_features=1024, out_features=1024, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): RobertaSelfOutput(
                (dense): Linear(in_features=1024, out_features=1024, bias=True)
                (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): RobertaIntermediate(
              (dense): Linear(in_features=1024, out_features=4096, bias=True)
            )
            (output): RobertaOutput(
              (dense): Linear(in_features=4096, out_features=1024, bias=True)
              (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (14): RobertaLayer(
            (attention): RobertaAttention(
              (self): RobertaSelfAttention(
                (query): Linear(in_features=1024, out_features=1024, bias=True)
                (key): Linear(in_features=1024, out_features=1024, bias=True)
                (value): Linear(in_features=1024, out_features=1024, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): RobertaSelfOutput(
                (dense): Linear(in_features=1024, out_features=1024, bias=True)
                (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): RobertaIntermediate(
              (dense): Linear(in_features=1024, out_features=4096, bias=True)
            )
            (output): RobertaOutput(
              (dense): Linear(in_features=4096, out_features=1024, bias=True)
              (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (15): RobertaLayer(
            (attention): RobertaAttention(
              (self): RobertaSelfAttention(
                (query): Linear(in_features=1024, out_features=1024, bias=True)
                (key): Linear(in_features=1024, out_features=1024, bias=True)
                (value): Linear(in_features=1024, out_features=1024, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): RobertaSelfOutput(
                (dense): Linear(in_features=1024, out_features=1024, bias=True)
                (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): RobertaIntermediate(
              (dense): Linear(in_features=1024, out_features=4096, bias=True)
            )
            (output): RobertaOutput(
              (dense): Linear(in_features=4096, out_features=1024, bias=True)
              (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (16): RobertaLayer(
            (attention): RobertaAttention(
              (self): RobertaSelfAttention(
                (query): Linear(in_features=1024, out_features=1024, bias=True)
                (key): Linear(in_features=1024, out_features=1024, bias=True)
                (value): Linear(in_features=1024, out_features=1024, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): RobertaSelfOutput(
                (dense): Linear(in_features=1024, out_features=1024, bias=True)
                (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): RobertaIntermediate(
              (dense): Linear(in_features=1024, out_features=4096, bias=True)
            )
            (output): RobertaOutput(
              (dense): Linear(in_features=4096, out_features=1024, bias=True)
              (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (17): RobertaLayer(
            (attention): RobertaAttention(
              (self): RobertaSelfAttention(
                (query): Linear(in_features=1024, out_features=1024, bias=True)
                (key): Linear(in_features=1024, out_features=1024, bias=True)
                (value): Linear(in_features=1024, out_features=1024, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): RobertaSelfOutput(
                (dense): Linear(in_features=1024, out_features=1024, bias=True)
                (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): RobertaIntermediate(
              (dense): Linear(in_features=1024, out_features=4096, bias=True)
            )
            (output): RobertaOutput(
              (dense): Linear(in_features=4096, out_features=1024, bias=True)
              (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (18): RobertaLayer(
            (attention): RobertaAttention(
              (self): RobertaSelfAttention(
                (query): Linear(in_features=1024, out_features=1024, bias=True)
                (key): Linear(in_features=1024, out_features=1024, bias=True)
                (value): Linear(in_features=1024, out_features=1024, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): RobertaSelfOutput(
                (dense): Linear(in_features=1024, out_features=1024, bias=True)
                (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): RobertaIntermediate(
              (dense): Linear(in_features=1024, out_features=4096, bias=True)
            )
            (output): RobertaOutput(
              (dense): Linear(in_features=4096, out_features=1024, bias=True)
              (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (19): RobertaLayer(
            (attention): RobertaAttention(
              (self): RobertaSelfAttention(
                (query): Linear(in_features=1024, out_features=1024, bias=True)
                (key): Linear(in_features=1024, out_features=1024, bias=True)
                (value): Linear(in_features=1024, out_features=1024, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): RobertaSelfOutput(
                (dense): Linear(in_features=1024, out_features=1024, bias=True)
