File size: 2,275 Bytes
ce348d1
 
1733e53
 
 
 
 
 
 
 
 
ce348d1
 
f1a8e95
ce348d1
 
 
 
 
 
 
 
 
 
 
 
 
04da1f4
f1a8e95
ce348d1
 
5e24f2c
ce348d1
 
04a0812
ce348d1
 
 
 
 
 
 
 
 
 
e24f29a
ce348d1
1733e53
f1a8e95
e24f29a
ce348d1
 
 
 
 
 
1733e53
ce348d1
f1a8e95
 
ce348d1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8a358ed
ed9e270
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
---
license: apache-2.0
datasets:
- EleutherAI/the_pile_deduplicated
language:
- en
metrics:
- accuracy
base_model:
- BlinkDL/rwkv-7-pile
pipeline_tag: text-generation
---

# rwkv7-168M-pile

<!-- Provide a quick summary of what the model is/does. -->

This is RWKV-7 model under flash-linear attention format.

## Model Details


### Model Description

<!-- Provide a longer summary of what this model is. -->

- **Developed by:** Bo Peng, Yu Zhang, Songlin Yang, Ruochong Zhang
- **Funded by:** RWKV Foundation (LF AI & Data)
- **Model type:** RWKV7
- **Language(s) (NLP):** English
- **License:** Apache-2.0
- **Parameter count:** 168M
- **Tokenizer:** GPT-NeoX 20B tokenizer

### Model Sources

<!-- Provide the basic links for the model. -->

- **Repository:** https://github.com/fla-org/flash-linear-attention ; https://github.com/BlinkDL/RWKV-LM
- **Paper:** With in Progress
- **Weights:** Converted from https://modelscope.cn/models/RWKV/rwkv-7-pile/file/view/master?fileName=RWKV-x070-Pile-168M-20241120-ctx4096.pth

## Uses

<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
Install `flash-linear-attention` and the latest version of `transformers` before using this model:

```bash
pip install git+https://github.com/fla-org/flash-linear-attention
pip install 'transformers>=4.48.0'
```

### Direct Use

<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
You can use this model just as any other HuggingFace models:
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
model = AutoModelForCausalLM.from_pretrained('fla-hub/rwkv7-168M-pile', trust_remote_code=True)
tokenizer = AutoTokenizer.from_pretrained('fla-hub/rwkv7-168M-pile', trust_remote_code=True)
```

## Training Details

### Training Data

This model is trained on the Pile with a total of 332 billion tokens.

#### Training Hyperparameters

- **Training regime:** bfloat16, lr 8e-4 to 3e-5 cosine decay, wd 0.1, bsz 8x30x4096

## Evaluation

#### Metrics

`lambada_openai`: ppl 14.2 acc 45.6%

`piqa`: acc 65.5%

## FAQ
Q: safetensors metadata is none.

A: upgrade transformers to >=4.48.0: `pip install 'transformers>=4.48.0'`