File size: 61,551 Bytes
c0da81a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 |
2021-02-20 12:03:00,991 ----------------------------------------------------------------------------------------------------
2021-02-20 12:03:00,994 Model: "SequenceTagger(
(embeddings): TransformerWordEmbeddings(
(model): XLMRobertaModel(
(embeddings): RobertaEmbeddings(
(word_embeddings): Embedding(250002, 1024, padding_idx=1)
(position_embeddings): Embedding(514, 1024, padding_idx=1)
(token_type_embeddings): Embedding(1, 1024)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(encoder): RobertaEncoder(
(layer): ModuleList(
(0): RobertaLayer(
(attention): RobertaAttention(
(self): RobertaSelfAttention(
(query): Linear(in_features=1024, out_features=1024, bias=True)
(key): Linear(in_features=1024, out_features=1024, bias=True)
(value): Linear(in_features=1024, out_features=1024, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): RobertaSelfOutput(
(dense): Linear(in_features=1024, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): RobertaIntermediate(
(dense): Linear(in_features=1024, out_features=4096, bias=True)
)
(output): RobertaOutput(
(dense): Linear(in_features=4096, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(1): RobertaLayer(
(attention): RobertaAttention(
(self): RobertaSelfAttention(
(query): Linear(in_features=1024, out_features=1024, bias=True)
(key): Linear(in_features=1024, out_features=1024, bias=True)
(value): Linear(in_features=1024, out_features=1024, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): RobertaSelfOutput(
(dense): Linear(in_features=1024, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): RobertaIntermediate(
(dense): Linear(in_features=1024, out_features=4096, bias=True)
)
(output): RobertaOutput(
(dense): Linear(in_features=4096, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(2): RobertaLayer(
(attention): RobertaAttention(
(self): RobertaSelfAttention(
(query): Linear(in_features=1024, out_features=1024, bias=True)
(key): Linear(in_features=1024, out_features=1024, bias=True)
(value): Linear(in_features=1024, out_features=1024, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): RobertaSelfOutput(
(dense): Linear(in_features=1024, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): RobertaIntermediate(
(dense): Linear(in_features=1024, out_features=4096, bias=True)
)
(output): RobertaOutput(
(dense): Linear(in_features=4096, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(3): RobertaLayer(
(attention): RobertaAttention(
(self): RobertaSelfAttention(
(query): Linear(in_features=1024, out_features=1024, bias=True)
(key): Linear(in_features=1024, out_features=1024, bias=True)
(value): Linear(in_features=1024, out_features=1024, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): RobertaSelfOutput(
(dense): Linear(in_features=1024, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): RobertaIntermediate(
(dense): Linear(in_features=1024, out_features=4096, bias=True)
)
(output): RobertaOutput(
(dense): Linear(in_features=4096, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(4): RobertaLayer(
(attention): RobertaAttention(
(self): RobertaSelfAttention(
(query): Linear(in_features=1024, out_features=1024, bias=True)
(key): Linear(in_features=1024, out_features=1024, bias=True)
(value): Linear(in_features=1024, out_features=1024, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): RobertaSelfOutput(
(dense): Linear(in_features=1024, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): RobertaIntermediate(
(dense): Linear(in_features=1024, out_features=4096, bias=True)
)
(output): RobertaOutput(
(dense): Linear(in_features=4096, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(5): RobertaLayer(
(attention): RobertaAttention(
(self): RobertaSelfAttention(
(query): Linear(in_features=1024, out_features=1024, bias=True)
(key): Linear(in_features=1024, out_features=1024, bias=True)
(value): Linear(in_features=1024, out_features=1024, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): RobertaSelfOutput(
(dense): Linear(in_features=1024, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): RobertaIntermediate(
(dense): Linear(in_features=1024, out_features=4096, bias=True)
)
(output): RobertaOutput(
(dense): Linear(in_features=4096, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(6): RobertaLayer(
(attention): RobertaAttention(
(self): RobertaSelfAttention(
(query): Linear(in_features=1024, out_features=1024, bias=True)
(key): Linear(in_features=1024, out_features=1024, bias=True)
(value): Linear(in_features=1024, out_features=1024, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): RobertaSelfOutput(
(dense): Linear(in_features=1024, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): RobertaIntermediate(
(dense): Linear(in_features=1024, out_features=4096, bias=True)
)
(output): RobertaOutput(
(dense): Linear(in_features=4096, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(7): RobertaLayer(
(attention): RobertaAttention(
(self): RobertaSelfAttention(
(query): Linear(in_features=1024, out_features=1024, bias=True)
(key): Linear(in_features=1024, out_features=1024, bias=True)
(value): Linear(in_features=1024, out_features=1024, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): RobertaSelfOutput(
(dense): Linear(in_features=1024, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): RobertaIntermediate(
(dense): Linear(in_features=1024, out_features=4096, bias=True)
)
(output): RobertaOutput(
(dense): Linear(in_features=4096, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(8): RobertaLayer(
(attention): RobertaAttention(
(self): RobertaSelfAttention(
(query): Linear(in_features=1024, out_features=1024, bias=True)
(key): Linear(in_features=1024, out_features=1024, bias=True)
(value): Linear(in_features=1024, out_features=1024, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): RobertaSelfOutput(
(dense): Linear(in_features=1024, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): RobertaIntermediate(
(dense): Linear(in_features=1024, out_features=4096, bias=True)
)
(output): RobertaOutput(