                (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): RobertaIntermediate(
              (dense): Linear(in_features=1024, out_features=4096, bias=True)
            )
            (output): RobertaOutput(
              (dense): Linear(in_features=4096, out_features=1024, bias=True)
              (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (20): RobertaLayer(
            (attention): RobertaAttention(
              (self): RobertaSelfAttention(
                (query): Linear(in_features=1024, out_features=1024, bias=True)
                (key): Linear(in_features=1024, out_features=1024, bias=True)
                (value): Linear(in_features=1024, out_features=1024, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): RobertaSelfOutput(
                (dense): Linear(in_features=1024, out_features=1024, bias=True)
                (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): RobertaIntermediate(
              (dense): Linear(in_features=1024, out_features=4096, bias=True)
            )
            (output): RobertaOutput(
              (dense): Linear(in_features=4096, out_features=1024, bias=True)
              (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (21): RobertaLayer(
            (attention): RobertaAttention(
              (self): RobertaSelfAttention(
                (query): Linear(in_features=1024, out_features=1024, bias=True)
                (key): Linear(in_features=1024, out_features=1024, bias=True)
                (value): Linear(in_features=1024, out_features=1024, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): RobertaSelfOutput(
                (dense): Linear(in_features=1024, out_features=1024, bias=True)
                (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): RobertaIntermediate(
              (dense): Linear(in_features=1024, out_features=4096, bias=True)
            )
            (output): RobertaOutput(
              (dense): Linear(in_features=4096, out_features=1024, bias=True)
              (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (22): RobertaLayer(
            (attention): RobertaAttention(
              (self): RobertaSelfAttention(
                (query): Linear(in_features=1024, out_features=1024, bias=True)
                (key): Linear(in_features=1024, out_features=1024, bias=True)
                (value): Linear(in_features=1024, out_features=1024, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): RobertaSelfOutput(
                (dense): Linear(in_features=1024, out_features=1024, bias=True)
                (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): RobertaIntermediate(
              (dense): Linear(in_features=1024, out_features=4096, bias=True)
            )
            (output): RobertaOutput(
              (dense): Linear(in_features=4096, out_features=1024, bias=True)
              (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (23): RobertaLayer(
            (attention): RobertaAttention(
              (self): RobertaSelfAttention(
                (query): Linear(in_features=1024, out_features=1024, bias=True)
                (key): Linear(in_features=1024, out_features=1024, bias=True)
                (value): Linear(in_features=1024, out_features=1024, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): RobertaSelfOutput(
                (dense): Linear(in_features=1024, out_features=1024, bias=True)
                (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): RobertaIntermediate(
              (dense): Linear(in_features=1024, out_features=4096, bias=True)
            )
            (output): RobertaOutput(
              (dense): Linear(in_features=4096, out_features=1024, bias=True)
              (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
        )
      )
      (pooler): RobertaPooler(
        (dense): Linear(in_features=1024, out_features=1024, bias=True)
        (activation): Tanh()
      )
    )
  )
  (word_dropout): WordDropout(p=0.05)
  (locked_dropout): LockedDropout(p=0.5)
  (linear): Linear(in_features=1024, out_features=76, bias=True)
  (beta): 1.0
  (weights): None
  (weight_tensor) None
)"
2021-02-20 12:03:00,995 ----------------------------------------------------------------------------------------------------
2021-02-20 12:03:00,995 Corpus: "Corpus: 75187 train + 9603 dev + 9479 test sentences"
2021-02-20 12:03:00,995 ----------------------------------------------------------------------------------------------------
2021-02-20 12:03:00,995 Parameters:
2021-02-20 12:03:00,995  - learning_rate: "5e-06"
2021-02-20 12:03:00,995  - mini_batch_size: "4"
2021-02-20 12:03:00,995  - patience: "3"
2021-02-20 12:03:00,995  - anneal_factor: "0.5"
2021-02-20 12:03:00,995  - max_epochs: "20"
2021-02-20 12:03:00,995  - shuffle: "True"
2021-02-20 12:03:00,995  - train_with_dev: "True"
2021-02-20 12:03:00,996  - batch_growth_annealing: "False"
2021-02-20 12:03:00,996 ----------------------------------------------------------------------------------------------------
2021-02-20 12:03:00,996 Model training base path: "resources/contextdrop/d-flert-ontonotes-ft+dev-xlm-roberta-large-context+drop-64-True-42"
2021-02-20 12:03:00,996 ----------------------------------------------------------------------------------------------------
