File size: 2,319 Bytes
b563463 27e0c1e 848422f b563463 1a6d14f b563463 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 |
---
license: apache-2.0
language:
- en
- zh
- ja
- ko
- fr
- ar
- es
- pt
metrics:
- accuracy
base_model:
- BlinkDL/rwkv-7-world
pipeline_tag: text-generation
---
# rwkv7-1.5B-world
<!-- Provide a quick summary of what the model is/does. -->
This is RWKV-7 model under flash-linear attention format.
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** Bo Peng, Yu Zhang, Songlin Yang, Ruichong Zhang
- **Funded by:** RWKV Project (Under LF AI & Data Foundation)
- **Model type:** RWKV7
- **Language(s) (NLP):** English
- **License:** Apache-2.0
- **Parameter count:** 1.52B
- **Tokenizer:** RWKV World tokenizer
- **Vocabulary size:** 65,536
### Model Sources
<!-- Provide the basic links for the model. -->
- **Repository:** https://github.com/fla-org/flash-linear-attention ; https://github.com/BlinkDL/RWKV-LM
- **Paper:** With in Progress
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
Install `flash-linear-attention` and the latest version of `transformers` before using this model:
```bash
pip install git+https://github.com/fla-org/flash-linear-attention
pip install 'transformers>=4.48.0'
```
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
You can use this model just as any other HuggingFace models:
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
model = AutoModelForCausalLM.from_pretrained('fla-hub/rwkv7-1.5B-world', trust_remote_code=True)
tokenizer = AutoTokenizer.from_pretrained('fla-hub/rwkv7-1.5B-world', trust_remote_code=True)
```
## Training Details
### Training Data
This model is trained on the World v2.8 with a total of 1.0 trillion tokens.
#### Training Hyperparameters
- **Training regime:** bfloat16, lr 4e-4 to 1e-5 "delayed" cosine decay, wd 0.1 (with increasing batch sizes during the middle)
- **Final Loss:** 1.9965
- **Token Count:** 3.119 trillion
## Evaluation
#### Metrics
`lambada_openai`:
before conversion: ppl 4.13 acc 69.4%
after conversion: ppl 4.26 acc 68.8%
## FAQ
Q: safetensors metadata is none.
A: upgrade transformers to >=4.48.0: `pip install 'transformers>=4.48.0'` |