(dense): Linear(in_features=4096, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(9): RobertaLayer(
(attention): RobertaAttention(
(self): RobertaSelfAttention(
(query): Linear(in_features=1024, out_features=1024, bias=True)
(key): Linear(in_features=1024, out_features=1024, bias=True)
(value): Linear(in_features=1024, out_features=1024, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): RobertaSelfOutput(
(dense): Linear(in_features=1024, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): RobertaIntermediate(
(dense): Linear(in_features=1024, out_features=4096, bias=True)
)
(output): RobertaOutput(
(dense): Linear(in_features=4096, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(10): RobertaLayer(
(attention): RobertaAttention(
(self): RobertaSelfAttention(
(query): Linear(in_features=1024, out_features=1024, bias=True)
(key): Linear(in_features=1024, out_features=1024, bias=True)
(value): Linear(in_features=1024, out_features=1024, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): RobertaSelfOutput(
(dense): Linear(in_features=1024, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): RobertaIntermediate(
(dense): Linear(in_features=1024, out_features=4096, bias=True)
)
(output): RobertaOutput(
(dense): Linear(in_features=4096, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(11): RobertaLayer(
(attention): RobertaAttention(
(self): RobertaSelfAttention(
(query): Linear(in_features=1024, out_features=1024, bias=True)
(key): Linear(in_features=1024, out_features=1024, bias=True)
(value): Linear(in_features=1024, out_features=1024, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): RobertaSelfOutput(
(dense): Linear(in_features=1024, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): RobertaIntermediate(
(dense): Linear(in_features=1024, out_features=4096, bias=True)
)
(output): RobertaOutput(
(dense): Linear(in_features=4096, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(12): RobertaLayer(
(attention): RobertaAttention(
(self): RobertaSelfAttention(
(query): Linear(in_features=1024, out_features=1024, bias=True)
(key): Linear(in_features=1024, out_features=1024, bias=True)
(value): Linear(in_features=1024, out_features=1024, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): RobertaSelfOutput(
(dense): Linear(in_features=1024, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): RobertaIntermediate(
(dense): Linear(in_features=1024, out_features=4096, bias=True)
)
(output): RobertaOutput(
(dense): Linear(in_features=4096, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(13): RobertaLayer(
(attention): RobertaAttention(
(self): RobertaSelfAttention(
(query): Linear(in_features=1024, out_features=1024, bias=True)
(key): Linear(in_features=1024, out_features=1024, bias=True)
(value): Linear(in_features=1024, out_features=1024, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): RobertaSelfOutput(
(dense): Linear(in_features=1024, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): RobertaIntermediate(
(dense): Linear(in_features=1024, out_features=4096, bias=True)
)
(output): RobertaOutput(
(dense): Linear(in_features=4096, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(14): RobertaLayer(
(attention): RobertaAttention(
(self): RobertaSelfAttention(
(query): Linear(in_features=1024, out_features=1024, bias=True)
(key): Linear(in_features=1024, out_features=1024, bias=True)
(value): Linear(in_features=1024, out_features=1024, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): RobertaSelfOutput(
(dense): Linear(in_features=1024, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): RobertaIntermediate(
(dense): Linear(in_features=1024, out_features=4096, bias=True)
)
(output): RobertaOutput(
(dense): Linear(in_features=4096, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(15): RobertaLayer(
(attention): RobertaAttention(
(self): RobertaSelfAttention(
(query): Linear(in_features=1024, out_features=1024, bias=True)
(key): Linear(in_features=1024, out_features=1024, bias=True)
(value): Linear(in_features=1024, out_features=1024, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): RobertaSelfOutput(
(dense): Linear(in_features=1024, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): RobertaIntermediate(
(dense): Linear(in_features=1024, out_features=4096, bias=True)
)
(output): RobertaOutput(
(dense): Linear(in_features=4096, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(16): RobertaLayer(
(attention): RobertaAttention(
(self): RobertaSelfAttention(
(query): Linear(in_features=1024, out_features=1024, bias=True)
(key): Linear(in_features=1024, out_features=1024, bias=True)
(value): Linear(in_features=1024, out_features=1024, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): RobertaSelfOutput(
(dense): Linear(in_features=1024, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): RobertaIntermediate(
(dense): Linear(in_features=1024, out_features=4096, bias=True)
)
(output): RobertaOutput(
(dense): Linear(in_features=4096, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(17): RobertaLayer(
(attention): RobertaAttention(
(self): RobertaSelfAttention(
(query): Linear(in_features=1024, out_features=1024, bias=True)
(key): Linear(in_features=1024, out_features=1024, bias=True)
(value): Linear(in_features=1024, out_features=1024, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): RobertaSelfOutput(
(dense): Linear(in_features=1024, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): RobertaIntermediate(
(dense): Linear(in_features=1024, out_features=4096, bias=True)
)
(output): RobertaOutput(
(dense): Linear(in_features=4096, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(18): RobertaLayer(
(attention): RobertaAttention(
(self): RobertaSelfAttention(
(query): Linear(in_features=1024, out_features=1024, bias=True)
(key): Linear(in_features=1024, out_features=1024, bias=True)
(value): Linear(in_features=1024, out_features=1024, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): RobertaSelfOutput(
(dense): Linear(in_features=1024, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): RobertaIntermediate(