2021-02-20 12:03:00,996 Device: cuda:0
2021-02-20 12:03:00,996 ----------------------------------------------------------------------------------------------------
2021-02-20 12:03:00,996 Embeddings storage mode: none
2021-02-20 12:03:01,005 ----------------------------------------------------------------------------------------------------
2021-02-20 12:17:26,941 epoch 1 - iter 2119/21198 - loss 0.46498391 - samples/sec: 9.79 - lr: 0.000005
2021-02-20 12:32:25,501 epoch 1 - iter 4238/21198 - loss 0.43484389 - samples/sec: 9.43 - lr: 0.000005
2021-02-20 12:47:30,355 epoch 1 - iter 6357/21198 - loss 0.42857357 - samples/sec: 9.37 - lr: 0.000005
2021-02-20 13:02:33,037 epoch 1 - iter 8476/21198 - loss 0.40114081 - samples/sec: 9.39 - lr: 0.000005
2021-02-20 13:17:06,534 epoch 1 - iter 10595/21198 - loss 0.36551536 - samples/sec: 9.70 - lr: 0.000005
2021-02-20 13:31:52,079 epoch 1 - iter 12714/21198 - loss 0.34481658 - samples/sec: 9.57 - lr: 0.000005
2021-02-20 13:47:10,517 epoch 1 - iter 14833/21198 - loss 0.33967654 - samples/sec: 9.23 - lr: 0.000005
2021-02-20 14:02:14,283 epoch 1 - iter 16952/21198 - loss 0.33393062 - samples/sec: 9.38 - lr: 0.000005
2021-02-20 14:16:49,633 epoch 1 - iter 19071/21198 - loss 0.32924976 - samples/sec: 9.68 - lr: 0.000005
2021-02-20 14:31:45,192 epoch 1 - iter 21190/21198 - loss 0.32628298 - samples/sec: 9.47 - lr: 0.000005
2021-02-20 14:31:48,270 ----------------------------------------------------------------------------------------------------
2021-02-20 14:31:48,271 EPOCH 1 done: loss 0.3263 - lr 0.0000050
2021-02-20 14:37:34,463 TEST : loss 0.12760598957538605 - score 0.8669
2021-02-20 14:37:34,546 BAD EPOCHS (no improvement): 4
2021-02-20 14:37:34,556 ----------------------------------------------------------------------------------------------------
2021-02-20 14:52:29,571 epoch 2 - iter 2119/21198 - loss 0.29859233 - samples/sec: 9.47 - lr: 0.000005
2021-02-20 15:07:24,765 epoch 2 - iter 4238/21198 - loss 0.29870475 - samples/sec: 9.47 - lr: 0.000005
2021-02-20 15:22:22,170 epoch 2 - iter 6357/21198 - loss 0.29288750 - samples/sec: 9.45 - lr: 0.000005
2021-02-20 15:37:18,156 epoch 2 - iter 8476/21198 - loss 0.29279330 - samples/sec: 9.46 - lr: 0.000005
2021-02-20 15:52:13,883 epoch 2 - iter 10595/21198 - loss 0.28788203 - samples/sec: 9.46 - lr: 0.000005
2021-02-20 16:07:12,097 epoch 2 - iter 12714/21198 - loss 0.28927318 - samples/sec: 9.44 - lr: 0.000005
2021-02-20 16:22:07,642 epoch 2 - iter 14833/21198 - loss 0.28514545 - samples/sec: 9.47 - lr: 0.000005
2021-02-20 16:37:06,266 epoch 2 - iter 16952/21198 - loss 0.28311760 - samples/sec: 9.43 - lr: 0.000005
2021-02-20 16:52:00,498 epoch 2 - iter 19071/21198 - loss 0.28229767 - samples/sec: 9.48 - lr: 0.000005
2021-02-20 17:06:54,963 epoch 2 - iter 21190/21198 - loss 0.28044944 - samples/sec: 9.48 - lr: 0.000005
2021-02-20 17:06:58,266 ----------------------------------------------------------------------------------------------------
2021-02-20 17:06:58,266 EPOCH 2 done: loss 0.2804 - lr 0.0000049
2021-02-20 17:12:47,188 TEST : loss 0.08660610020160675 - score 0.8953
2021-02-20 17:12:47,273 BAD EPOCHS (no improvement): 4
2021-02-20 17:12:47,275 ----------------------------------------------------------------------------------------------------
2021-02-20 17:27:41,889 epoch 3 - iter 2119/21198 - loss 0.26828308 - samples/sec: 9.48 - lr: 0.000005
2021-02-20 17:42:34,288 epoch 3 - iter 4238/21198 - loss 0.26184351 - samples/sec: 9.50 - lr: 0.000005
2021-02-20 17:57:29,878 epoch 3 - iter 6357/21198 - loss 0.25940653 - samples/sec: 9.46 - lr: 0.000005
2021-02-20 18:12:25,470 epoch 3 - iter 8476/21198 - loss 0.25828841 - samples/sec: 9.46 - lr: 0.000005
2021-02-20 18:27:24,608 epoch 3 - iter 10595/21198 - loss 0.25551183 - samples/sec: 9.43 - lr: 0.000005
2021-02-20 18:42:18,429 epoch 3 - iter 12714/21198 - loss 0.25481692 - samples/sec: 9.48 - lr: 0.000005
2021-02-20 18:57:16,717 epoch 3 - iter 14833/21198 - loss 0.25506844 - samples/sec: 9.44 - lr: 0.000005
2021-02-20 19:12:13,807 epoch 3 - iter 16952/21198 - loss 0.25407433 - samples/sec: 9.45 - lr: 0.000005
2021-02-20 19:27:12,592 epoch 3 - iter 19071/21198 - loss 0.25575351 - samples/sec: 9.43 - lr: 0.000005
2021-02-20 19:42:07,912 epoch 3 - iter 21190/21198 - loss 0.25645391 - samples/sec: 9.47 - lr: 0.000005
2021-02-20 19:42:10,991 ----------------------------------------------------------------------------------------------------
2021-02-20 19:42:10,991 EPOCH 3 done: loss 0.2565 - lr 0.0000047
2021-02-20 19:48:05,928 TEST : loss 0.08892939984798431 - score 0.9015
2021-02-20 19:48:06,017 BAD EPOCHS (no improvement): 4
2021-02-20 19:48:06,022 ----------------------------------------------------------------------------------------------------
2021-02-20 20:03:04,520 epoch 4 - iter 2119/21198 - loss 0.24164433 - samples/sec: 9.43 - lr: 0.000005
2021-02-20 20:17:56,429 epoch 4 - iter 4238/21198 - loss 0.24019658 - samples/sec: 9.50 - lr: 0.000005
2021-02-20 20:32:52,945 epoch 4 - iter 6357/21198 - loss 0.24219914 - samples/sec: 9.46 - lr: 0.000005
2021-02-20 20:47:50,199 epoch 4 - iter 8476/21198 - loss 0.23953211 - samples/sec: 9.45 - lr: 0.000005
2021-02-20 21:02:44,855 epoch 4 - iter 10595/21198 - loss 0.23751325 - samples/sec: 9.47 - lr: 0.000005
2021-02-20 21:17:41,522 epoch 4 - iter 12714/21198 - loss 0.23782852 - samples/sec: 9.45 - lr: 0.000005
