File size: 4,827 Bytes
c0da81a
 
 
 
 
 
 
 
e8454e4
 
c0da81a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
48b95e6
 
 
 
c0da81a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
---
tags:
- flair
- token-classification
- sequence-tagger-model
language: en
datasets:
- ontonotes
widget:
- text: "On September 1st George won 1 dollar while watching Game of Thrones."
---

## English NER in Flair (Ontonotes large model)

This is the large 18-class NER model for English that ships with [Flair](https://github.com/flairNLP/flair/).

F1-Score: **90.93** (Ontonotes)

Predicts 18 tags:

| **tag**                        | **meaning** |
|---------------------------------|-----------|
| CARDINAL    | cardinal value | 
| DATE         | date value | 
| EVENT         | event name | 
| FAC         | building name | 
| GPE         | geo-political entity | 
| LANGUAGE         | language name | 
| LAW         | law name | 
| LOC         | location name | 
| MONEY         | money name | 
| NORP         | affiliation | 
| ORDINAL         | ordinal value | 
| ORG         | organization name | 
| PERCENT         | percent value | 
| PERSON         | person name | 
| PRODUCT         | product name | 
| QUANTITY         | quantity value | 
| TIME         | time value | 
| WORK_OF_ART         | name of work of art | 

Based on [Flair embeddings](https://www.aclweb.org/anthology/C18-1139/) and LSTM-CRF.

---

### Demo: How to use in Flair

Requires: **[Flair](https://github.com/flairNLP/flair/)** (`pip install flair`)

```python
from flair.data import Sentence
from flair.models import SequenceTagger

# load tagger
tagger = SequenceTagger.load("flair/ner-english-ontonotes-large")

# make example sentence
sentence = Sentence("On September 1st George won 1 dollar while watching Game of Thrones.")

# predict NER tags
tagger.predict(sentence)

# print sentence
print(sentence)

# print predicted NER spans
print('The following NER tags are found:')
# iterate over entities and print
for entity in sentence.get_spans('ner'):
    print(entity)

```

This yields the following output:
```
Span [2,3]: "September 1st"   [− Labels: DATE (1.0)]
Span [4]: "George"   [− Labels: PERSON (1.0)]
Span [6,7]: "1 dollar"   [− Labels: MONEY (1.0)]
Span [10,11,12]: "Game of Thrones"   [− Labels: WORK_OF_ART (1.0)]
```

So, the entities "*September 1st*" (labeled as a **date**), "*George*" (labeled as a **person**), "*1 dollar*" (labeled as a **money**) and "Game of Thrones" (labeled as a **work of art**) are found in the sentence "*On September 1st George Washington won 1 dollar while watching Game of Thrones*". 


---

### Training: Script to train this model

The following Flair script was used to train this model: 

```python
from flair.data import Corpus
from flair.datasets import ColumnCorpus
from flair.embeddings import WordEmbeddings, StackedEmbeddings, FlairEmbeddings

# 1. load the corpus (Ontonotes does not ship with Flair, you need to download and reformat into a column format yourself)
corpus: Corpus = ColumnCorpus(
                "resources/tasks/onto-ner",
                column_format={0: "text", 1: "pos", 2: "upos", 3: "ner"},
                tag_to_bioes="ner",
            )

# 2. what tag do we want to predict?
tag_type = 'ner'

# 3. make the tag dictionary from the corpus
tag_dictionary = corpus.make_tag_dictionary(tag_type=tag_type)

# 4. initialize fine-tuneable transformer embeddings WITH document context
from flair.embeddings import TransformerWordEmbeddings

embeddings = TransformerWordEmbeddings(
    model='xlm-roberta-large',
    layers="-1",
    subtoken_pooling="first",
    fine_tune=True,
    use_context=True,
)

# 5. initialize bare-bones sequence tagger (no CRF, no RNN, no reprojection)
from flair.models import SequenceTagger

tagger = SequenceTagger(
    hidden_size=256,
    embeddings=embeddings,
    tag_dictionary=tag_dictionary,
    tag_type='ner',
    use_crf=False,
    use_rnn=False,
    reproject_embeddings=False,
)

# 6. initialize trainer with AdamW optimizer
from flair.trainers import ModelTrainer

trainer = ModelTrainer(tagger, corpus, optimizer=torch.optim.AdamW)

# 7. run training with XLM parameters (20 epochs, small LR)
from torch.optim.lr_scheduler import OneCycleLR

trainer.train('resources/taggers/ner-english-ontonotes-large',
              learning_rate=5.0e-6,
              mini_batch_size=4,
              mini_batch_chunk_size=1,
              max_epochs=20,
              scheduler=OneCycleLR,
              embeddings_storage_mode='none',
              weight_decay=0.,
              )
```



---

### Cite

Please cite the following paper when using this model.

```
@misc{schweter2020flert,
    title={FLERT: Document-Level Features for Named Entity Recognition},
    author={Stefan Schweter and Alan Akbik},
    year={2020},
    eprint={2011.06993},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
```

---

### Issues?

The Flair issue tracker is available [here](https://github.com/flairNLP/flair/issues/).