(dense): Linear(in_features=1024, out_features=4096, bias=True)
)
(output): RobertaOutput(
(dense): Linear(in_features=4096, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(19): RobertaLayer(
(attention): RobertaAttention(
(self): RobertaSelfAttention(
(query): Linear(in_features=1024, out_features=1024, bias=True)
(key): Linear(in_features=1024, out_features=1024, bias=True)
(value): Linear(in_features=1024, out_features=1024, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): RobertaSelfOutput(
(dense): Linear(in_features=1024, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): RobertaIntermediate(
(dense): Linear(in_features=1024, out_features=4096, bias=True)
)
(output): RobertaOutput(
(dense): Linear(in_features=4096, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(20): RobertaLayer(
(attention): RobertaAttention(
(self): RobertaSelfAttention(
(query): Linear(in_features=1024, out_features=1024, bias=True)
(key): Linear(in_features=1024, out_features=1024, bias=True)
(value): Linear(in_features=1024, out_features=1024, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): RobertaSelfOutput(
(dense): Linear(in_features=1024, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): RobertaIntermediate(
(dense): Linear(in_features=1024, out_features=4096, bias=True)
)
(output): RobertaOutput(
(dense): Linear(in_features=4096, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(21): RobertaLayer(
(attention): RobertaAttention(
(self): RobertaSelfAttention(
(query): Linear(in_features=1024, out_features=1024, bias=True)
(key): Linear(in_features=1024, out_features=1024, bias=True)
(value): Linear(in_features=1024, out_features=1024, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): RobertaSelfOutput(
(dense): Linear(in_features=1024, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): RobertaIntermediate(
(dense): Linear(in_features=1024, out_features=4096, bias=True)
)
(output): RobertaOutput(
(dense): Linear(in_features=4096, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(22): RobertaLayer(
(attention): RobertaAttention(
(self): RobertaSelfAttention(
(query): Linear(in_features=1024, out_features=1024, bias=True)
(key): Linear(in_features=1024, out_features=1024, bias=True)
(value): Linear(in_features=1024, out_features=1024, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): RobertaSelfOutput(
(dense): Linear(in_features=1024, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): RobertaIntermediate(
(dense): Linear(in_features=1024, out_features=4096, bias=True)
)
(output): RobertaOutput(
(dense): Linear(in_features=4096, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(23): RobertaLayer(
(attention): RobertaAttention(
(self): RobertaSelfAttention(
(query): Linear(in_features=1024, out_features=1024, bias=True)
(key): Linear(in_features=1024, out_features=1024, bias=True)
(value): Linear(in_features=1024, out_features=1024, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): RobertaSelfOutput(
(dense): Linear(in_features=1024, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): RobertaIntermediate(
(dense): Linear(in_features=1024, out_features=4096, bias=True)
)
(output): RobertaOutput(
(dense): Linear(in_features=4096, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
)
)
(pooler): RobertaPooler(
(dense): Linear(in_features=1024, out_features=1024, bias=True)
(activation): Tanh()
)
)
)
(word_dropout): WordDropout(p=0.05)
(locked_dropout): LockedDropout(p=0.5)
(linear): Linear(in_features=1024, out_features=76, bias=True)
(beta): 1.0
(weights): None
(weight_tensor) None
)"
2021-02-20 12:03:00,995 ----------------------------------------------------------------------------------------------------
2021-02-20 12:03:00,995 Corpus: "Corpus: 75187 train + 9603 dev + 9479 test sentences"
2021-02-20 12:03:00,995 ----------------------------------------------------------------------------------------------------
2021-02-20 12:03:00,995 Parameters:
2021-02-20 12:03:00,995 - learning_rate: "5e-06"
2021-02-20 12:03:00,995 - mini_batch_size: "4"
2021-02-20 12:03:00,995 - patience: "3"
2021-02-20 12:03:00,995 - anneal_factor: "0.5"
2021-02-20 12:03:00,995 - max_epochs: "20"
2021-02-20 12:03:00,995 - shuffle: "True"
2021-02-20 12:03:00,995 - train_with_dev: "True"
2021-02-20 12:03:00,996 - batch_growth_annealing: "False"
2021-02-20 12:03:00,996 ----------------------------------------------------------------------------------------------------
2021-02-20 12:03:00,996 Model training base path: "resources/contextdrop/d-flert-ontonotes-ft+dev-xlm-roberta-large-context+drop-64-True-42"
2021-02-20 12:03:00,996 ----------------------------------------------------------------------------------------------------
2021-02-20 12:03:00,996 Device: cuda:0
2021-02-20 12:03:00,996 ----------------------------------------------------------------------------------------------------
2021-02-20 12:03:00,996 Embeddings storage mode: none
2021-02-20 12:03:01,005 ----------------------------------------------------------------------------------------------------
2021-02-20 12:17:26,941 epoch 1 - iter 2119/21198 - loss 0.46498391 - samples/sec: 9.79 - lr: 0.000005
2021-02-20 12:32:25,501 epoch 1 - iter 4238/21198 - loss 0.43484389 - samples/sec: 9.43 - lr: 0.000005
2021-02-20 12:47:30,355 epoch 1 - iter 6357/21198 - loss 0.42857357 - samples/sec: 9.37 - lr: 0.000005
2021-02-20 13:02:33,037 epoch 1 - iter 8476/21198 - loss 0.40114081 - samples/sec: 9.39 - lr: 0.000005
2021-02-20 13:17:06,534 epoch 1 - iter 10595/21198 - loss 0.36551536 - samples/sec: 9.70 - lr: 0.000005
2021-02-20 13:31:52,079 epoch 1 - iter 12714/21198 - loss 0.34481658 - samples/sec: 9.57 - lr: 0.000005
2021-02-20 13:47:10,517 epoch 1 - iter 14833/21198 - loss 0.33967654 - samples/sec: 9.23 - lr: 0.000005
2021-02-20 14:02:14,283 epoch 1 - iter 16952/21198 - loss 0.33393062 - samples/sec: 9.38 - lr: 0.000005
2021-02-20 14:16:49,633 epoch 1 - iter 19071/21198 - loss 0.32924976 - samples/sec: 9.68 - lr: 0.000005
2021-02-20 14:31:45,192 epoch 1 - iter 21190/21198 - loss 0.32628298 - samples/sec: 9.47 - lr: 0.000005