2021-02-20 21:32:38,226 epoch 4 - iter 14833/21198 - loss 0.24096846 - samples/sec: 9.45 - lr: 0.000005
2021-02-20 21:47:40,951 epoch 4 - iter 16952/21198 - loss 0.23932344 - samples/sec: 9.39 - lr: 0.000005
2021-02-20 22:02:36,247 epoch 4 - iter 19071/21198 - loss 0.24064527 - samples/sec: 9.47 - lr: 0.000005
2021-02-20 22:17:29,253 epoch 4 - iter 21190/21198 - loss 0.24016898 - samples/sec: 9.49 - lr: 0.000005
2021-02-20 22:17:32,358 ----------------------------------------------------------------------------------------------------
2021-02-20 22:17:32,358 EPOCH 4 done: loss 0.2402 - lr 0.0000045
2021-02-20 22:23:24,429 TEST : loss 0.09627319127321243 - score 0.9076
2021-02-20 22:23:24,520 BAD EPOCHS (no improvement): 4
2021-02-20 22:23:24,535 ----------------------------------------------------------------------------------------------------
2021-02-20 22:38:20,470 epoch 5 - iter 2119/21198 - loss 0.22083609 - samples/sec: 9.46 - lr: 0.000004
2021-02-20 22:53:16,946 epoch 5 - iter 4238/21198 - loss 0.22353303 - samples/sec: 9.46 - lr: 0.000004
2021-02-20 23:08:09,262 epoch 5 - iter 6357/21198 - loss 0.22526515 - samples/sec: 9.50 - lr: 0.000004
2021-02-20 23:23:05,354 epoch 5 - iter 8476/21198 - loss 0.22450491 - samples/sec: 9.46 - lr: 0.000004
2021-02-20 23:38:01,961 epoch 5 - iter 10595/21198 - loss 0.22317870 - samples/sec: 9.45 - lr: 0.000004
2021-02-20 23:53:00,849 epoch 5 - iter 12714/21198 - loss 0.22493520 - samples/sec: 9.43 - lr: 0.000004
2021-02-21 00:07:59,228 epoch 5 - iter 14833/21198 - loss 0.22554395 - samples/sec: 9.44 - lr: 0.000004
2021-02-21 00:22:55,492 epoch 5 - iter 16952/21198 - loss 0.22640472 - samples/sec: 9.46 - lr: 0.000004
2021-02-21 00:37:51,438 epoch 5 - iter 19071/21198 - loss 0.22662263 - samples/sec: 9.46 - lr: 0.000004
2021-02-21 00:52:55,596 epoch 5 - iter 21190/21198 - loss 0.22627673 - samples/sec: 9.38 - lr: 0.000004
2021-02-21 00:52:58,870 ----------------------------------------------------------------------------------------------------
2021-02-21 00:52:58,870 EPOCH 5 done: loss 0.2263 - lr 0.0000043
2021-02-21 00:58:49,962 TEST : loss 0.09906419366598129 - score 0.9046
2021-02-21 00:58:50,051 BAD EPOCHS (no improvement): 4
2021-02-21 00:58:50,053 ----------------------------------------------------------------------------------------------------
2021-02-21 01:13:45,979 epoch 6 - iter 2119/21198 - loss 0.21128728 - samples/sec: 9.46 - lr: 0.000004
2021-02-21 01:28:42,436 epoch 6 - iter 4238/21198 - loss 0.21192698 - samples/sec: 9.46 - lr: 0.000004
2021-02-21 01:43:40,811 epoch 6 - iter 6357/21198 - loss 0.21388017 - samples/sec: 9.44 - lr: 0.000004
2021-02-21 01:58:32,902 epoch 6 - iter 8476/21198 - loss 0.21433303 - samples/sec: 9.50 - lr: 0.000004
2021-02-21 02:13:28,053 epoch 6 - iter 10595/21198 - loss 0.21527260 - samples/sec: 9.47 - lr: 0.000004
2021-02-21 02:28:23,770 epoch 6 - iter 12714/21198 - loss 0.21578637 - samples/sec: 9.46 - lr: 0.000004
2021-02-21 02:43:23,477 epoch 6 - iter 14833/21198 - loss 0.21742266 - samples/sec: 9.42 - lr: 0.000004
2021-02-21 02:58:20,917 epoch 6 - iter 16952/21198 - loss 0.21671573 - samples/sec: 9.45 - lr: 0.000004
2021-02-21 03:13:22,283 epoch 6 - iter 19071/21198 - loss 0.21638606 - samples/sec: 9.40 - lr: 0.000004
2021-02-21 03:28:18,668 epoch 6 - iter 21190/21198 - loss 0.21601016 - samples/sec: 9.46 - lr: 0.000004
2021-02-21 03:28:21,833 ----------------------------------------------------------------------------------------------------
2021-02-21 03:28:21,833 EPOCH 6 done: loss 0.2160 - lr 0.0000040
2021-02-21 03:34:15,000 TEST : loss 0.10325756669044495 - score 0.9076
2021-02-21 03:34:15,094 BAD EPOCHS (no improvement): 4
2021-02-21 03:34:15,120 ----------------------------------------------------------------------------------------------------
2021-02-21 03:49:07,155 epoch 7 - iter 2119/21198 - loss 0.21960439 - samples/sec: 9.50 - lr: 0.000004
2021-02-21 04:04:03,005 epoch 7 - iter 4238/21198 - loss 0.22004925 - samples/sec: 9.46 - lr: 0.000004
2021-02-21 04:18:56,753 epoch 7 - iter 6357/21198 - loss 0.21543406 - samples/sec: 9.48 - lr: 0.000004
2021-02-21 04:33:52,219 epoch 7 - iter 8476/21198 - loss 0.21504576 - samples/sec: 9.47 - lr: 0.000004
2021-02-21 04:48:46,766 epoch 7 - iter 10595/21198 - loss 0.21323903 - samples/sec: 9.48 - lr: 0.000004
2021-02-21 05:03:47,214 epoch 7 - iter 12714/21198 - loss 0.21486108 - samples/sec: 9.41 - lr: 0.000004
2021-02-21 05:18:42,062 epoch 7 - iter 14833/21198 - loss 0.21180056 - samples/sec: 9.47 - lr: 0.000004
2021-02-21 05:33:36,547 epoch 7 - iter 16952/21198 - loss 0.21059053 - samples/sec: 9.48 - lr: 0.000004
2021-02-21 05:48:34,692 epoch 7 - iter 19071/21198 - loss 0.21256070 - samples/sec: 9.44 - lr: 0.000004
2021-02-21 06:03:32,420 epoch 7 - iter 21190/21198 - loss 0.21049512 - samples/sec: 9.44 - lr: 0.000004
2021-02-21 06:03:35,617 ----------------------------------------------------------------------------------------------------
2021-02-21 06:03:35,617 EPOCH 7 done: loss 0.2105 - lr 0.0000036
2021-02-21 06:09:34,438 TEST : loss 0.11405058950185776 - score 0.904
2021-02-21 06:09:34,531 BAD EPOCHS (no improvement): 4
2021-02-21 06:09:34,562 ----------------------------------------------------------------------------------------------------
2021-02-21 06:24:28,495 epoch 8 - iter 2119/21198 - loss 0.20943523 - samples/sec: 9.48 - lr: 0.000004
2021-02-21 06:39:27,118 epoch 8 - iter 4238/21198 - loss 0.20855714 - samples/sec: 9.43 - lr: 0.000004
2021-02-21 06:54:21,524 epoch 8 - iter 6357/21198 - loss 0.20901557 - samples/sec: 9.48 - lr: 0.000004
2021-02-21 07:09:19,131 epoch 8 - iter 8476/21198 - loss 0.20346961 - samples/sec: 9.44 - lr: 0.000003
2021-02-21 07:24:13,963 epoch 8 - iter 10595/21198 - loss 0.20279742 - samples/sec: 9.47 - lr: 0.000003
2021-02-21 07:39:11,643 epoch 8 - iter 12714/21198 - loss 0.20257371 - samples/sec: 9.44 - lr: 0.000003
2021-02-21 07:54:11,363 epoch 8 - iter 14833/21198 - loss 0.19941560 - samples/sec: 9.42 - lr: 0.000003
2021-02-21 08:09:12,189 epoch 8 - iter 16952/21198 - loss 0.19895001 - samples/sec: 9.41 - lr: 0.000003
2021-02-21 08:24:10,631 epoch 8 - iter 19071/21198 - loss 0.19874614 - samples/sec: 9.43 - lr: 0.000003
2021-02-21 08:39:11,135 epoch 8 - iter 21190/21198 - loss 0.19883000 - samples/sec: 9.41 - lr: 0.000003
2021-02-21 08:39:14,364 ----------------------------------------------------------------------------------------------------
2021-02-21 08:39:14,365 EPOCH 8 done: loss 0.1989 - lr 0.0000033
2021-02-21 08:45:06,010 TEST : loss 0.12001997232437134 - score 0.9062
2021-02-21 08:45:06,104 BAD EPOCHS (no improvement): 4
2021-02-21 08:45:06,108 ----------------------------------------------------------------------------------------------------
2021-02-21 09:00:02,412 epoch 9 - iter 2119/21198 - loss 0.19438574 - samples/sec: 9.46 - lr: 0.000003
2021-02-21 09:15:05,242 epoch 9 - iter 4238/21198 - loss 0.18942482 - samples/sec: 9.39 - lr: 0.000003
2021-02-21 09:30:02,818 epoch 9 - iter 6357/21198 - loss 0.19236360 - samples/sec: 9.44 - lr: 0.000003
2021-02-21 09:44:58,840 epoch 9 - iter 8476/21198 - loss 0.19256963 - samples/sec: 9.46 - lr: 0.000003
2021-02-21 09:59:56,642 epoch 9 - iter 10595/21198 - loss 0.19253633 - samples/sec: 9.44 - lr: 0.000003
2021-02-21 10:14:53,595 epoch 9 - iter 12714/21198 - loss 0.19368548 - samples/sec: 9.45 - lr: 0.000003
2021-02-21 10:29:47,614 epoch 9 - iter 14833/21198 - loss 0.19452139 - samples/sec: 9.48 - lr: 0.000003
2021-02-21 10:44:41,415 epoch 9 - iter 16952/21198 - loss 0.19339405 - samples/sec: 9.48 - lr: 0.000003
2021-02-21 10:59:36,337 epoch 9 - iter 19071/21198 - loss 0.19242064 - samples/sec: 9.47 - lr: 0.000003
2021-02-21 11:14:30,614 epoch 9 - iter 21190/21198 - loss 0.19248543 - samples/sec: 9.48 - lr: 0.000003
2021-02-21 11:14:33,791 ----------------------------------------------------------------------------------------------------
2021-02-21 11:14:33,791 EPOCH 9 done: loss 0.1925 - lr 0.0000029
2021-02-21 11:20:25,946 TEST : loss 0.12788806855678558 - score 0.9075
2021-02-21 11:20:26,040 BAD EPOCHS (no improvement): 4
2021-02-21 11:20:26,059 ----------------------------------------------------------------------------------------------------
2021-02-21 11:35:18,369 epoch 10 - iter 2119/21198 - loss 0.19003716 - samples/sec: 9.50 - lr: 0.000003
2021-02-21 11:50:08,521 epoch 10 - iter 4238/21198 - loss 0.18305573 - samples/sec: 9.52 - lr: 0.000003
2021-02-21 12:05:00,626 epoch 10 - iter 6357/21198 - loss 0.18276790 - samples/sec: 9.50 - lr: 0.000003
2021-02-21 12:19:58,182 epoch 10 - iter 8476/21198 - loss 0.18408200 - samples/sec: 9.44 - lr: 0.000003
2021-02-21 12:34:51,607 epoch 10 - iter 10595/21198 - loss 0.18396061 - samples/sec: 9.49 - lr: 0.000003
2021-02-21 12:49:50,161 epoch 10 - iter 12714/21198 - loss 0.18350312 - samples/sec: 9.43 - lr: 0.000003
2021-02-21 13:04:45,147 epoch 10 - iter 14833/21198 - loss 0.18334288 - samples/sec: 9.47 - lr: 0.000003
2021-02-21 13:19:40,466 epoch 10 - iter 16952/21198 - loss 0.18425802 - samples/sec: 9.47 - lr: 0.000003
2021-02-21 13:34:36,952 epoch 10 - iter 19071/21198 - loss 0.18414841 - samples/sec: 9.46 - lr: 0.000003
2021-02-21 13:49:30,328 epoch 10 - iter 21190/21198 - loss 0.18456898 - samples/sec: 9.49 - lr: 0.000003
2021-02-21 13:49:33,450 ----------------------------------------------------------------------------------------------------
2021-02-21 13:49:33,450 EPOCH 10 done: loss 0.1846 - lr 0.0000025
2021-02-21 13:55:29,322 TEST : loss 0.14910565316677094 - score 0.9058
2021-02-21 13:55:29,415 BAD EPOCHS (no improvement): 4
2021-02-21 13:55:29,417 ----------------------------------------------------------------------------------------------------
2021-02-21 14:10:21,804 epoch 11 - iter 2119/21198 - loss 0.17609195 - samples/sec: 9.50 - lr: 0.000002
2021-02-21 14:25:16,338 epoch 11 - iter 4238/21198 - loss 0.18154520 - samples/sec: 9.48 - lr: 0.000002
2021-02-21 14:40:12,223 epoch 11 - iter 6357/21198 - loss 0.18097113 - samples/sec: 9.46 - lr: 0.000002
2021-02-21 14:55:03,642 epoch 11 - iter 8476/21198 - loss 0.18053539 - samples/sec: 9.51 - lr: 0.000002
2021-02-21 15:09:56,533 epoch 11 - iter 10595/21198 - loss 0.17876087 - samples/sec: 9.49 - lr: 0.000002
2021-02-21 15:24:53,173 epoch 11 - iter 12714/21198 - loss 0.17894441 - samples/sec: 9.45 - lr: 0.000002
2021-02-21 15:39:48,175 epoch 11 - iter 14833/21198 - loss 0.17978821 - samples/sec: 9.47 - lr: 0.000002
2021-02-21 15:54:40,494 epoch 11 - iter 16952/21198 - loss 0.18011143 - samples/sec: 9.50 - lr: 0.000002