2021-02-20 14:31:48,270 ----------------------------------------------------------------------------------------------------
2021-02-20 14:31:48,271 EPOCH 1 done: loss 0.3263 - lr 0.0000050
2021-02-20 14:37:34,463 TEST : loss 0.12760598957538605 - score 0.8669
2021-02-20 14:37:34,546 BAD EPOCHS (no improvement): 4
2021-02-20 14:37:34,556 ----------------------------------------------------------------------------------------------------
2021-02-20 14:52:29,571 epoch 2 - iter 2119/21198 - loss 0.29859233 - samples/sec: 9.47 - lr: 0.000005
2021-02-20 15:07:24,765 epoch 2 - iter 4238/21198 - loss 0.29870475 - samples/sec: 9.47 - lr: 0.000005
2021-02-20 15:22:22,170 epoch 2 - iter 6357/21198 - loss 0.29288750 - samples/sec: 9.45 - lr: 0.000005
2021-02-20 15:37:18,156 epoch 2 - iter 8476/21198 - loss 0.29279330 - samples/sec: 9.46 - lr: 0.000005
2021-02-20 15:52:13,883 epoch 2 - iter 10595/21198 - loss 0.28788203 - samples/sec: 9.46 - lr: 0.000005
2021-02-20 16:07:12,097 epoch 2 - iter 12714/21198 - loss 0.28927318 - samples/sec: 9.44 - lr: 0.000005
2021-02-20 16:22:07,642 epoch 2 - iter 14833/21198 - loss 0.28514545 - samples/sec: 9.47 - lr: 0.000005
2021-02-20 16:37:06,266 epoch 2 - iter 16952/21198 - loss 0.28311760 - samples/sec: 9.43 - lr: 0.000005
2021-02-20 16:52:00,498 epoch 2 - iter 19071/21198 - loss 0.28229767 - samples/sec: 9.48 - lr: 0.000005
2021-02-20 17:06:54,963 epoch 2 - iter 21190/21198 - loss 0.28044944 - samples/sec: 9.48 - lr: 0.000005
2021-02-20 17:06:58,266 ----------------------------------------------------------------------------------------------------
2021-02-20 17:06:58,266 EPOCH 2 done: loss 0.2804 - lr 0.0000049
2021-02-20 17:12:47,188 TEST : loss 0.08660610020160675 - score 0.8953
2021-02-20 17:12:47,273 BAD EPOCHS (no improvement): 4
2021-02-20 17:12:47,275 ----------------------------------------------------------------------------------------------------
2021-02-20 17:27:41,889 epoch 3 - iter 2119/21198 - loss 0.26828308 - samples/sec: 9.48 - lr: 0.000005
2021-02-20 17:42:34,288 epoch 3 - iter 4238/21198 - loss 0.26184351 - samples/sec: 9.50 - lr: 0.000005
2021-02-20 17:57:29,878 epoch 3 - iter 6357/21198 - loss 0.25940653 - samples/sec: 9.46 - lr: 0.000005
2021-02-20 18:12:25,470 epoch 3 - iter 8476/21198 - loss 0.25828841 - samples/sec: 9.46 - lr: 0.000005
2021-02-20 18:27:24,608 epoch 3 - iter 10595/21198 - loss 0.25551183 - samples/sec: 9.43 - lr: 0.000005
2021-02-20 18:42:18,429 epoch 3 - iter 12714/21198 - loss 0.25481692 - samples/sec: 9.48 - lr: 0.000005
2021-02-20 18:57:16,717 epoch 3 - iter 14833/21198 - loss 0.25506844 - samples/sec: 9.44 - lr: 0.000005
2021-02-20 19:12:13,807 epoch 3 - iter 16952/21198 - loss 0.25407433 - samples/sec: 9.45 - lr: 0.000005
2021-02-20 19:27:12,592 epoch 3 - iter 19071/21198 - loss 0.25575351 - samples/sec: 9.43 - lr: 0.000005
2021-02-20 19:42:07,912 epoch 3 - iter 21190/21198 - loss 0.25645391 - samples/sec: 9.47 - lr: 0.000005
2021-02-20 19:42:10,991 ----------------------------------------------------------------------------------------------------
2021-02-20 19:42:10,991 EPOCH 3 done: loss 0.2565 - lr 0.0000047
2021-02-20 19:48:05,928 TEST : loss 0.08892939984798431 - score 0.9015
2021-02-20 19:48:06,017 BAD EPOCHS (no improvement): 4
2021-02-20 19:48:06,022 ----------------------------------------------------------------------------------------------------
2021-02-20 20:03:04,520 epoch 4 - iter 2119/21198 - loss 0.24164433 - samples/sec: 9.43 - lr: 0.000005
2021-02-20 20:17:56,429 epoch 4 - iter 4238/21198 - loss 0.24019658 - samples/sec: 9.50 - lr: 0.000005
2021-02-20 20:32:52,945 epoch 4 - iter 6357/21198 - loss 0.24219914 - samples/sec: 9.46 - lr: 0.000005
2021-02-20 20:47:50,199 epoch 4 - iter 8476/21198 - loss 0.23953211 - samples/sec: 9.45 - lr: 0.000005
2021-02-20 21:02:44,855 epoch 4 - iter 10595/21198 - loss 0.23751325 - samples/sec: 9.47 - lr: 0.000005
2021-02-20 21:17:41,522 epoch 4 - iter 12714/21198 - loss 0.23782852 - samples/sec: 9.45 - lr: 0.000005
2021-02-20 21:32:38,226 epoch 4 - iter 14833/21198 - loss 0.24096846 - samples/sec: 9.45 - lr: 0.000005
2021-02-20 21:47:40,951 epoch 4 - iter 16952/21198 - loss 0.23932344 - samples/sec: 9.39 - lr: 0.000005
2021-02-20 22:02:36,247 epoch 4 - iter 19071/21198 - loss 0.24064527 - samples/sec: 9.47 - lr: 0.000005
2021-02-20 22:17:29,253 epoch 4 - iter 21190/21198 - loss 0.24016898 - samples/sec: 9.49 - lr: 0.000005
2021-02-20 22:17:32,358 ----------------------------------------------------------------------------------------------------
2021-02-20 22:17:32,358 EPOCH 4 done: loss 0.2402 - lr 0.0000045
2021-02-20 22:23:24,429 TEST : loss 0.09627319127321243 - score 0.9076
2021-02-20 22:23:24,520 BAD EPOCHS (no improvement): 4
2021-02-20 22:23:24,535 ----------------------------------------------------------------------------------------------------
2021-02-20 22:38:20,470 epoch 5 - iter 2119/21198 - loss 0.22083609 - samples/sec: 9.46 - lr: 0.000004
2021-02-20 22:53:16,946 epoch 5 - iter 4238/21198 - loss 0.22353303 - samples/sec: 9.46 - lr: 0.000004
2021-02-20 23:08:09,262 epoch 5 - iter 6357/21198 - loss 0.22526515 - samples/sec: 9.50 - lr: 0.000004
2021-02-20 23:23:05,354 epoch 5 - iter 8476/21198 - loss 0.22450491 - samples/sec: 9.46 - lr: 0.000004
2021-02-20 23:38:01,961 epoch 5 - iter 10595/21198 - loss 0.22317870 - samples/sec: 9.45 - lr: 0.000004
2021-02-20 23:53:00,849 epoch 5 - iter 12714/21198 - loss 0.22493520 - samples/sec: 9.43 - lr: 0.000004
2021-02-21 00:07:59,228 epoch 5 - iter 14833/21198 - loss 0.22554395 - samples/sec: 9.44 - lr: 0.000004
2021-02-21 00:22:55,492 epoch 5 - iter 16952/21198 - loss 0.22640472 - samples/sec: 9.46 - lr: 0.000004
2021-02-21 00:37:51,438 epoch 5 - iter 19071/21198 - loss 0.22662263 - samples/sec: 9.46 - lr: 0.000004
2021-02-21 00:52:55,596 epoch 5 - iter 21190/21198 - loss 0.22627673 - samples/sec: 9.38 - lr: 0.000004
2021-02-21 00:52:58,870 ----------------------------------------------------------------------------------------------------
2021-02-21 00:52:58,870 EPOCH 5 done: loss 0.2263 - lr 0.0000043