2021-02-21 16:09:33,438 epoch 11 - iter 19071/21198 - loss 0.17919032 - samples/sec: 9.49 - lr: 0.000002
2021-02-21 16:24:22,957 epoch 11 - iter 21190/21198 - loss 0.17903132 - samples/sec: 9.53 - lr: 0.000002
2021-02-21 16:24:26,245 ----------------------------------------------------------------------------------------------------
2021-02-21 16:24:26,245 EPOCH 11 done: loss 0.1790 - lr 0.0000021
2021-02-21 16:30:17,246 TEST : loss 0.15147249400615692 - score 0.9062
2021-02-21 16:30:17,342 BAD EPOCHS (no improvement): 4
2021-02-21 16:30:17,350 ----------------------------------------------------------------------------------------------------
2021-02-21 16:45:13,575 epoch 12 - iter 2119/21198 - loss 0.17364982 - samples/sec: 9.46 - lr: 0.000002
2021-02-21 17:00:11,813 epoch 12 - iter 4238/21198 - loss 0.17305974 - samples/sec: 9.44 - lr: 0.000002
2021-02-21 17:15:07,540 epoch 12 - iter 6357/21198 - loss 0.17213052 - samples/sec: 9.46 - lr: 0.000002
2021-02-21 17:30:04,059 epoch 12 - iter 8476/21198 - loss 0.16983198 - samples/sec: 9.46 - lr: 0.000002
2021-02-21 17:44:57,853 epoch 12 - iter 10595/21198 - loss 0.17052354 - samples/sec: 9.48 - lr: 0.000002
2021-02-21 17:59:52,951 epoch 12 - iter 12714/21198 - loss 0.16948349 - samples/sec: 9.47 - lr: 0.000002
2021-02-21 18:14:48,715 epoch 12 - iter 14833/21198 - loss 0.16890758 - samples/sec: 9.46 - lr: 0.000002
2021-02-21 18:29:40,011 epoch 12 - iter 16952/21198 - loss 0.16929059 - samples/sec: 9.51 - lr: 0.000002
2021-02-21 18:44:42,153 epoch 12 - iter 19071/21198 - loss 0.16928360 - samples/sec: 9.40 - lr: 0.000002
2021-02-21 18:59:37,616 epoch 12 - iter 21190/21198 - loss 0.17211801 - samples/sec: 9.47 - lr: 0.000002
2021-02-21 18:59:40,898 ----------------------------------------------------------------------------------------------------
2021-02-21 18:59:40,898 EPOCH 12 done: loss 0.1721 - lr 0.0000017
2021-02-21 19:05:31,029 TEST : loss 0.147916778922081 - score 0.9085
2021-02-21 19:05:31,125 BAD EPOCHS (no improvement): 4
2021-02-21 19:05:31,142 ----------------------------------------------------------------------------------------------------
2021-02-21 19:20:24,965 epoch 13 - iter 2119/21198 - loss 0.16896267 - samples/sec: 9.48 - lr: 0.000002
2021-02-21 19:35:21,463 epoch 13 - iter 4238/21198 - loss 0.16653116 - samples/sec: 9.46 - lr: 0.000002
2021-02-21 19:50:15,194 epoch 13 - iter 6357/21198 - loss 0.16770765 - samples/sec: 9.48 - lr: 0.000002
2021-02-21 20:05:12,891 epoch 13 - iter 8476/21198 - loss 0.17108344 - samples/sec: 9.44 - lr: 0.000002
2021-02-21 20:20:06,566 epoch 13 - iter 10595/21198 - loss 0.17184402 - samples/sec: 9.49 - lr: 0.000002
2021-02-21 20:34:59,890 epoch 13 - iter 12714/21198 - loss 0.17303152 - samples/sec: 9.49 - lr: 0.000002
2021-02-21 20:49:50,908 epoch 13 - iter 14833/21198 - loss 0.17325989 - samples/sec: 9.51 - lr: 0.000001
2021-02-21 21:04:47,902 epoch 13 - iter 16952/21198 - loss 0.17294630 - samples/sec: 9.45 - lr: 0.000001
2021-02-21 21:19:41,901 epoch 13 - iter 19071/21198 - loss 0.17373625 - samples/sec: 9.48 - lr: 0.000001
2021-02-21 21:34:36,135 epoch 13 - iter 21190/21198 - loss 0.17394207 - samples/sec: 9.48 - lr: 0.000001
2021-02-21 21:34:39,310 ----------------------------------------------------------------------------------------------------
2021-02-21 21:34:39,310 EPOCH 13 done: loss 0.1739 - lr 0.0000014
2021-02-21 21:40:34,294 TEST : loss 0.16395367681980133 - score 0.9076
2021-02-21 21:40:34,393 BAD EPOCHS (no improvement): 4
2021-02-21 21:40:34,407 ----------------------------------------------------------------------------------------------------
2021-02-21 21:55:30,019 epoch 14 - iter 2119/21198 - loss 0.17210424 - samples/sec: 9.46 - lr: 0.000001
2021-02-21 22:10:22,785 epoch 14 - iter 4238/21198 - loss 0.17224407 - samples/sec: 9.49 - lr: 0.000001
2021-02-21 22:25:15,502 epoch 14 - iter 6357/21198 - loss 0.17196186 - samples/sec: 9.50 - lr: 0.000001
2021-02-21 22:40:13,225 epoch 14 - iter 8476/21198 - loss 0.17131693 - samples/sec: 9.44 - lr: 0.000001
2021-02-21 22:55:12,609 epoch 14 - iter 10595/21198 - loss 0.17336075 - samples/sec: 9.43 - lr: 0.000001
2021-02-21 23:10:03,405 epoch 14 - iter 12714/21198 - loss 0.17249936 - samples/sec: 9.52 - lr: 0.000001
2021-02-21 23:24:55,615 epoch 14 - iter 14833/21198 - loss 0.17318785 - samples/sec: 9.50 - lr: 0.000001
2021-02-21 23:39:39,560 epoch 14 - iter 16952/21198 - loss 0.17208304 - samples/sec: 9.59 - lr: 0.000001
2021-02-21 23:54:35,004 epoch 14 - iter 19071/21198 - loss 0.17228505 - samples/sec: 9.47 - lr: 0.000001
2021-02-22 00:09:25,613 epoch 14 - iter 21190/21198 - loss 0.17228047 - samples/sec: 9.52 - lr: 0.000001
2021-02-22 00:09:28,876 ----------------------------------------------------------------------------------------------------
2021-02-22 00:09:28,877 EPOCH 14 done: loss 0.1723 - lr 0.0000010
2021-02-22 00:15:21,867 TEST : loss 0.16743017733097076 - score 0.909
2021-02-22 00:15:21,963 BAD EPOCHS (no improvement): 4
2021-02-22 00:15:21,965 ----------------------------------------------------------------------------------------------------
2021-02-22 00:30:16,862 epoch 15 - iter 2119/21198 - loss 0.15790436 - samples/sec: 9.47 - lr: 0.000001
2021-02-22 00:45:09,621 epoch 15 - iter 4238/21198 - loss 0.15811998 - samples/sec: 9.49 - lr: 0.000001
2021-02-22 01:00:03,426 epoch 15 - iter 6357/21198 - loss 0.16041062 - samples/sec: 9.48 - lr: 0.000001