2021-02-21 00:58:49,962 TEST : loss 0.09906419366598129 - score 0.9046
2021-02-21 00:58:50,051 BAD EPOCHS (no improvement): 4
2021-02-21 00:58:50,053 ----------------------------------------------------------------------------------------------------
2021-02-21 01:13:45,979 epoch 6 - iter 2119/21198 - loss 0.21128728 - samples/sec: 9.46 - lr: 0.000004
2021-02-21 01:28:42,436 epoch 6 - iter 4238/21198 - loss 0.21192698 - samples/sec: 9.46 - lr: 0.000004
2021-02-21 01:43:40,811 epoch 6 - iter 6357/21198 - loss 0.21388017 - samples/sec: 9.44 - lr: 0.000004
2021-02-21 01:58:32,902 epoch 6 - iter 8476/21198 - loss 0.21433303 - samples/sec: 9.50 - lr: 0.000004
2021-02-21 02:13:28,053 epoch 6 - iter 10595/21198 - loss 0.21527260 - samples/sec: 9.47 - lr: 0.000004
2021-02-21 02:28:23,770 epoch 6 - iter 12714/21198 - loss 0.21578637 - samples/sec: 9.46 - lr: 0.000004
2021-02-21 02:43:23,477 epoch 6 - iter 14833/21198 - loss 0.21742266 - samples/sec: 9.42 - lr: 0.000004
2021-02-21 02:58:20,917 epoch 6 - iter 16952/21198 - loss 0.21671573 - samples/sec: 9.45 - lr: 0.000004
2021-02-21 03:13:22,283 epoch 6 - iter 19071/21198 - loss 0.21638606 - samples/sec: 9.40 - lr: 0.000004
2021-02-21 03:28:18,668 epoch 6 - iter 21190/21198 - loss 0.21601016 - samples/sec: 9.46 - lr: 0.000004
2021-02-21 03:28:21,833 ----------------------------------------------------------------------------------------------------
2021-02-21 03:28:21,833 EPOCH 6 done: loss 0.2160 - lr 0.0000040
2021-02-21 03:34:15,000 TEST : loss 0.10325756669044495 - score 0.9076
2021-02-21 03:34:15,094 BAD EPOCHS (no improvement): 4
2021-02-21 03:34:15,120 ----------------------------------------------------------------------------------------------------
2021-02-21 03:49:07,155 epoch 7 - iter 2119/21198 - loss 0.21960439 - samples/sec: 9.50 - lr: 0.000004
2021-02-21 04:04:03,005 epoch 7 - iter 4238/21198 - loss 0.22004925 - samples/sec: 9.46 - lr: 0.000004
2021-02-21 04:18:56,753 epoch 7 - iter 6357/21198 - loss 0.21543406 - samples/sec: 9.48 - lr: 0.000004
2021-02-21 04:33:52,219 epoch 7 - iter 8476/21198 - loss 0.21504576 - samples/sec: 9.47 - lr: 0.000004
2021-02-21 04:48:46,766 epoch 7 - iter 10595/21198 - loss 0.21323903 - samples/sec: 9.48 - lr: 0.000004
2021-02-21 05:03:47,214 epoch 7 - iter 12714/21198 - loss 0.21486108 - samples/sec: 9.41 - lr: 0.000004
2021-02-21 05:18:42,062 epoch 7 - iter 14833/21198 - loss 0.21180056 - samples/sec: 9.47 - lr: 0.000004
2021-02-21 05:33:36,547 epoch 7 - iter 16952/21198 - loss 0.21059053 - samples/sec: 9.48 - lr: 0.000004
2021-02-21 05:48:34,692 epoch 7 - iter 19071/21198 - loss 0.21256070 - samples/sec: 9.44 - lr: 0.000004
2021-02-21 06:03:32,420 epoch 7 - iter 21190/21198 - loss 0.21049512 - samples/sec: 9.44 - lr: 0.000004
2021-02-21 06:03:35,617 ----------------------------------------------------------------------------------------------------
2021-02-21 06:03:35,617 EPOCH 7 done: loss 0.2105 - lr 0.0000036
2021-02-21 06:09:34,438 TEST : loss 0.11405058950185776 - score 0.904
2021-02-21 06:09:34,531 BAD EPOCHS (no improvement): 4
2021-02-21 06:09:34,562 ----------------------------------------------------------------------------------------------------
2021-02-21 06:24:28,495 epoch 8 - iter 2119/21198 - loss 0.20943523 - samples/sec: 9.48 - lr: 0.000004
2021-02-21 06:39:27,118 epoch 8 - iter 4238/21198 - loss 0.20855714 - samples/sec: 9.43 - lr: 0.000004
2021-02-21 06:54:21,524 epoch 8 - iter 6357/21198 - loss 0.20901557 - samples/sec: 9.48 - lr: 0.000004
2021-02-21 07:09:19,131 epoch 8 - iter 8476/21198 - loss 0.20346961 - samples/sec: 9.44 - lr: 0.000003
2021-02-21 07:24:13,963 epoch 8 - iter 10595/21198 - loss 0.20279742 - samples/sec: 9.47 - lr: 0.000003
2021-02-21 07:39:11,643 epoch 8 - iter 12714/21198 - loss 0.20257371 - samples/sec: 9.44 - lr: 0.000003
2021-02-21 07:54:11,363 epoch 8 - iter 14833/21198 - loss 0.19941560 - samples/sec: 9.42 - lr: 0.000003
2021-02-21 08:09:12,189 epoch 8 - iter 16952/21198 - loss 0.19895001 - samples/sec: 9.41 - lr: 0.000003
2021-02-21 08:24:10,631 epoch 8 - iter 19071/21198 - loss 0.19874614 - samples/sec: 9.43 - lr: 0.000003
2021-02-21 08:39:11,135 epoch 8 - iter 21190/21198 - loss 0.19883000 - samples/sec: 9.41 - lr: 0.000003
2021-02-21 08:39:14,364 ----------------------------------------------------------------------------------------------------
2021-02-21 08:39:14,365 EPOCH 8 done: loss 0.1989 - lr 0.0000033
2021-02-21 08:45:06,010 TEST : loss 0.12001997232437134 - score 0.9062
2021-02-21 08:45:06,104 BAD EPOCHS (no improvement): 4
2021-02-21 08:45:06,108 ----------------------------------------------------------------------------------------------------
2021-02-21 09:00:02,412 epoch 9 - iter 2119/21198 - loss 0.19438574 - samples/sec: 9.46 - lr: 0.000003
2021-02-21 09:15:05,242 epoch 9 - iter 4238/21198 - loss 0.18942482 - samples/sec: 9.39 - lr: 0.000003
2021-02-21 09:30:02,818 epoch 9 - iter 6357/21198 - loss 0.19236360 - samples/sec: 9.44 - lr: 0.000003
2021-02-21 09:44:58,840 epoch 9 - iter 8476/21198 - loss 0.19256963 - samples/sec: 9.46 - lr: 0.000003
2021-02-21 09:59:56,642 epoch 9 - iter 10595/21198 - loss 0.19253633 - samples/sec: 9.44 - lr: 0.000003
2021-02-21 10:14:53,595 epoch 9 - iter 12714/21198 - loss 0.19368548 - samples/sec: 9.45 - lr: 0.000003
2021-02-21 10:29:47,614 epoch 9 - iter 14833/21198 - loss 0.19452139 - samples/sec: 9.48 - lr: 0.000003
2021-02-21 10:44:41,415 epoch 9 - iter 16952/21198 - loss 0.19339405 - samples/sec: 9.48 - lr: 0.000003
2021-02-21 10:59:36,337 epoch 9 - iter 19071/21198 - loss 0.19242064 - samples/sec: 9.47 - lr: 0.000003
2021-02-21 11:14:30,614 epoch 9 - iter 21190/21198 - loss 0.19248543 - samples/sec: 9.48 - lr: 0.000003
2021-02-21 11:14:33,791 ----------------------------------------------------------------------------------------------------
2021-02-21 11:14:33,791 EPOCH 9 done: loss 0.1925 - lr 0.0000029
2021-02-21 11:20:25,946 TEST : loss 0.12788806855678558 - score 0.9075
2021-02-21 11:20:26,040 BAD EPOCHS (no improvement): 4
2021-02-21 11:20:26,059 ----------------------------------------------------------------------------------------------------
2021-02-21 11:35:18,369 epoch 10 - iter 2119/21198 - loss 0.19003716 - samples/sec: 9.50 - lr: 0.000003
2021-02-21 11:50:08,521 epoch 10 - iter 4238/21198 - loss 0.18305573 - samples/sec: 9.52 - lr: 0.000003
2021-02-21 12:05:00,626 epoch 10 - iter 6357/21198 - loss 0.18276790 - samples/sec: 9.50 - lr: 0.000003
2021-02-21 12:19:58,182 epoch 10 - iter 8476/21198 - loss 0.18408200 - samples/sec: 9.44 - lr: 0.000003
2021-02-21 12:34:51,607 epoch 10 - iter 10595/21198 - loss 0.18396061 - samples/sec: 9.49 - lr: 0.000003
2021-02-21 12:49:50,161 epoch 10 - iter 12714/21198 - loss 0.18350312 - samples/sec: 9.43 - lr: 0.000003
2021-02-21 13:04:45,147 epoch 10 - iter 14833/21198 - loss 0.18334288 - samples/sec: 9.47 - lr: 0.000003
2021-02-21 13:19:40,466 epoch 10 - iter 16952/21198 - loss 0.18425802 - samples/sec: 9.47 - lr: 0.000003
2021-02-21 13:34:36,952 epoch 10 - iter 19071/21198 - loss 0.18414841 - samples/sec: 9.46 - lr: 0.000003
2021-02-21 13:49:30,328 epoch 10 - iter 21190/21198 - loss 0.18456898 - samples/sec: 9.49 - lr: 0.000003
2021-02-21 13:49:33,450 ----------------------------------------------------------------------------------------------------
2021-02-21 13:49:33,450 EPOCH 10 done: loss 0.1846 - lr 0.0000025
2021-02-21 13:55:29,322 TEST : loss 0.14910565316677094 - score 0.9058
2021-02-21 13:55:29,415 BAD EPOCHS (no improvement): 4
2021-02-21 13:55:29,417 ----------------------------------------------------------------------------------------------------
2021-02-21 14:10:21,804 epoch 11 - iter 2119/21198 - loss 0.17609195 - samples/sec: 9.50 - lr: 0.000002
2021-02-21 14:25:16,338 epoch 11 - iter 4238/21198 - loss 0.18154520 - samples/sec: 9.48 - lr: 0.000002
2021-02-21 14:40:12,223 epoch 11 - iter 6357/21198 - loss 0.18097113 - samples/sec: 9.46 - lr: 0.000002
2021-02-21 14:55:03,642 epoch 11 - iter 8476/21198 - loss 0.18053539 - samples/sec: 9.51 - lr: 0.000002
2021-02-21 15:09:56,533 epoch 11 - iter 10595/21198 - loss 0.17876087 - samples/sec: 9.49 - lr: 0.000002
2021-02-21 15:24:53,173 epoch 11 - iter 12714/21198 - loss 0.17894441 - samples/sec: 9.45 - lr: 0.000002
2021-02-21 15:39:48,175 epoch 11 - iter 14833/21198 - loss 0.17978821 - samples/sec: 9.47 - lr: 0.000002
2021-02-21 15:54:40,494 epoch 11 - iter 16952/21198 - loss 0.18011143 - samples/sec: 9.50 - lr: 0.000002
2021-02-21 16:09:33,438 epoch 11 - iter 19071/21198 - loss 0.17919032 - samples/sec: 9.49 - lr: 0.000002
2021-02-21 16:24:22,957 epoch 11 - iter 21190/21198 - loss 0.17903132 - samples/sec: 9.53 - lr: 0.000002
2021-02-21 16:24:26,245 ----------------------------------------------------------------------------------------------------
2021-02-21 16:24:26,245 EPOCH 11 done: loss 0.1790 - lr 0.0000021
2021-02-21 16:30:17,246 TEST : loss 0.15147249400615692 - score 0.9062
2021-02-21 16:30:17,342 BAD EPOCHS (no improvement): 4
2021-02-21 16:30:17,350 ----------------------------------------------------------------------------------------------------
2021-02-21 16:45:13,575 epoch 12 - iter 2119/21198 - loss 0.17364982 - samples/sec: 9.46 - lr: 0.000002
2021-02-21 17:00:11,813 epoch 12 - iter 4238/21198 - loss 0.17305974 - samples/sec: 9.44 - lr: 0.000002
2021-02-21 17:15:07,540 epoch 12 - iter 6357/21198 - loss 0.17213052 - samples/sec: 9.46 - lr: 0.000002
2021-02-21 17:30:04,059 epoch 12 - iter 8476/21198 - loss 0.16983198 - samples/sec: 9.46 - lr: 0.000002
2021-02-21 17:44:57,853 epoch 12 - iter 10595/21198 - loss 0.17052354 - samples/sec: 9.48 - lr: 0.000002
2021-02-21 17:59:52,951 epoch 12 - iter 12714/21198 - loss 0.16948349 - samples/sec: 9.47 - lr: 0.000002
2021-02-21 18:14:48,715 epoch 12 - iter 14833/21198 - loss 0.16890758 - samples/sec: 9.46 - lr: 0.000002
2021-02-21 18:29:40,011 epoch 12 - iter 16952/21198 - loss 0.16929059 - samples/sec: 9.51 - lr: 0.000002
2021-02-21 18:44:42,153 epoch 12 - iter 19071/21198 - loss 0.16928360 - samples/sec: 9.40 - lr: 0.000002
2021-02-21 18:59:37,616 epoch 12 - iter 21190/21198 - loss 0.17211801 - samples/sec: 9.47 - lr: 0.000002
2021-02-21 18:59:40,898 ----------------------------------------------------------------------------------------------------
2021-02-21 18:59:40,898 EPOCH 12 done: loss 0.1721 - lr 0.0000017
2021-02-21 19:05:31,029 TEST : loss 0.147916778922081 - score 0.9085
2021-02-21 19:05:31,125 BAD EPOCHS (no improvement): 4
2021-02-21 19:05:31,142 ----------------------------------------------------------------------------------------------------
2021-02-21 19:20:24,965 epoch 13 - iter 2119/21198 - loss 0.16896267 - samples/sec: 9.48 - lr: 0.000002
2021-02-21 19:35:21,463 epoch 13 - iter 4238/21198 - loss 0.16653116 - samples/sec: 9.46 - lr: 0.000002
2021-02-21 19:50:15,194 epoch 13 - iter 6357/21198 - loss 0.16770765 - samples/sec: 9.48 - lr: 0.000002
2021-02-21 20:05:12,891 epoch 13 - iter 8476/21198 - loss 0.17108344 - samples/sec: 9.44 - lr: 0.000002
2021-02-21 20:20:06,566 epoch 13 - iter 10595/21198 - loss 0.17184402 - samples/sec: 9.49 - lr: 0.000002
2021-02-21 20:34:59,890 epoch 13 - iter 12714/21198 - loss 0.17303152 - samples/sec: 9.49 - lr: 0.000002
2021-02-21 20:49:50,908 epoch 13 - iter 14833/21198 - loss 0.17325989 - samples/sec: 9.51 - lr: 0.000001
2021-02-21 21:04:47,902 epoch 13 - iter 16952/21198 - loss 0.17294630 - samples/sec: 9.45 - lr: 0.000001
2021-02-21 21:19:41,901 epoch 13 - iter 19071/21198 - loss 0.17373625 - samples/sec: 9.48 - lr: 0.000001
2021-02-21 21:34:36,135 epoch 13 - iter 21190/21198 - loss 0.17394207 - samples/sec: 9.48 - lr: 0.000001
2021-02-21 21:34:39,310 ----------------------------------------------------------------------------------------------------
2021-02-21 21:34:39,310 EPOCH 13 done: loss 0.1739 - lr 0.0000014
2021-02-21 21:40:34,294 TEST : loss 0.16395367681980133 - score 0.9076
2021-02-21 21:40:34,393 BAD EPOCHS (no improvement): 4
2021-02-21 21:40:34,407 ----------------------------------------------------------------------------------------------------
2021-02-21 21:55:30,019 epoch 14 - iter 2119/21198 - loss 0.17210424 - samples/sec: 9.46 - lr: 0.000001