2021-02-22 01:14:56,991 epoch 15 - iter 8476/21198 - loss 0.16204753 - samples/sec: 9.49 - lr: 0.000001
2021-02-22 01:29:46,578 epoch 15 - iter 10595/21198 - loss 0.16310173 - samples/sec: 9.53 - lr: 0.000001
2021-02-22 01:44:39,948 epoch 15 - iter 12714/21198 - loss 0.16249272 - samples/sec: 9.49 - lr: 0.000001
2021-02-22 01:59:33,810 epoch 15 - iter 14833/21198 - loss 0.16196562 - samples/sec: 9.48 - lr: 0.000001
2021-02-22 02:14:26,647 epoch 15 - iter 16952/21198 - loss 0.16333266 - samples/sec: 9.49 - lr: 0.000001
2021-02-22 02:29:18,415 epoch 15 - iter 19071/21198 - loss 0.16459359 - samples/sec: 9.51 - lr: 0.000001
2021-02-22 02:44:12,651 epoch 15 - iter 21190/21198 - loss 0.16491666 - samples/sec: 9.48 - lr: 0.000001
2021-02-22 02:44:15,874 ----------------------------------------------------------------------------------------------------
2021-02-22 02:44:15,874 EPOCH 15 done: loss 0.1649 - lr 0.0000007
2021-02-22 02:50:08,356 TEST : loss 0.17295649647712708 - score 0.9101
2021-02-22 02:50:08,450 BAD EPOCHS (no improvement): 4
2021-02-22 02:50:08,452 ----------------------------------------------------------------------------------------------------
2021-02-22 03:05:07,383 epoch 16 - iter 2119/21198 - loss 0.16869372 - samples/sec: 9.43 - lr: 0.000001
2021-02-22 03:20:04,205 epoch 16 - iter 4238/21198 - loss 0.16204002 - samples/sec: 9.45 - lr: 0.000001
2021-02-22 03:34:56,532 epoch 16 - iter 6357/21198 - loss 0.16115018 - samples/sec: 9.50 - lr: 0.000001
2021-02-22 03:49:52,676 epoch 16 - iter 8476/21198 - loss 0.16290083 - samples/sec: 9.46 - lr: 0.000001
2021-02-22 04:04:43,904 epoch 16 - iter 10595/21198 - loss 0.16286029 - samples/sec: 9.51 - lr: 0.000001
2021-02-22 04:19:37,979 epoch 16 - iter 12714/21198 - loss 0.16258104 - samples/sec: 9.48 - lr: 0.000001
2021-02-22 04:34:27,662 epoch 16 - iter 14833/21198 - loss 0.16217931 - samples/sec: 9.53 - lr: 0.000001
2021-02-22 04:49:18,263 epoch 16 - iter 16952/21198 - loss 0.16190092 - samples/sec: 9.52 - lr: 0.000001
2021-02-22 05:04:09,607 epoch 16 - iter 19071/21198 - loss 0.16271366 - samples/sec: 9.51 - lr: 0.000001
2021-02-22 05:19:03,032 epoch 16 - iter 21190/21198 - loss 0.16309304 - samples/sec: 9.49 - lr: 0.000000
2021-02-22 05:19:06,131 ----------------------------------------------------------------------------------------------------
2021-02-22 05:19:06,131 EPOCH 16 done: loss 0.1631 - lr 0.0000005
2021-02-22 05:24:59,209 TEST : loss 0.1732577085494995 - score 0.9099
2021-02-22 05:24:59,306 BAD EPOCHS (no improvement): 4
2021-02-22 05:24:59,318 ----------------------------------------------------------------------------------------------------
2021-02-22 05:39:50,755 epoch 17 - iter 2119/21198 - loss 0.15607883 - samples/sec: 9.51 - lr: 0.000000
2021-02-22 05:54:41,713 epoch 17 - iter 4238/21198 - loss 0.16295560 - samples/sec: 9.51 - lr: 0.000000
2021-02-22 06:09:33,595 epoch 17 - iter 6357/21198 - loss 0.16030109 - samples/sec: 9.50 - lr: 0.000000
2021-02-22 06:24:26,942 epoch 17 - iter 8476/21198 - loss 0.16028383 - samples/sec: 9.49 - lr: 0.000000
2021-02-22 06:39:19,965 epoch 17 - iter 10595/21198 - loss 0.16179951 - samples/sec: 9.49 - lr: 0.000000
2021-02-22 06:54:14,002 epoch 17 - iter 12714/21198 - loss 0.16064671 - samples/sec: 9.48 - lr: 0.000000
2021-02-22 07:09:02,879 epoch 17 - iter 14833/21198 - loss 0.16118933 - samples/sec: 9.54 - lr: 0.000000
2021-02-22 07:23:53,696 epoch 17 - iter 16952/21198 - loss 0.16233903 - samples/sec: 9.52 - lr: 0.000000
2021-02-22 07:38:43,895 epoch 17 - iter 19071/21198 - loss 0.16244551 - samples/sec: 9.52 - lr: 0.000000
2021-02-22 07:53:35,588 epoch 17 - iter 21190/21198 - loss 0.16243178 - samples/sec: 9.51 - lr: 0.000000
2021-02-22 07:53:38,781 ----------------------------------------------------------------------------------------------------
2021-02-22 07:53:38,781 EPOCH 17 done: loss 0.1624 - lr 0.0000003
2021-02-22 07:59:36,439 TEST : loss 0.1792287975549698 - score 0.9098
2021-02-22 07:59:36,538 BAD EPOCHS (no improvement): 4
2021-02-22 07:59:36,561 ----------------------------------------------------------------------------------------------------
2021-02-22 08:14:29,823 epoch 18 - iter 2119/21198 - loss 0.16946072 - samples/sec: 9.49 - lr: 0.000000
2021-02-22 08:29:28,618 epoch 18 - iter 4238/21198 - loss 0.16431210 - samples/sec: 9.43 - lr: 0.000000
2021-02-22 08:44:23,757 epoch 18 - iter 6357/21198 - loss 0.16285664 - samples/sec: 9.47 - lr: 0.000000
2021-02-22 08:59:18,330 epoch 18 - iter 8476/21198 - loss 0.16406026 - samples/sec: 9.48 - lr: 0.000000
2021-02-22 09:14:15,549 epoch 18 - iter 10595/21198 - loss 0.16218940 - samples/sec: 9.45 - lr: 0.000000
2021-02-22 09:29:11,539 epoch 18 - iter 12714/21198 - loss 0.16137864 - samples/sec: 9.46 - lr: 0.000000
2021-02-22 09:44:06,143 epoch 18 - iter 14833/21198 - loss 0.16211856 - samples/sec: 9.48 - lr: 0.000000
2021-02-22 09:59:03,167 epoch 18 - iter 16952/21198 - loss 0.16214711 - samples/sec: 9.45 - lr: 0.000000
2021-02-22 10:13:57,239 epoch 18 - iter 19071/21198 - loss 0.16058721 - samples/sec: 9.48 - lr: 0.000000
2021-02-22 10:28:52,182 epoch 18 - iter 21190/21198 - loss 0.16093573 - samples/sec: 9.47 - lr: 0.000000
2021-02-22 10:28:55,515 ----------------------------------------------------------------------------------------------------