2021-02-21 22:10:22,785 epoch 14 - iter 4238/21198 - loss 0.17224407 - samples/sec: 9.49 - lr: 0.000001
2021-02-21 22:25:15,502 epoch 14 - iter 6357/21198 - loss 0.17196186 - samples/sec: 9.50 - lr: 0.000001
2021-02-21 22:40:13,225 epoch 14 - iter 8476/21198 - loss 0.17131693 - samples/sec: 9.44 - lr: 0.000001
2021-02-21 22:55:12,609 epoch 14 - iter 10595/21198 - loss 0.17336075 - samples/sec: 9.43 - lr: 0.000001
2021-02-21 23:10:03,405 epoch 14 - iter 12714/21198 - loss 0.17249936 - samples/sec: 9.52 - lr: 0.000001
2021-02-21 23:24:55,615 epoch 14 - iter 14833/21198 - loss 0.17318785 - samples/sec: 9.50 - lr: 0.000001
2021-02-21 23:39:39,560 epoch 14 - iter 16952/21198 - loss 0.17208304 - samples/sec: 9.59 - lr: 0.000001
2021-02-21 23:54:35,004 epoch 14 - iter 19071/21198 - loss 0.17228505 - samples/sec: 9.47 - lr: 0.000001
2021-02-22 00:09:25,613 epoch 14 - iter 21190/21198 - loss 0.17228047 - samples/sec: 9.52 - lr: 0.000001
2021-02-22 00:09:28,876 ----------------------------------------------------------------------------------------------------
2021-02-22 00:09:28,877 EPOCH 14 done: loss 0.1723 - lr 0.0000010
2021-02-22 00:15:21,867 TEST : loss 0.16743017733097076 - score 0.909
2021-02-22 00:15:21,963 BAD EPOCHS (no improvement): 4
2021-02-22 00:15:21,965 ----------------------------------------------------------------------------------------------------
2021-02-22 00:30:16,862 epoch 15 - iter 2119/21198 - loss 0.15790436 - samples/sec: 9.47 - lr: 0.000001
2021-02-22 00:45:09,621 epoch 15 - iter 4238/21198 - loss 0.15811998 - samples/sec: 9.49 - lr: 0.000001
2021-02-22 01:00:03,426 epoch 15 - iter 6357/21198 - loss 0.16041062 - samples/sec: 9.48 - lr: 0.000001
2021-02-22 01:14:56,991 epoch 15 - iter 8476/21198 - loss 0.16204753 - samples/sec: 9.49 - lr: 0.000001
2021-02-22 01:29:46,578 epoch 15 - iter 10595/21198 - loss 0.16310173 - samples/sec: 9.53 - lr: 0.000001
2021-02-22 01:44:39,948 epoch 15 - iter 12714/21198 - loss 0.16249272 - samples/sec: 9.49 - lr: 0.000001
2021-02-22 01:59:33,810 epoch 15 - iter 14833/21198 - loss 0.16196562 - samples/sec: 9.48 - lr: 0.000001
2021-02-22 02:14:26,647 epoch 15 - iter 16952/21198 - loss 0.16333266 - samples/sec: 9.49 - lr: 0.000001
2021-02-22 02:29:18,415 epoch 15 - iter 19071/21198 - loss 0.16459359 - samples/sec: 9.51 - lr: 0.000001
2021-02-22 02:44:12,651 epoch 15 - iter 21190/21198 - loss 0.16491666 - samples/sec: 9.48 - lr: 0.000001
2021-02-22 02:44:15,874 ----------------------------------------------------------------------------------------------------
2021-02-22 02:44:15,874 EPOCH 15 done: loss 0.1649 - lr 0.0000007
2021-02-22 02:50:08,356 TEST : loss 0.17295649647712708 - score 0.9101
2021-02-22 02:50:08,450 BAD EPOCHS (no improvement): 4
2021-02-22 02:50:08,452 ----------------------------------------------------------------------------------------------------
2021-02-22 03:05:07,383 epoch 16 - iter 2119/21198 - loss 0.16869372 - samples/sec: 9.43 - lr: 0.000001
2021-02-22 03:20:04,205 epoch 16 - iter 4238/21198 - loss 0.16204002 - samples/sec: 9.45 - lr: 0.000001
2021-02-22 03:34:56,532 epoch 16 - iter 6357/21198 - loss 0.16115018 - samples/sec: 9.50 - lr: 0.000001
2021-02-22 03:49:52,676 epoch 16 - iter 8476/21198 - loss 0.16290083 - samples/sec: 9.46 - lr: 0.000001
2021-02-22 04:04:43,904 epoch 16 - iter 10595/21198 - loss 0.16286029 - samples/sec: 9.51 - lr: 0.000001
2021-02-22 04:19:37,979 epoch 16 - iter 12714/21198 - loss 0.16258104 - samples/sec: 9.48 - lr: 0.000001
2021-02-22 04:34:27,662 epoch 16 - iter 14833/21198 - loss 0.16217931 - samples/sec: 9.53 - lr: 0.000001
2021-02-22 04:49:18,263 epoch 16 - iter 16952/21198 - loss 0.16190092 - samples/sec: 9.52 - lr: 0.000001
2021-02-22 05:04:09,607 epoch 16 - iter 19071/21198 - loss 0.16271366 - samples/sec: 9.51 - lr: 0.000001
2021-02-22 05:19:03,032 epoch 16 - iter 21190/21198 - loss 0.16309304 - samples/sec: 9.49 - lr: 0.000000
2021-02-22 05:19:06,131 ----------------------------------------------------------------------------------------------------
2021-02-22 05:19:06,131 EPOCH 16 done: loss 0.1631 - lr 0.0000005
2021-02-22 05:24:59,209 TEST : loss 0.1732577085494995 - score 0.9099
2021-02-22 05:24:59,306 BAD EPOCHS (no improvement): 4
2021-02-22 05:24:59,318 ----------------------------------------------------------------------------------------------------
2021-02-22 05:39:50,755 epoch 17 - iter 2119/21198 - loss 0.15607883 - samples/sec: 9.51 - lr: 0.000000
2021-02-22 05:54:41,713 epoch 17 - iter 4238/21198 - loss 0.16295560 - samples/sec: 9.51 - lr: 0.000000
2021-02-22 06:09:33,595 epoch 17 - iter 6357/21198 - loss 0.16030109 - samples/sec: 9.50 - lr: 0.000000
2021-02-22 06:24:26,942 epoch 17 - iter 8476/21198 - loss 0.16028383 - samples/sec: 9.49 - lr: 0.000000
2021-02-22 06:39:19,965 epoch 17 - iter 10595/21198 - loss 0.16179951 - samples/sec: 9.49 - lr: 0.000000
2021-02-22 06:54:14,002 epoch 17 - iter 12714/21198 - loss 0.16064671 - samples/sec: 9.48 - lr: 0.000000
2021-02-22 07:09:02,879 epoch 17 - iter 14833/21198 - loss 0.16118933 - samples/sec: 9.54 - lr: 0.000000
2021-02-22 07:23:53,696 epoch 17 - iter 16952/21198 - loss 0.16233903 - samples/sec: 9.52 - lr: 0.000000
2021-02-22 07:38:43,895 epoch 17 - iter 19071/21198 - loss 0.16244551 - samples/sec: 9.52 - lr: 0.000000
2021-02-22 07:53:35,588 epoch 17 - iter 21190/21198 - loss 0.16243178 - samples/sec: 9.51 - lr: 0.000000
2021-02-22 07:53:38,781 ----------------------------------------------------------------------------------------------------
2021-02-22 07:53:38,781 EPOCH 17 done: loss 0.1624 - lr 0.0000003
2021-02-22 07:59:36,439 TEST : loss 0.1792287975549698 - score 0.9098
2021-02-22 07:59:36,538 BAD EPOCHS (no improvement): 4
2021-02-22 07:59:36,561 ----------------------------------------------------------------------------------------------------
2021-02-22 08:14:29,823 epoch 18 - iter 2119/21198 - loss 0.16946072 - samples/sec: 9.49 - lr: 0.000000
2021-02-22 08:29:28,618 epoch 18 - iter 4238/21198 - loss 0.16431210 - samples/sec: 9.43 - lr: 0.000000
2021-02-22 08:44:23,757 epoch 18 - iter 6357/21198 - loss 0.16285664 - samples/sec: 9.47 - lr: 0.000000
2021-02-22 08:59:18,330 epoch 18 - iter 8476/21198 - loss 0.16406026 - samples/sec: 9.48 - lr: 0.000000
2021-02-22 09:14:15,549 epoch 18 - iter 10595/21198 - loss 0.16218940 - samples/sec: 9.45 - lr: 0.000000
2021-02-22 09:29:11,539 epoch 18 - iter 12714/21198 - loss 0.16137864 - samples/sec: 9.46 - lr: 0.000000
2021-02-22 09:44:06,143 epoch 18 - iter 14833/21198 - loss 0.16211856 - samples/sec: 9.48 - lr: 0.000000
2021-02-22 09:59:03,167 epoch 18 - iter 16952/21198 - loss 0.16214711 - samples/sec: 9.45 - lr: 0.000000
2021-02-22 10:13:57,239 epoch 18 - iter 19071/21198 - loss 0.16058721 - samples/sec: 9.48 - lr: 0.000000
2021-02-22 10:28:52,182 epoch 18 - iter 21190/21198 - loss 0.16093573 - samples/sec: 9.47 - lr: 0.000000
2021-02-22 10:28:55,515 ----------------------------------------------------------------------------------------------------
2021-02-22 10:28:55,515 EPOCH 18 done: loss 0.1610 - lr 0.0000001
2021-02-22 10:34:48,208 TEST : loss 0.17890706658363342 - score 0.9095
2021-02-22 10:34:48,308 BAD EPOCHS (no improvement): 4
2021-02-22 10:34:48,332 ----------------------------------------------------------------------------------------------------
2021-02-22 10:49:43,738 epoch 19 - iter 2119/21198 - loss 0.16694990 - samples/sec: 9.47 - lr: 0.000000
2021-02-22 11:04:30,455 epoch 19 - iter 4238/21198 - loss 0.15984197 - samples/sec: 9.56 - lr: 0.000000
2021-02-22 11:19:21,091 epoch 19 - iter 6357/21198 - loss 0.15796573 - samples/sec: 9.52 - lr: 0.000000
2021-02-22 11:34:16,935 epoch 19 - iter 8476/21198 - loss 0.16031077 - samples/sec: 9.46 - lr: 0.000000
2021-02-22 11:49:14,170 epoch 19 - iter 10595/21198 - loss 0.16114764 - samples/sec: 9.45 - lr: 0.000000
2021-02-22 12:04:12,070 epoch 19 - iter 12714/21198 - loss 0.16077654 - samples/sec: 9.44 - lr: 0.000000
2021-02-22 12:19:05,634 epoch 19 - iter 14833/21198 - loss 0.16093868 - samples/sec: 9.49 - lr: 0.000000
2021-02-22 12:34:03,912 epoch 19 - iter 16952/21198 - loss 0.16092922 - samples/sec: 9.44 - lr: 0.000000
2021-02-22 12:48:59,408 epoch 19 - iter 19071/21198 - loss 0.16176484 - samples/sec: 9.47 - lr: 0.000000
2021-02-22 13:03:55,588 epoch 19 - iter 21190/21198 - loss 0.16136077 - samples/sec: 9.46 - lr: 0.000000
2021-02-22 13:03:58,842 ----------------------------------------------------------------------------------------------------
2021-02-22 13:03:58,842 EPOCH 19 done: loss 0.1613 - lr 0.0000000
2021-02-22 13:09:51,774 TEST : loss 0.1799449324607849 - score 0.9093
2021-02-22 13:09:51,873 BAD EPOCHS (no improvement): 4
2021-02-22 13:09:51,889 ----------------------------------------------------------------------------------------------------
2021-02-22 13:24:48,886 epoch 20 - iter 2119/21198 - loss 0.15743940 - samples/sec: 9.45 - lr: 0.000000
2021-02-22 13:39:41,650 epoch 20 - iter 4238/21198 - loss 0.15941045 - samples/sec: 9.49 - lr: 0.000000
2021-02-22 13:54:35,155 epoch 20 - iter 6357/21198 - loss 0.16085263 - samples/sec: 9.49 - lr: 0.000000
2021-02-22 14:09:30,408 epoch 20 - iter 8476/21198 - loss 0.16038502 - samples/sec: 9.47 - lr: 0.000000
2021-02-22 14:24:21,244 epoch 20 - iter 10595/21198 - loss 0.15929046 - samples/sec: 9.52 - lr: 0.000000
2021-02-22 14:39:15,988 epoch 20 - iter 12714/21198 - loss 0.15817473 - samples/sec: 9.47 - lr: 0.000000
2021-02-22 14:54:08,818 epoch 20 - iter 14833/21198 - loss 0.16049560 - samples/sec: 9.49 - lr: 0.000000
2021-02-22 15:09:01,889 epoch 20 - iter 16952/21198 - loss 0.16079237 - samples/sec: 9.49 - lr: 0.000000
2021-02-22 15:23:54,278 epoch 20 - iter 19071/21198 - loss 0.16175262 - samples/sec: 9.50 - lr: 0.000000
2021-02-22 15:38:48,341 epoch 20 - iter 21190/21198 - loss 0.16071107 - samples/sec: 9.48 - lr: 0.000000
2021-02-22 15:38:51,585 ----------------------------------------------------------------------------------------------------
2021-02-22 15:38:51,586 EPOCH 20 done: loss 0.1607 - lr 0.0000000
2021-02-22 15:44:48,115 TEST : loss 0.17999354004859924 - score 0.9093
2021-02-22 15:44:48,213 BAD EPOCHS (no improvement): 4
2021-02-22 15:45:25,862 ----------------------------------------------------------------------------------------------------
2021-02-22 15:45:25,862 Testing using best model ...
2021-02-22 15:51:35,093 0.9055 0.9132 0.9093
2021-02-22 15:51:35,093
Results:
- F1-score (micro) 0.9093
- F1-score (macro) 0.8233
By class:
CARDINAL tp: 802 - fp: 124 - fn: 133 - precision: 0.8661 - recall: 0.8578 - f1-score: 0.8619
DATE tp: 1435 - fp: 219 - fn: 167 - precision: 0.8676 - recall: 0.8958 - f1-score: 0.8814
EVENT tp: 45 - fp: 19 - fn: 18 - precision: 0.7031 - recall: 0.7143 - f1-score: 0.7087
FAC tp: 105 - fp: 26 - fn: 30 - precision: 0.8015 - recall: 0.7778 - f1-score: 0.7895
GPE tp: 2161 - fp: 62 - fn: 79 - precision: 0.9721 - recall: 0.9647 - f1-score: 0.9684
LANGUAGE tp: 14 - fp: 2 - fn: 8 - precision: 0.8750 - recall: 0.6364 - f1-score: 0.7368
LAW tp: 26 - fp: 18 - fn: 14 - precision: 0.5909 - recall: 0.6500 - f1-score: 0.6190
LOC tp: 140 - fp: 41 - fn: 39 - precision: 0.7735 - recall: 0.7821 - f1-score: 0.7778
MONEY tp: 286 - fp: 29 - fn: 28 - precision: 0.9079 - recall: 0.9108 - f1-score: 0.9094
NORP tp: 820 - fp: 45 - fn: 21 - precision: 0.9480 - recall: 0.9750 - f1-score: 0.9613
ORDINAL tp: 168 - fp: 38 - fn: 27 - precision: 0.8155 - recall: 0.8615 - f1-score: 0.8379
ORG tp: 1650 - fp: 168 - fn: 145 - precision: 0.9076 - recall: 0.9192 - f1-score: 0.9134
PERCENT tp: 310 - fp: 37 - fn: 39 - precision: 0.8934 - recall: 0.8883 - f1-score: 0.8908
PERSON tp: 1903 - fp: 81 - fn: 85 - precision: 0.9592 - recall: 0.9572 - f1-score: 0.9582
PRODUCT tp: 66 - fp: 21 - fn: 10 - precision: 0.7586 - recall: 0.8684 - f1-score: 0.8098
QUANTITY tp: 87 - fp: 22 - fn: 18 - precision: 0.7982 - recall: 0.8286 - f1-score: 0.8131
TIME tp: 144 - fp: 72 - fn: 68 - precision: 0.6667 - recall: 0.6792 - f1-score: 0.6729
WORK_OF_ART tp: 118 - fp: 49 - fn: 48 - precision: 0.7066 - recall: 0.7108 - f1-score: 0.7087
2021-02-22 15:51:35,093 ----------------------------------------------------------------------------------------------------
|