2021-02-22 10:28:55,515 EPOCH 18 done: loss 0.1610 - lr 0.0000001
2021-02-22 10:34:48,208 TEST : loss 0.17890706658363342 - score 0.9095
2021-02-22 10:34:48,308 BAD EPOCHS (no improvement): 4
2021-02-22 10:34:48,332 ----------------------------------------------------------------------------------------------------
2021-02-22 10:49:43,738 epoch 19 - iter 2119/21198 - loss 0.16694990 - samples/sec: 9.47 - lr: 0.000000
2021-02-22 11:04:30,455 epoch 19 - iter 4238/21198 - loss 0.15984197 - samples/sec: 9.56 - lr: 0.000000
2021-02-22 11:19:21,091 epoch 19 - iter 6357/21198 - loss 0.15796573 - samples/sec: 9.52 - lr: 0.000000
2021-02-22 11:34:16,935 epoch 19 - iter 8476/21198 - loss 0.16031077 - samples/sec: 9.46 - lr: 0.000000
2021-02-22 11:49:14,170 epoch 19 - iter 10595/21198 - loss 0.16114764 - samples/sec: 9.45 - lr: 0.000000
2021-02-22 12:04:12,070 epoch 19 - iter 12714/21198 - loss 0.16077654 - samples/sec: 9.44 - lr: 0.000000
2021-02-22 12:19:05,634 epoch 19 - iter 14833/21198 - loss 0.16093868 - samples/sec: 9.49 - lr: 0.000000
2021-02-22 12:34:03,912 epoch 19 - iter 16952/21198 - loss 0.16092922 - samples/sec: 9.44 - lr: 0.000000
2021-02-22 12:48:59,408 epoch 19 - iter 19071/21198 - loss 0.16176484 - samples/sec: 9.47 - lr: 0.000000
2021-02-22 13:03:55,588 epoch 19 - iter 21190/21198 - loss 0.16136077 - samples/sec: 9.46 - lr: 0.000000
2021-02-22 13:03:58,842 ----------------------------------------------------------------------------------------------------
2021-02-22 13:03:58,842 EPOCH 19 done: loss 0.1613 - lr 0.0000000
2021-02-22 13:09:51,774 TEST : loss 0.1799449324607849 - score 0.9093
2021-02-22 13:09:51,873 BAD EPOCHS (no improvement): 4
2021-02-22 13:09:51,889 ----------------------------------------------------------------------------------------------------
2021-02-22 13:24:48,886 epoch 20 - iter 2119/21198 - loss 0.15743940 - samples/sec: 9.45 - lr: 0.000000
2021-02-22 13:39:41,650 epoch 20 - iter 4238/21198 - loss 0.15941045 - samples/sec: 9.49 - lr: 0.000000
2021-02-22 13:54:35,155 epoch 20 - iter 6357/21198 - loss 0.16085263 - samples/sec: 9.49 - lr: 0.000000
2021-02-22 14:09:30,408 epoch 20 - iter 8476/21198 - loss 0.16038502 - samples/sec: 9.47 - lr: 0.000000
2021-02-22 14:24:21,244 epoch 20 - iter 10595/21198 - loss 0.15929046 - samples/sec: 9.52 - lr: 0.000000
2021-02-22 14:39:15,988 epoch 20 - iter 12714/21198 - loss 0.15817473 - samples/sec: 9.47 - lr: 0.000000
2021-02-22 14:54:08,818 epoch 20 - iter 14833/21198 - loss 0.16049560 - samples/sec: 9.49 - lr: 0.000000
2021-02-22 15:09:01,889 epoch 20 - iter 16952/21198 - loss 0.16079237 - samples/sec: 9.49 - lr: 0.000000
2021-02-22 15:23:54,278 epoch 20 - iter 19071/21198 - loss 0.16175262 - samples/sec: 9.50 - lr: 0.000000
2021-02-22 15:38:48,341 epoch 20 - iter 21190/21198 - loss 0.16071107 - samples/sec: 9.48 - lr: 0.000000
2021-02-22 15:38:51,585 ----------------------------------------------------------------------------------------------------
2021-02-22 15:38:51,586 EPOCH 20 done: loss 0.1607 - lr 0.0000000
2021-02-22 15:44:48,115 TEST : loss 0.17999354004859924 - score 0.9093
2021-02-22 15:44:48,213 BAD EPOCHS (no improvement): 4
2021-02-22 15:45:25,862 ----------------------------------------------------------------------------------------------------
2021-02-22 15:45:25,862 Testing using best model ...
2021-02-22 15:51:35,093 0.9055	0.9132	0.9093
2021-02-22 15:51:35,093 
Results:
- F1-score (micro) 0.9093
- F1-score (macro) 0.8233

By class:
CARDINAL   tp: 802 - fp: 124 - fn: 133 - precision: 0.8661 - recall: 0.8578 - f1-score: 0.8619
DATE       tp: 1435 - fp: 219 - fn: 167 - precision: 0.8676 - recall: 0.8958 - f1-score: 0.8814
EVENT      tp: 45 - fp: 19 - fn: 18 - precision: 0.7031 - recall: 0.7143 - f1-score: 0.7087
FAC        tp: 105 - fp: 26 - fn: 30 - precision: 0.8015 - recall: 0.7778 - f1-score: 0.7895
GPE        tp: 2161 - fp: 62 - fn: 79 - precision: 0.9721 - recall: 0.9647 - f1-score: 0.9684
LANGUAGE   tp: 14 - fp: 2 - fn: 8 - precision: 0.8750 - recall: 0.6364 - f1-score: 0.7368
LAW        tp: 26 - fp: 18 - fn: 14 - precision: 0.5909 - recall: 0.6500 - f1-score: 0.6190
LOC        tp: 140 - fp: 41 - fn: 39 - precision: 0.7735 - recall: 0.7821 - f1-score: 0.7778
MONEY      tp: 286 - fp: 29 - fn: 28 - precision: 0.9079 - recall: 0.9108 - f1-score: 0.9094
NORP       tp: 820 - fp: 45 - fn: 21 - precision: 0.9480 - recall: 0.9750 - f1-score: 0.9613
ORDINAL    tp: 168 - fp: 38 - fn: 27 - precision: 0.8155 - recall: 0.8615 - f1-score: 0.8379
ORG        tp: 1650 - fp: 168 - fn: 145 - precision: 0.9076 - recall: 0.9192 - f1-score: 0.9134
PERCENT    tp: 310 - fp: 37 - fn: 39 - precision: 0.8934 - recall: 0.8883 - f1-score: 0.8908
PERSON     tp: 1903 - fp: 81 - fn: 85 - precision: 0.9592 - recall: 0.9572 - f1-score: 0.9582
PRODUCT    tp: 66 - fp: 21 - fn: 10 - precision: 0.7586 - recall: 0.8684 - f1-score: 0.8098
QUANTITY   tp: 87 - fp: 22 - fn: 18 - precision: 0.7982 - recall: 0.8286 - f1-score: 0.8131
TIME       tp: 144 - fp: 72 - fn: 68 - precision: 0.6667 - recall: 0.6792 - f1-score: 0.6729
WORK_OF_ART tp: 118 - fp: 49 - fn: 48 - precision: 0.7066 - recall: 0.7108 - f1-score: 0.7087
2021-02-22 15:51:35,093 ----------------------------------------------------------------------------------------------------